1 Fine-mapping inflammatory bowel disease loci to single variant

2 resolution

Hailiang Huang^{1,2}*§, Ming Fang^{3,4}*, Luke Jostins^{5,6}*, Maša Umićević Mirkov⁷, Gabrielle Boucher⁸, Carl A Anderson⁷, Vibeke Andersen^{9,10}, Isabelle Cleynen¹¹, Adrian Cortes⁵, François Crins^{3,4}, Mauro D'Amato^{12,13}, Valérie Deffontaine^{3,4}, Julia Dimitrieva^{3,4}, Elisa Docampo^{3,4}, Mahmoud Elansary^{3,4}, Kyle Kai-How Farh^{1,2,14}, Andre Franke¹⁵, Ann-Stephan Gori^{3,4}, Philippe Goyette⁸, Jonas Halfvarson¹⁶, Talin Haritunians¹⁷, Jo Knight¹⁸, Ian C Lawrance^{19,20}, Charlie W Lees²¹, Edouard Louis^{3,22}, Rob Mariman^{3,4}, Theo Meuwissen²³, Myriam Mni^{3,4}, Yukihide Momozawa^{3,4,24}, Miles Parkes²⁵, Sarah L Spain^{26,27}, Emilie Théâtre^{3,4}, Gosia Trynka⁷, Jack Satsangi²¹, Suzanne van Sommeren²⁸, Severine Vermeire^{11,29}, Ramnik J Xavier^{2,30}, International IBD Genetics Consortium[‡], Pinse K. Waersma²⁸, Pichard H. Duers^{31,32}, Christopher G 3 4 5 6 7 8 9 10 IBD Genetics Consortium[†], Rinse K Weersma²⁸, Richard H Duerr^{31,32}, Christopher G Mathew^{26,33}, John D Rioux^{8,34}, Dermot PB McGovern¹⁷, Judy H Cho³⁵, Michel Georges^{3,4}§, Mark 11 12 J Daly^{1,2}§, Jeffrey C Barrett⁷§ 13 14 ¹Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, 15 Boston, Massachusetts, USA. ²Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. ³Unit 16 of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research 17 Center, University of Liège, Liège, Belgium. ⁴Faculty of Veterinary Medicine, University of Liège, Liège, 18 Belgium. ⁵Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, UK. ⁶Christ 19 Church, University of Oxford, St Aldates, UK. ⁷Wellcome Trust Sanger Institute, Hinxton (Cambridge), 20 21 22 23 24 25 26 27 28 29 30 UK. 8Research Center, Montreal Heart Institute, Montréal, Québec, Canada. 9Medical Department, Viborg Regional Hospital, Viborg, Denmark. ¹⁰Organ Center, Hospital of Southern Jutland Aabenraa, Aabenraa, Denmark.¹¹Department of Clinical and experimental medicine, Translational Research in GastroIntestinal Disorders (TARGID), Katholieke Universiteit (KU) Leuven, Leuven, Belgium. ¹²Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden. ¹³Department of Liver and Gastrointestinal Diseases, BioDonostia Health Research Institute San Sebastian, and IKERBASQUE Basque Foundation for Science Bilbao, Bilbao, Spain.¹⁴Illumina, San Diego, California, USA.¹⁵Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany, ¹⁶Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden, ¹⁷F.Widiaia Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.¹⁸Data Science Institute and Lancaster Medical School, Lancaster University, 31 32 33 34 35 LA1 4YG, UK. ¹⁹Centre for Inflammatory Bowel Diseases, Saint John of God Hospital, Subiaco, WA, Australia.²⁰Harry Perkins Institute for Medical Research, School of Medicine and Pharmacology, University of Western Australia, Murdoch, WA, Australia.²¹Gastrointestinal Unit, Wester General Hospital University of Edinburgh, Edinburgh, UK. ²²Division of Gastroenterology, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium.²³Livestock and Aquacultural Sciences, Norwegian University of Life 36 37 Sciences, Ås, Norway.²⁴Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.²⁵Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, 38 Cambridge, UK. ²⁶Department of Medical and Molecular Genetics, King's College London, London, UK. 39 ²⁷Centre for Therapeutic Target Validation, Wellcome Trust Genome Campus, Hinxton (Cambridge), UK. 40 ²⁸Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center 41 Groningen, Groningen, The Netherlands.²⁹Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium. ³⁰Gastroenterology Unit, Massachusetts General Hospital, Harvard Medical School, 42 43 Boston, Massachusetts, USA. ³¹Division of Gastroenterology, Hepatology and Nutrition, Department of 44 Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. ³²Department of 45 Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, 46 USA. ³³Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, 47 Johannesburg, South Africa .³⁴Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada. 48 ³⁵Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.

- 49 *These authors contributed equally to this work.
- 50 §These authors contributed equally to this work (corresponding authors).
- 51 †A full list of members and affiliations appears in the Supplementary Information.

52 Summary

53 The inflammatory bowel diseases (IBD) are chronic gastrointestinal inflammatory 54 disorders that affect millions worldwide. Genome-wide association studies have 55 identified 200 IBD-associated loci, but few have been conclusively resolved to specific 56 functional variants. Here we report fine-mapping of 94 IBD loci using high-density 57 genotyping in 67,852 individuals. We pinpointed 18 associations to a single causal 58 variant with >95% certainty, and an additional 27 associations to a single variant with 59 >50% certainty. These 45 variants are significantly enriched for protein-coding changes 60 (n=13), direct disruption of transcription factor binding sites (n=3) and tissue specific 61 epigenetic marks (n=10), with the latter category showing enrichment in specific immune 62 cells among associations stronger in CD and in gut mucosa among associations stronger in UC. The results of this study suggest that high-resolution fine-mapping in large 63 64 samples can convert many GWAS discoveries into statistically convincing causal 65 variants, providing a powerful substrate for experimental elucidation of disease 66 mechanisms.

67	The inflammatory bowel diseases (IBD) are a group of chronic, debilitating disorders of
68	the gastrointestinal tract with peak onset in adolescence and early adulthood. More than
69	1.4 million people are affected in the USA alone ¹ , with an estimated direct healthcare
70	cost of \$6.3 billion/year. IBD affects millions worldwide, and is rising in prevalence,
71	particularly in pediatric and non-European ancestry populations ² . IBD has two subtypes,
72	ulcerative colitis (UC) and Crohn's disease (CD), which have distinct presentations and
73	treatment courses. To date, 200 genomic loci have been associated with IBD ^{3,4} , but only a
74	handful have been conclusively ascribed to a specific causal variant with direct insight
75	into the underlying disease biology. This scenario is common to all genetically complex
76	diseases, where the pace of identifying associated loci outstrips that of defining specific
77	molecular mechanisms and extracting biological insight from each association.
78	The widespread correlation structure of the human genome (known as linkage
79	disequilibrium, or LD) often results in similar evidence for association among many
80	neighboring variants. However, unless LD is perfect ($r^2 = 1$), it is possible, with a
81	sufficiently large sample size, to statistically resolve causal variants from neighbors even
82	at high levels of correlation (Extended Data Figure 1 and ref 5). Novel statistical
83	approaches applied to very large datasets that address this problem ⁶ require that the
84	highly correlated variants are directly genotyped or imputed with certainty. Truly high-
85	resolution mapping data, when combined with increasingly sophisticated and
86	comprehensive public databases annotating the putative regulatory function of DNA
87	variants, are likely to reveal novel insights into disease pathogenesis ⁷⁻⁹ and the
88	mechanisms of disease-associated variants.

89 Genetic architecture of associated loci

90 We genotyped 67,852 individuals of European ancestry, including 33,595 IBD (18,967 91 CD and 14,628 UC) and 34,257 healthy controls using the Illumina[™] Immunochip 92 (Extended Data Table 1). This genotyping array was designed to include all known 93 variants from European individuals in the February 2010 release of the 1000 Genomes Project^{10,11} in 187 high-density regions known to be associated to one or more immune-94 mediated diseases¹². Because fine-mapping uses subtle differences in strength of 95 96 association between tightly correlated variants to infer which is most likely to be causal, 97 it is particularly sensitive to data quality. We therefore performed stringent quality 98 control to remove genotyping errors and batch effects (Methods). We imputed into this dataset from the 1000 Genomes reference panel^{13,14} to fill in variants missing from the 99 100 Immunochip, or filtered out by our quality control (Extended Data Figure 2). We then evaluated the 97 high-density regions that had previous IBD associations³ and contained 101 102 at least one variant that showed significant association (Methods) in this data set. The 103 major histocompatibility complex was excluded from these analyses as fine-mapping has 104 been reported elsewhere¹⁵.

105 We applied three complementary Bayesian fine-mapping methods that used 106 different priors and model selection strategies to identify independent association signals 107 within a region, and to assign a posterior probability of causality to each variant 108 (Supplementary Methods and Extended Data Figure 2). For each independent signal 109 detected by each method, we sorted all variants by the posterior probability of 110 association, and added variants to the 'credible set' of associated variants until the sum of 111 their posterior probability exceeded 95% – that is, the credible set contains the minimum 112 list of DNA variants that are >95% likely to contain the causal variant (Figure 1). These

113 sets ranged in size from one to > 400 variants. We merged these results and 114 subsequently focused only on signals where an overlapping credible set of variants was 115 identified by at least two of the three methods and all variants were either directly 116 genotyped or imputed with INFO score > 0.4 (Methods and Figure 1). 117 In three out of 97 regions, a consistent credible set could not be identified; when 118 multiple independent effects exist in a region of very high LD, multiple distinct fine-119 mapping solutions may not be distinguishable (Supplementary Note). Sixty-eight of the 120 remaining 94 regions contain a single association, while 26 harbor two or more 121 independent signals, for a total of 139 independent associations defined across the 94 122 regions (Figure 2a). Only IL23R and NOD2 (both previously established to contain multiple associated protein-coding variants¹⁶) contain more than three independent 123 signals. Consistent with previous reports³, the vast majority of signals are associated 124 125 with both CD and UC, though many of these have a significantly stronger association 126 with one subtype. For the purposes of enrichment analyses below, we compared 79 127 signals that are more strongly associated with CD to 23 signals that are more strongly 128 associated with UC (the remaining 37 were equally associated with both subtypes, 129 Supplementary Table 1).

Using a restricted maximum likelihood mixed model approach¹⁷, we evaluated the proportion of total variance in disease risk attributed to these 94 regions and how much of that is explained by the 139 specific associations. We estimated that 25% of CD risk was explained by the specific associations described here, out of a total of 28% explained by these loci (correspondingly for UC: 17% out of 22%). The single strongest signals in each region contribute 76% of this variance explained and the remaining associations

contribute 24% (Extended Data Figure 3), highlighting the importance of secondary and
 tertiary associations in GWAS results^{15,18}.

138 Associations mapped to a single variant

139 For 18 signals, the 95% credible set consisted of a single variant ('single variant credible

140 sets'), and for 24 others the credible set consisted of two to five variants (Figure 2b). The

141 single variant credible sets included five previously reported coding variants: three in

142 *NOD2* (fs1007insC, R702W, G908R), a rare protective allele in *IL23R* (V362I) and a

splice variant in *CARD9* (c.IVS11+1G>C) 16,19 . The remaining single variant credible sets

144 were comprised of three missense variants (I170V in SMAD3, I923V in IFIH1 and

145 N289S in *NOD2*), four intronic variants (in *IL2RA*, *LRRK2*, *NOD2* and

146 *RTEL1/TNFRSF6B*) and six intergenic variants (located 3.7kb downstream of *GPR35*;

147 3.9kb upstream of *PRDM1*; within a EP300 binding site 39.9 kb upstream of *IKZF1*; 500

bp before the transcription start site of *JAK2*; 9.4kb upstream of *NKX2-3*; and 3.5kb

149 downstream from *HNF4A*) (Table 1). Of note, while physical proximity does not

150 guarantee functional relevance, the credible set of variants for 30 associated loci now

151 implicates a specific gene either because it resides within 50 kb of only that gene or has a

152 coding variant with >50% probability – improved from only 3 so refined using an earlier

153 HapMap-based definition. Using the same definitions, the total number of potential

154 candidate genes was reduced from 669 to 233. Examples of IBD candidate genes clearly

155 prioritized in our data are described in the Supplementary Box, and a customizable

156 browser (http://finemapping.broadinstitute.org/) is available to review the detailed fine-

157 mapping results.

158

159 Associated protein coding variants

160 We first annotated the possible functional consequences of the IBD variants by their 161 effect on the amino acid sequences of proteins. Thirteen out of 45 variants (Figure 2c) 162 that have >50% posterior probability are non-synonymous (Table 1), an 18-fold enrichment (enrichment $P=2x10^{-13}$, Fisher's exact test) relative to randomly drawn 163 164 variants in our regions (Figure 3a). By contrast, only one variant with >50% probability 165 is synonymous (enrichment P=0.42). All common coding variants previously reported to 166 affect IBD risk are included in a 95% credible set including: IL23R (R381Q, V362I and 167 G149R); CARD9 (c.IVS11+1G>C and S12N); NOD2 (S431L, R702W, V793M, N852S 168 and G908R, fs1007insC); ATG16L1 (T300A); PTPN22 (R620W); and FUT2 (W154X). 169 While this enrichment of coding variation (Figure 3a) provides assurance about the 170 accuracy of our approach, it does not suggest that 30% of all associations are caused by 171 coding variants; rather, it is almost certainly the case that associated coding variants have 172 stronger effect sizes, making them easier to fine-map.

173

174 Associated non-coding variants

175 We next examined conserved nucleotides in high confidence binding site motifs of 84

176 transcription factor (TF) families²⁰ (Methods). There was a significant positive

177 correlation between TF motif disruption and IBD association posterior probability

178 (P=0.006, logistic regression) (Figure 3a), including three variants with >50% probability

179 (two >95%). In the *RTEL1/TNFRSF6B* region, rs6062496 is predicted to disrupt a TF

180 binding site (TFBS) for EBF1, a TF involved in the maintenance of B cell identity and

181 prevention of alternative fates in committed $cells^{21}$. A low frequency (3.6%) protective

allele at rs74465132 creates a binding site for EP300 less than 40kbp upstream of *IKZF1*.

183 The third notable example of TFBS disruption, although not in a single variant credible

184 set, is detailed in the Supplementary Box for the association at *SMAD3*.

Recent studies have shown that trait associated variants are enriched for 185 epigenetic marks highlighting cell type specific regulatory regions^{9,22,23}. We compared 186 187 our credible sets with ChIPseq peaks corresponding to chromatin immunoprecipitation with H3K4me1, H3K4me3 and H3K27ac (shown previously^{22,23} to highlight enhancers, 188 189 promoters and active regulatory elements, respectively) in 120 adult and fetal tissues, assaved by the Roadmap Epigenomics Mapping Consortium²⁴ (Figure 3b). Using a 190 threshold of $P=1.3 \times 10^{-4}$ (0.05 corrected for 360 tests), we observed significant 191 192 enrichment of H3K4me1 in 6 immune cell types and for H3K27ac in 2 gastrointestinal 193 (gut) samples (sigmoid colon and rectal mucosa) (Figure 3b and Supplementary Table 2). 194 The subset of signals that are more strongly associated with CD overlap more with 195 immune cell chromatin peaks, whereas UC signals overlap more with gut chromatin 196 peaks (Supplementary Table 2).

197 These three chromatin marks are correlated both within tissues (we observe 198 additional signal in other marks in the tissues described above) and across related tissues. 199 We therefore defined a set of "core immune peaks" for H3K4me1 and "core gut peaks" 200 for H3K27ac as the set of overlapping peaks in all enriched immune cell and gut tissue 201 types, respectively. These two sets of peaks are independently significant and capture the 202 observed enrichment compared to "control peaks" made up of the same number of 203 ChIPseq peaks across our 94 regions in non-immune and non-gut tissues (Figure 3c,d). 204 These two tracks summarize our epigenetic-GWAS overlap signal, and the combined

excess over the baseline suggests that a substantial number of regions, particularly those
not mapped to coding variants, may ultimately be explained by functional variation in
recognizable enhancer/promoter elements.

208

209 Overlap with expression QTLs

210 Variants that change enhancer or promoter activity might change gene expression, and baseline expression of many genes has been found to be regulated by genetic variation²⁵⁻ 211 ²⁷. Indeed, it has been suggested that these so-called expression quantitative trait loci 212 (eOTLs) underlie a large proportion of GWAS associations^{25,28}. We therefore searched 213 214 for variants that are both in an IBD-associated credible set with 50 or fewer variants, and the most significantly associated eQTL variant for a gene in a study²⁹ of peripheral blood 215 216 mononuclear cells (PBMC) from 2,752 twins. Sixty-eight of the 76 regions with signals 217 fine-mapped to \leq 50 variants harbor at least one significant eQTL (affecting a gene within 1 Mb with $P < 10^{-5}$). Despite this abundance of eOTLs in fine-mapped regions, 218 219 only 3 credible sets include the most significantly associated eQTL variants, compared with 3.7 expected by chance (Methods). Data from a more recent study³⁰ using PBMCs 220 221 from 8,086 individuals did not yield a substantively different outcome, demonstrating a 222 modest but non-significant enrichment (8 observed overlaps, 4.2 expected by chance, 223 P=0.06). Using a more lenient definition of overlap which requires the lead eQTL variant to be in LD ($R^2 > 0.4$) with an IBD credible set variant increased the number of 224 225 potential overlaps but again these numbers were not greater than chance expectation. 226 As PBMCs are a heterogeneous collection of immune cell populations, cell type-227 specific signals or signals corresponding to genes expressed most prominently in non-

228 immune tissues may be missed. We therefore tested the enrichment of eQTLs that 229 overlap credible sets in five primary immune cell populations (CD4+, CD8+, CD19+, 230 CD14+ and CD15+), platelets, and three distinct intestinal locations (rectum, colon and 231 ileum) isolated from 350 healthy individuals (Methods). We observed a significant 232 enrichment of credible SNP/eQTL overlaps in CD4+ cells and ileum (Extended Data 233 Table 2): three and two credible sets overlapped eQTLs, respectively, compared to 0.4 234 and 0.3 expected by chance (P=0.005 and 0.020). An enrichment was also observed for the naïve CD14+ cells from another study³¹: eight overlaps observed compared to 2.7 235 236 expected by chance (P=0.001). We did not observe enrichment of overlaps in stimulated 237 (with interferon or lipopolysaccharide) CD14+ cells from the same source (Extended 238 Data Table 2).

239 We investigated eQTL overlaps more deeply by applying two colocalization 240 approaches (one frequentist, one Bayesian, Methods) to the our cell-separated dataset 241 where primary genotype and expression data were available. We confirmed greater than 242 expected overlap with eQTLs in CD4+ and ileum described above (Figure 4 and 243 Extended Data Table 2). These CD4+ colocalized eQTLs also had stronger overlap with 244 CD4+ ChIPseq peaks than our other credible sets, further supporting a regulatory causal 245 mechanism. The number of colocalizations in other purified cell types and tissues was 246 largely indistinguishable from what we expect under the null using either method, except 247 for moderate enrichment in rectum (4 observed and 1.4 expected, P=0.039, Frequentist 248 approach) and colon (3 observed and 0.8 expected, P=0.04, Bayesian approach). Only 249 two of these colocalizations correspond to an IBD variant with causal probability > 50%250 (Table 1 and Extended Data Figure 4a).

251

252 Discussion

253 We have performed fine-mapping of 94 previously reported genetic risk loci for IBD. 254 Rigorous quality control followed by an integration of three novel fine-mapping methods 255 generated lists of genetic variants accounting for 139 independent associations across these loci. Our methods are concordant with an existing fine-mapping method⁶ (67 of 68 256 257 credible sets in single signal regions overlap, including exact matches for all single 258 variant credible sets), and provide extensions to support the phenotype assignment (CD, 259 UC or IBD) and the conditional estimation of multiple credible sets in loci with multiple 260 independent signals. The use of multiple methods allowed us to focus our downstream 261 analyses on loci where the choice of fine-mapping method did not substantially alter 262 conclusions about the biology of IBD. Our results improve on previous fine-mapping efforts using a preset LD threshold³² (e.g. $r^2 > 0.6$) (Extended Data Figure 5) by formally 263 264 modeling the posterior probability of association of every variant. Much of this 265 resolution derives from the very large sample size we employed, because the number of 266 variants in a credible set decreases with increasing significance (P=0.0069). 267 The high-density of genotyping also aids in improved resolution. For instance, 268 the primary association at *IL2RA* has now been mapped to a single variant associated 269 with CD, rs61839660. This variant was not present in the Hapmap 3 reference panel and was therefore not reported in earlier studies^{3,33} (nearby tagging variants, rs12722489 and 270 271 rs12722515, were reported instead). Imputation using the 1000 genomes reference panel

and the largest assembled GWAS dataset³ did not separate rs61839660 from its neighbors

273 (unpublished results), due to the loss of information in imputation using the limited

274 reference. Only direct genotyping, available in the immunochip high-density regions,275 permitted the conclusive identification of the causal variant.

276 Accurate fine-mapping should, in many instances, ultimately point to the same 277 variant across diseases in shared loci. Among our single-variant credible sets, we fine-278 mapped a UC association to a rare missense variant (I923V) in *IFIH1*, which is also associated with type 1 diabetes $(T1D)^{37}$ with an opposite direction of effect 279 280 (Supplementary Box). The intronic variant noted above (rs61839660, AF=9%) in *IL2RA* was also similarly associated with T1D, again with a discordant directional effect³⁸ 281 282 (Supplementary Box). Simultaneous high-resolution fine-mapping in multiple diseases 283 should therefore better clarify both shared and distinct biology. 284 Resolution of fine-mapping can be further improved by leveraging LD from other 285 ethnicities³⁴. However, the sample size from other ethnicities we have collected is small 286 compared with European samples (9,846 across East-Asian, South-Asian and Middle-287 Eastern). Limited access to matched imputation reference panels from all cohorts and the 288 fact that the smaller non-European sets are not from populations (e.g., African-derived)

with narrower LD also suggest that gains in fine-mapping accuracy would be limited at

this time. Ultimately this effort will be aided by more substantial investment in

291 genotyping non-European population samples and by developing and applying more

292 robust trans-ethnic fine-mapping algorithms.

A new release of the 1000 genomes (phase 3)³⁵ and the UK10K³⁶ project have introduced new variants that were not present in the reference panel in our study. Our major findings remain the same using this new reference panel: the 18 single-variant credible sets are not in high LD ($r^2 > 0.95$) with any new variants in either new dataset,

297 and the 1,426 variants in IBD associations mapped to \leq 50 variants are in high LD with 298 only 47 new variants (3.3% of the total size of these credible sets, Supplementary Table 299 1). Given that this release represents a near complete catalogue of variants with minor 300 allele frequency (MAF) > 1% in European populations, we believe our current fine 301 mapping results are likely to be robust, especially for common variant associations. High-302 resolution fine-mapping demonstrates that causal variants are significantly enriched for 303 variants that alter protein coding variants or disrupt transcription factor binding motifs. 304 Enrichment was also observed in H3K4me1 marks in immune related cell types and 305 H3K27ac marks in sigmoid colon and rectal mucosal tissues, with CD loci demonstrating 306 a stronger immune signature and UC loci more enriched for gut tissues (P values are 307 0.014, 0.0005 and 0.0013 respectively for H3K4me1, H3K27ac and H3K4me3; chi-308 square test). By contrast, overall enrichment of eQTLs is quite modest compared with 309 prior reports and not seen strongly in excess of chance in our well-refined credible sets (\leq 310 50 variants). This result underscores the importance of high-resolution mapping and the 311 careful incorporation of the high background rate of eQTLs. It is worth noting that 312 evaluating the overlap between two distinct mapping results is fundamentally different 313 than comparing genetic mapping results to fixed genomic features, and depends on both 314 mappings being well resolved. While these data challenge the paradigm that easily 315 surveyed baseline eQTLs explain a large proportion of non-coding GWAS signals, the 316 modest excesses observed in smaller but cell-specific data sets suggest that much larger 317 tissue or cell-specific studies (and under the correct stimuli or developmental time points) 318 will resolve the contribution of eQTLs to GWAS hits.

319 Resolving multiple independent associations may often help target the causal gene 320 more precisely. For example, the SMAD3 locus hosts a non-synonymous variant and a 321 variant disrupting the conserved transcription factor binding site (also overlapping the 322 H3K27ac marker in gut tissues), unambiguously articulating a role in disease and 323 providing an allelic series for further experimental inquiry. Similarly, the TYK2 locus has 324 been mapped to a non-synonymous variant and a variant disrupting a conserved 325 transcription factor binding site (http://finemapping.broadinstitute.org/). 326 One-hundred and sixteen associations have been fine-mapped to ≤ 50 variants. 327 Among them, 27 associations contain coding variants, 20 contain variants disrupting 328 transcription factor binding motifs, and 45 are within histone H3K4me1 or H3K27ac 329 marked DNA regions. The best-resolved associations - 45 variants having >50% posterior 330 probabilities for being causal (Table 1) – are similarly significantly enriched for variants 331 with known or presumed function from genome annotation. Of these, 13 variants cause 332 non-synonymous change in amino acids, three disrupt a conserved TF binding motif, ten 333 are within histone H3K4me1 or H3K27ac marked DNA regions in disease-relevant 334 tissues, and two colocalize with a significant *cis*-eQTL (Extended Data Figure 4a). Risk 335 alleles of these variants can be found throughout the allele frequency spectrum, with 336 protein coding variants having somewhat larger effects and more extreme risk allele 337 frequencies (Extended Data Figure 6a-c). 338 This analysis, however, leaves 21 non-coding variants (Extended Data Figure 4b), 339 all of which have >50% probabilities to be causal (five have >95%), that are not located 340 within known motifs, annotated elements, nor in any experimentally determined ChIPseq

341 peaks or eQTL credible sets yet discovered. While we have identified a statistically

342 compelling set of genuine associations (often intronic or within 10 kb of strong candidate 343 genes), we can make little inference about function. For example, the intronic single-344 variant credible set of *LRRK2* has no annotation, eQTL or ChIPseq peak of note. This 345 underscores the incompleteness of our knowledge regarding the function of non-coding 346 DNA and its role in disease, and calls for comprehensive studies on transcriptome and 347 epigenome in a wide range of cell lines and stimulation conditions. That the majority of 348 the best-refined non-coding associations have no available annotation is perhaps sobering 349 with respect to how well we may currently be able to interpret non-coding variation in 350 medical sequencing efforts. It does suggest, however, that detailed fine-mapping of 351 GWAS signals down to single variants, combined with emerging high-throughput 352 genome-editing methodology, may be among the most effective ways to advance to a 353 greater understanding of the biology of the non-coding genome.

354	Refer	ences
355	1.	Kappelman, M. D. et al. Direct health care costs of Crohn's disease and ulcerative
356		colitis in US children and adults. <i>Gastroenterology</i> 135 , 1907–1913 (2008).
357	2.	Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory
358		bowel diseases with time, based on systematic review. Gastroenterology 142, 46-
359		54.e42– guiz e30 (2012).
360	3.	Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of
361		inflammatory bowel disease. Nature 491, 119–124 (2012).
362	4.	Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for
363		inflammatory bowel disease and highlight shared genetic risk across populations.
265	5	Nat Genet (2015). doi:10.1038/lig.5559
202	3.	Vali de Bunt, M. <i>et al.</i> Evaluating the Performance of Fine-Mapping Strategies at
300 267	6	Common Variant GWAS Loci. PLos Gener 11, e1005555 (2015).
30/ 269	0.	Maller, J. B. <i>et al.</i> Bayesian refinement of association signals for 14 foci in 5
308	7	Common diseases. Nal Genel 44, 1294–1301 (2012).
369	1.	Y ang, J. <i>et al.</i> FTO genotype is associated with phenotypic variability of body
370	0	mass index. Nature 490, $267-272$ (2012).
3/1	8.	international Multiple Scierosis Genetics Consortium (IMSGC) et al. Analysis of
372		immune-related loci identifies 48 new susceptibility variants for multiple scierosis.
3/3	0	Nat Genet 45, 1353–1360 (2013).
3/4	9.	Onengut-Gumuscu, S. <i>et al.</i> Fine mapping of type 1 diabetes susceptibility loci and
275		Cruct 47, 281, 286 (2015)
3/0 277	10	Genel 47, 381–380 (2013).
270	10.	from 1.002 human company. Nature 401 , 56, (5 (2012))
3/8	11	1000 Conomics Draiget Concertium A man of human conomic variation from
3/9	11.	nonvitation again a sequencing Network 4(7, 10(1, 1072 (2010))
201	10	population-scale sequencing. <i>Nature</i> 407, 1001–1075 (2010).
201	12.	Jostins, L. Using Next-Generation Genomic Datasets in Disease Association. (The University of Combridge, 2012)
202 202	12	University of Camonage, 2012). Howing P. N. Donnally, P. & Marchini, I. A flavible and accurate genetume
202	15.	imputation method for the next generation of generate wide association studios
285		PLoS(Const 5, a1000520) (2000)
286	14	Howie P. Marchini I. & Stenhans M. Constyne imputation with thousands of
287	14.	nowle, B., Marchini, J. & Stephens, W. Genotype iniputation with thousands of genomos. G_2 (<i>Bethasda</i>) 1 , 457, 470 (2011)
200/	15	Govertte P et al High density manning of the MHC identifies a shared role for
200	13.	ULA DDD1*01:02 in inflammatory bowal discasses and betarozygous advantage in
200		nLA-DKB1 01.05 in initialinitatory bower diseases and neterozygous advantage in
201	16	Pives M A at al Doop resequencing of GWAS loci identifies independent rero
202	10.	Nivas, W. A. <i>et al.</i> Deep resequencing of O w AS four identifies independent rate
202		(2011)
30/	17	(2011). Vang L at al Canoma partitioning of genetic variation for complex traits using
394	17.	common SNPs. Nat Ganat 43 , 510, 525 (2011)
395	18	Huang H Chanda D Alonso A Bader I S & Arking D E Cana based tests
307	10.	of association PLoS Genet 7 e1002177 (2011)
308	10	Momozawa V <i>et al</i> Resequencing of positional candidates identifies low
370 300	17.	frequency II 23P coding variants protocting against inflammatory howel discose
ンププ		nequency 11/23 to country variants protecting against initialinitatory bower disease.

400		<i>Nat Genet</i> 43 , 43–47 (2011).
401	20.	Kheradpour, P. & Kellis, M. Systematic discovery and characterization of
402		regulatory motifs in ENCODE TF binding experiments. <i>Nucleic Acids Res</i> 42,
403		2976–2987 (2014).
404	21.	Nechanitzky, R. <i>et al.</i> Transcription factor EBF1 is essential for the maintenance
405		of B cell identity and prevention of alternative fates in committed cells <i>Nat</i>
406		<i>Immunol</i> 14 , 867–875 (2013)
407	2.2	Trynka G <i>et al</i> Chromatin marks identify critical cell types for fine mapping
408	 .	complex trait variants Nat Genet 45, 124–130 (2013)
409	23	Farh K K -H <i>et al.</i> Genetic and enigenetic fine manning of causal autoimmune
410	_ <i>3</i> .	disease variants <i>Nature</i> 518 , 337–343 (2015)
411	24	Bernstein B E <i>et al.</i> The NIH Roadman Enigenomics Manning Consortium 28 .
412	21.	1045-1048 (2010)
412	25	Nica ΛC et al Candidate causal regulatory effects by integration of expression
413 A1A	23.	OTL s with complex trait genetic associations PLoS Genet 6 e1000895 (2010)
414 415	26	Lappalainen T <i>et al.</i> Transcriptome and genome sequencing uncovers functional
415	20.	variation in humans. Natura 501 , 506, 511 (2013)
410	27	Wallace C at al. Statistical colocalization of monocyte gene expression and
417 /18	27.	genetic risk variants for type 1 diabetes. Human Molacular Canatics 21 , 2815
410 /10		generic fisk variants for type 1 diabetes. Thuman inforecular Generics $21, 2813 - 2824$ (2012)
419	28	2024 (2012). Dubois P.C. A. <i>et al.</i> Multiple common variants for colina discuss influencing
420	20.	immune gene expression Nat Ganat 12, 295, 302 (2010)
421	20	Wright E Λ at al Haritability and generation of gene expression in peripheral
422	29.	blood Nat Ganet A6 A30–A37 (201A)
423	30	Westra H I at al Systematic identification of trans eOTI s as putative drivers of
424	50.	known disease associations. Nat Ganat 45 , 1238–1243 (2013)
425	31	Fairfay B P <i>et al</i> Innate immune activity conditions the effect of regulatory
420	51.	variants upon monocyte gene expression 343 1246949-+ (2014)
427	32	Rinke S <i>et al</i> Biological insights from 108 schizonbrenia-associated genetic loci
420	52.	Nature 511 A21_A27 (2014)
430	33	Franke Δ at al Genome-wide meta-analysis increases to 71 the number of
431	55.	confirmed Crohn's disease suscentibility loci Nat Genet 42 1118–1125 (2010)
431 /32	34	Spain S I & Barrett I C Strategies for fine-manning complex traits Human
432	54.	Molecular Constice 24 R111 0 (2015)
433	25	1000 Genemes Project Consertium et al. A global reference for human genetic
434	55.	variation Natura 526, 68, 74 (2015)
433	26	Valiation. Wature 520, 06-74 (2013).
430	50.	disansa Natura (2015) doi:10.1028/natura14062
437	27	Naiontaav S. Walker N. Bishes D. Egholm M. & Todd I. A. Dara variants of
430	57.	IEIU1 a gone implicated in antiviral responses, protect against type 1 diabetes
439		224, 287 , 280 (2000)
440	20	324, 387-389 (2009).
441	38.	mutation identified neural and refined acceptions for the Wallacese Trust Con-
44Z		Control Consections above and refined associations for the wellcome Trust Case
445	20	Control Consortium phase 1 Data. Eur. J. Hum. Genet. 20, 801–805 (2012).
444	<i>5</i> 9.	Koadmap Epigenomics Consortium <i>et al.</i> Integrative analysis of 111 reference
445		numan epigenomes. Nature 518 , $31/-330$ (2015).

446 Acknowledgements We thank Mariya Khan and Bang Wong for their assistance in 447 designing illustrations, and Katie de Lange for helpful comments on the Supplementary 448 Methods. Support from the following grants: M.J.D. and R.J.X.: P30DK43351, 449 U01DK062432, R01DK64869, Helmsley grant 2015PG-IBD001 and CCFA. C.A.A. and 450 J.C.B: Wellcome Trust grant 098051. M.G.:WELBIO (CAUSIBD), BELSPO (BeMGI), 451 Fédération Wallonie-Bruxelles (ARC IBD@Ulg), and Région Wallonne (CIBLES, 452 FEDER). H.H.: ASHG/Charles J. Epstein Trainee Award. J.L.: Wellcome Trust 098759/Z/12/Z. D.M.: Olle Engkvist Foundation and Swedish Research Council (grants 453 454 2010-2976 and 2013-3862). R.K.W.: VIDI grant (016.136.308) from the Netherlands 455 Organization for Scientific Research. J.D.R.: Canada Research Chair, NIDDK grants 456 DK064869 and DK062432, CIHR #GPG-102170 from the Canadian Institutes of Health, 457 GPH-129341 from Genome Canada and Génome Québec, and Crohn's Colitis Canada. 458 J.H.C.: DK062429, DK062422, DK092235, DK106593, and the Sanford J. Grossman 459 Charitable Trust. R.H.D.: Inflammatory Bowel Disease Genetic Research Chair at the 460 University of Pittsburgh, U01DK062420 and R01CA141743. E.D.: Marie-Curie 461 Fellowship, A-S.G: FNRS and Fonds Léon Frederica fellowships, J.H.: Örebro 462 University Hospital Research Foundation and the Swedish Research Council (grant no. 463 521 2011 2764). C.G.M. and M.P.: NIHR Biomedical Research Centre awards to Guy's 464 & St Thomas' NHS Trust / King's College London and to Addenbrooke's Hospital / 465 University of Cambridge School of Clinical Medicine. D.E.: German Federal Ministry of Education and Research (SysInflame grant 01ZX1306A), DFG Excellence Cluster No. 466 467 306 "Inflammation at Interfaces". A.F: professorship of Foundation for Experimental Medicine (Zuerich, Switzerland). D.P.B.M.: DK062413, AI067068, U54DE023789-01, 468 469 305479 from the European Union, and The Leona M. and Harry B. Helmsley Charitable 470 Trust. Additional acknowledgements for the original data are in the Supplementary 471 Information.

472

473 Author Contributions Overall project supervision and management: M.J.D. J.C.B. M.G. 474 Fine-mapping algorithms: H.H., M.F., L.J. TFBS analyses: H.H., K.F. Epigenetic 475 analyses: M.U.M., G.T. eOTL dataset generation: E.L., E.T., J.D., E.D., M.E., R.M., M.M., Y.M., V.D., A.G. eQTL analyses: M.F., J.D., L.J., A.C. Variance component 476 477 analysis: T.M., M.F. Contribution to overall statistical analyses: G.B. Primary drafting of 478 the manuscript: M.J.D., J.C.B, M.G., H.H., L.J. Major contribution to drafting of the 479 manuscript: M.F., M.U.M., J.H.C., D.P.B.M., J.D.R., C.G.M., R.H.D., R.K.W. The 480 remaining authors contributed to the study conception, design, genotyping QC and/or 481 writing of the manuscript. All authors saw, had the opportunity to comment on, and 482 approved the final draft.

483

484 Author Information The study protocols were approved by the institutional review
485 board (IRB) at each center involved with recruitment. Informed consent and permission
486 to share the data were obtained from all subjects, in compliance with the guidelines
487 specified by the recruiting center's IRB. The authors declare no competing financial
488 interests. Correspondence and requests for materials should be addressed to H.H.

- 489 (hhuang@atgu.mgh.harvard.edu), M.G. (michel.georges@ulg.ac.be), M.J.D.
- 490 (mjdaly@atgu.mgh.harvard.edu) or J.C.B. (barrett@sanger.ac.uk)
- 491

492 Table 1. Variants having posterior probability >50%.

Variant	Chr	Position	Ns	Phe	AF	Prob	INFO	Func	Annotation
Signals mappe	d to a	single varian	t						
rs7307562	12	40724960	2	CD	0.398	0.999	1		LRRK2(intronic)
rs2066844	16	50745926	10	CD	0.063	0.999	0.8	С	NOD2(R702W)
rs2066845	16	50756540	10	CD	0.022	0.999	1	С	NOD2(G908R)
rs6017342	20	43065028	2	UC	0.544	0.999	1	E	HNF4A (downstream),
									Gut H3K27ac
rs61839660	10	6094697	2	CD	0.094	0.999	1	E	$IL2\overline{R}A(intronic),$
									Immune H3K4me1
rs5743293	16	50763781	10	CD	0.964	0.999	1	С	NOD2(fs1007insC)
rs6062496	20	62329099	1	IBD	0.587	0.996	1	Т	RTELÌ-
									TNFRSF6B(ncRNA_intronic),
									EBF1 TFBS
rs141992399	9	139259592	3	IBD	0.005	0.995	1	С	<i>CARD9</i> (1434+1G>C)
rs35667974	2	163124637	1	UC	0.021	0.994	1	С	IFIH1(I923V)
rs74465132	7	50304782	3	IBD	0.034	0.994	1	T,E	IKZF1(upstream),
									EP300 TFBS,
									Immune_H3K4me1
rs4676408	2	241574401	1	UC	0.508	0.994	0.99		GPR35(downstream)
rs5743271	16	50744688	10	CD	0.007	0.993	1	С	NOD2(N289S)
rs10748781	10	101283330	2	IBD	0.55	0.990	1	E	NKX2-3 (upstream),
									Gut_H3K27ac
rs35874463	15	67457698	2	IBD	0.054	0.989	1	C,E	SMAD3(I170V),
									Gut_H3K27ac
rs72796367	16	50762771	10	CD	0.023	0.983	1		NOD2(intronic)
rs1887428	9	4984530	1	IBD	0.603	0.974	0.97		JAK2(upstream)
rs41313262	1	67705900	5	CD	0.014	0.973	1	С	IL23R(V362I)
rs28701841	6	106530330	2	CD	0.116	0.971	1		PRDM1 (upstream)
Signals mappe	d to 2	-50 variants a	and th	e lead	variant ha	s poster	ior proba	ability > 5	0%
rs76418789	1	67648596	5	CD	0.006	0.937	0.59	Ć	IL23R(G149R)
rs7711427	5	40414886	3	CD	0.633	0.919	1		
rs1736137	21	16806695	2	CD	0.407	0.879	1		
rs104895444	16	50746199	10	CD	0.003	0.865	1	С	NOD2(V793M)
rs56167332	5	158827769	2	IBD	0.353	0.845	1		IL12B
rs104895467	16	50750810	10	CD	0.002	0.833	1	С	NOD2(N852S)
rs630923	11	118754353	2	CD	0.153	0.820	0.98		(),
rs3812565	9	139272502	3	IBD	0.402	0.815	1	Q	eQTL of <i>INPP5E</i> in CD4 and
									CD8: CARD9 in CD14
rs4655215	1	20137714	3	UC	0.763	0.784	1	Е	Gut H3K27ac
rs145530718	19	10568883	3	CD	0.023	0.762	0.97		
rs6426833	1	20171860	3	ŨĈ	0.555	0.752	1		
chr20	20	43258079	2	CD	0.041	0 736	0.88		
43258079		.0200010	-	05	0.0	0.1.00	0.00		
rs17229679	2	199560757	2	UC	0.028	0.716	1		
rs4728142	7	128573967	1	ŨĈ	0.448	0.664	1	Е	Immune H3K4me1
rs2143178	22	39660829	2	IBD	0.157	0.662	1	T.E	NFKB TFBS, Gut H3K27ac
rs34536443	19	10463118	3	CD	0.038	0 649	1	C,	TYK2(P1104A)
rs138425259	16	50663477	10	ŬĈ	0.009	0.648	0.92	•	
rs146029108	q	139329966	3	CD	0.036	0.643	0.02		
rs12722504	10	6089777	2	CD	0.000	0.040	1		
rc60542850	10	10/88360	2		0.20	0.013	0.80		
rc2188062	19	131770805	1		0.17	0.591	0.05	FO	Cut H3K27ac
132100302	5	101770000	'	CD	0.44	0.550	'	∟,∝	$OUT_1 of SLC2245 in CD14$
									CD15 and II
re2010262	1	67670000	5	חפו	0.4	0 596	1		
152019202	1	206042069	2	עסו	0.4	0.000	1	E	Immuno H3K/mo1
153024493	10	200943908	2		0.171	0.53/	1	E	
15/9104/0	10	42777064	ა 1		0.304	0.528	1		
15//901900	17	43///904	1		0.077	0.521	1		
153003230	17	32370347	1		0.204	0.512	1	C	DTDN/22/M/620P)
152470001	Т	1143//568	1	CD	0.908	0.508	1	ι L	PIPNZZ(WOZUK)

⁴⁹³

Ns: number of independent signals in the locus. Phe: phenotype. AF: allele frequency. 494 Prob: posterior probability for being a causal variant. INFO: imputation. Func: functional

495 annotations -- coding (C), disrupting transcription factor binding sites (T), overlapping

496 epigenetic peaks (E) and colocalization with eQTL (Q).

498 Figure 1. Fine-mapping procedure and output using the *SMAD3* region as an

499 **example**. **a**, 1) We merge overlapping signals across methods; 2) select a lead variant

500 (black triangle) and phenotype (color); and 3) choose the best model. Details for each

501 step are available in Methods. **b**, Example fine-mapping output. This region has been

502 mapped to two independent signals. For each signal, we report the phenotype it is

- associated with (colored), the variants in the credible set, and their posterior probabilities.
- 504

Figure 2. Summary of fine-mapped associations. a, Independent signals. Sixty-eight loci containing one association and 26 loci containing multiple associations. **b**, Number of variants in credible sets. 18 associations were fine-mapped to a single variant, and 116 to \leq 50 variants. **c**, Distribution of the posterior probability of the variants in credible sets having \leq 50 variants.

510

511 Figure 3. Functional annotation of causal variants. a, Proportion of credible variants 512 that are protein coding, disrupt/create transcription factor binding motif sites (TFBS) or 513 are synonymous, sorted by posterior probability. **b**, Epigenetic peaks overlapping 514 credible variants in cell and tissue types from the Roadmap Epigenomics Consortium³⁹. 515 Significant enrichment has been marked with asterisks. Proportion of credible variants that overlap (c) core immune peaks for H4K4me1or (d) core gut peaks for H3K27ac 516 517 (Methods). In panels **a**, **c** and **d**, the vertical dotted lines mark 50% posterior probability 518 and the horizontal dashed lines show the background proportions of each functional 519 category. 520

521 **Figure 4. Number of credible sets that colocalize eQTLs.** Distributions of the number

522 of colocalizations by chance (violins) and observed number of colocalizations with p-523 values (dots). Both the background and the observed numbers were calculated using the

524 "Frequentist colocalization using conditional *P* values" approach (Methods).

525 Methods

526 Genotyping and QC

527 We genotyped 35,197 unaffected and 35,346 affected individuals (20,155 CD and 15,191 UC) using the Immunochip array. Genotypes were called using optiCall⁴⁰ for 192,402 528 529 autosomal variants before QC. We removed variants with missing data rate >2% across the whole dataset, or >10% in any one batch, and variants that failed (FDR $< 10^{-5}$ in 530 531 either the whole dataset or at least two batches) tests for: a) Hardy-Weinberg equilibrium 532 in controls; b) differential missingness between cases and controls; c) different allele 533 frequency across different batches in controls, CD or UC. We also removed non-coding 534 variants that were present in the 1000 Genomes pilot stage but were not in the subsequent 535 Phase I integrated variant set (March 2012 release) and had not been in releases 2 or 3 of 536 HapMap as these mostly represent false positives from the 1000 Genomes pilot, which 537 often genotype poorly. Where a variant failed in exactly one batch we set all genotypes to 538 missing for that batch (to be reimputed later) and included the site if it passed in the 539 remainder of the batches. We removed individuals that had >2% missing data, had 540 significantly higher or lower (defined as FDR<0.01) inbreeding coefficient (F), or were 541 duplicated or related (PI HAT \geq 0.4, calculated from the LD pruned dataset described 542 below), by sequentially removing the individual with the largest number of related 543 samples until no related samples remain. We projected all remaining samples onto 544 principal component axes generated from HapMap 3, and classified their ancestry using a 545 Gaussian mixture model fitted to the European (CEU+TSI), African 546 (YRI+LWK+ASW+MKK), East Asian (CHB+JPT) and South Asian (GIH) HapMap 547 samples. We removed all samples that were classified as non-European, or that lay more

- than 8 standard deviations from the European cluster. After QC, there were 67,852
- 549 European-derived samples with valid diagnosis (healthy control, CD or UC), and 161,681
- 550 genotyped variants available for downstream analyses.

551 Linkage-disequilibrium pruning and principal components analysis

- 552 From the clean dataset we removed variants in long range LD^{41} or with MAF < 0.05, and
- then pruned 3 times using the '--indep' option in PLINK (with window size of 50, step
- size of 5 and VIF threshold of 1.25). Principal component axes were generated within
- 555 controls using this LD pruned dataset (18,123 variants). The axes were then projected to
- 556 cases to generate the principal components for all samples. The analysis was performed
- using our in-house C code (https://github.com/hailianghuang/efficientPCA) and
- 558 LAPACK package⁴² for efficiency.

559 Controlling for population structure, batch effects and other confounders

560 We used 2,853 "background SNPs" present on the Immunochip but not known to be

associated with immune disorders to calculate the genomic inflation factor λ_{GC} . After

562 including the first five principal components calculated above as covariates, $\lambda_{GC} = 1.29$,

563 1.25 and 1.31 for CD, UC and IBD (adding additional principal components did not

further reduce λ_{GC} , Extended Data Table 3a). Because our genotype data were processed

565 in 15 batches with variable ratios of cases to controls, we conducted two analyses to

566 ensure possible batch effects were adequately controlled. First, we split the samples into a

567 "balanced" cohort with studies that have both cases *and* controls and an "imbalanced"

568 cohort with studies that have exclusively cases *or* controls (Extended Data Table 1). As

569 λ_{GC} under polygenic inheritance scales with the sample size⁴³, we randomly down-

570 sampled the full dataset to match the sample size of the balanced and the imbalanced

571 cohorts respectively. We tested for association in these subsets of our data (and included 572 batch ID as a covariate in the balanced cohort), and found the λ_{GC} from the balanced and 573 imbalanced cohorts to be within the 95% confidence interval of size matched values from 574 our full data, suggesting that batch effects are not systematically inflating our association 575 statistics (Extended Data Table 3b). We also performed a heterogeneity test for the odds 576 ratio (OR) of lead variants in each credible set using the balanced and imbalanced cohorts, 577 and observed no significant heterogeneity after Bonferroni correction (Supplementary 578 Table 3).

579 We next sought to disentangle the contributions of polygenic inheritance and uncorrected population structure in our observed λ_{GC} LD score regression⁴⁴ is able to 580 581 differentiate these two effects, but requires genome-wide data, so is not possible in our 582 Immunochip dataset. Instead, we compared λ_{GC} and λ_{1000} values calculated using the 583 same set of background SNPs from the largest IBD meta-analysis with genome-wide data⁴⁵. For both CD and UC the λ_{1000} values in our Immunochip study (1.012 and 1.012) 584 585 were equal or less than those in the genome-wide study (1.016 and 1.012). Furthermore, 586 LD score regression on the genome-wide data shows that the majority of inflation is 587 caused by polygenic risk (LD score intercept = 1.09 for both CD and UC, compared to $\lambda_{GC} = 1.23$ and 1.29). Together, these results show that our residual inflation is consistent 588 589 with polygenic signal and modest residual confounding. We tested what effect correcting 590 for the LD score intercept of 1.09 would have on posterior probabilities and credible sets 591 and found no major differences compared to uncorrected values. The full comparison of λ 592 values is shown in Extended Data Table 3c.

593 Imputation

594	Imputation was performed separately in each Immunochip autosomal high-density region
595	(185 total) from the 1000 Genomes Phase I integrated haplotype reference panel. To
596	prevent the edge effect, we extended each side of the high density regions by 50kbp.
597	Two imputations were performed sequentially (Extended Data Figure 2) using software
598	and parameters as described below. The first imputation was performed immediately
599	after the quality control, from which the major results were manually inspected (Manual
600	cluster plot inspection, Methods). The second imputation was performed after removing
601	variants that failed the manual cluster plot inspection. We used SHAPEIT ^{46,47} (versions:
602	first imputation: v2.r644, second imputation: v2.r769) to pre-phase the genotypes,
603	followed by IMPUTE2 ^{$13,14$} (versions: first: 2.2.2, second: 2.3.0) to perform the
604	imputation. The reference panels were downloaded from the IMPUTE2 website (first:
605	Mar 2012 release, second: Dec 2013 release). After the second imputation, there were
606	388,432 variants with good imputation quality (INFO > 0.4). These include 99.9% of
607	variants with MAF \geq 0.05, 99.3% of variants with 0.05>MAF \geq 0.01, and 63.0% of
608	variants with $MAF < 0.01$ (Extended Data Figure 6d-f), with similar success rates for
609	both coding and non-coding variants, making it unlikely that missing variants
610	substantially affect our fine-mapping conclusions.

611 Manual cluster plot inspection

- 612 Variants that had posterior probability greater than 50% or in credible sets mapped to \leq
- 613 10 variants were manually inspected using Evoker v2.2⁴⁸. Each variant was inspected by
- 614 three independent reviewers (ten reviewers participated) and scored as pass, fail or
- 615 maybe. Reviewers were blinded to the posterior probability of these variants. We
- 616 removed variants that received one or more fails, or received less than 2 passes. 220 out

of 276 inspected variants passed this inspection, and 53 of 56 failed variants were

618 restored by imputation. There is no difference in MAF between the failed and the passed

619 variants (P=0.66). A further cluster plot inspection flagged two additional failed variants

after removing the failed variants from the first inspection and redoing the imputation and

analysis. Dramatic clustering errors accounted for 27/58 flagged variants, which were

622 eliminated from final credible sets. The remaining 31 had only minor issues, and the

623 imputed data for these remained in our final credible sets, with marginally smaller

624 posteriors (mean of the difference: 9.8%, *P*=0.06, paired t test).

625 Establishing a *P* value threshold

626 We used a multiple testing corrected P value threshold for associations of 1.35×10^{-6} ,

627 which was established by permutation. We generated 200 permuted datasets by randomly

628 shuffling phenotypes across samples and carried out association analyses for each

629 permutation across all variants in high-density regions that overlap IBD-associated loci³.

630 We stored (i) all the point-wise P values (α_s), as well as (ii) the "best" P values (α_B) of

each of the 200 permuted datasets. We then computed the empirical, experiment-wide *P*

632 value (α_M)(corrected for multiple testing) for each of the tests as its rank/200 with respect

633 to the 200 α_B . We then estimated the number of independent tests performed in the

634 studied regions, *n*, as the slope of the regression of $log(1-\alpha_M)$ on $log(1-\alpha_S)$, knowing that

635 $\alpha_M = 1 - (1 - \alpha_S)^n$, yielding a value of 37,056. The *P* value threshold was determined

636 as $0.05/n \approx 1.35 \times 10^{-6}$.

637 **Detecting and fine-mapping association signals**

638 We used three fine-mapping methods (Supplementary Methods) to detect independent

639 signals and create credible sets across 97 Immunochip autosomal high-density regions

640	tha	at contained at least one variant with $p < 1.35 \times 10^{-6}$. Our process for merging the
641	res	sults of the three methods is described below and illustrated in Figure 1a.
642	1.	We merged signals from different methods if their credible sets overlapped. To
643		ensure a conservative credible set, this new merged credible set included all variants
644		from all merged signals (the union of constituent credible sets). We assigned each
645		variant in the merged credible sets a posterior probability equal to the average of the
646		probabilities from the methods that reported this signal. To filter out technical
647		artifacts we required genotyped variants in small credible sets to pass manual cluster
648		plot inspection (see above) and all imputed variants to have INFO > 0.4. For signals
649		reported by only one or two methods that contain only imputed variants (i.e. no
650		directly genotyped variants), we additionally required at least one variant with INFO >
651		0.8 and MAF > 0.01.
652	2.	We next assigned each signal to a provisional combination of lead variant and
653		phenotype (CD, UC or IBD) that maximized the marginal likelihood of equation 8 in
654		Supplementary Methods.
655	3.	At loci with >1 signals, we built a multivariate model with all signals reported by all
656		three methods, and tested all possible combinations of adding signals reported by one
657		or two methods, as long as they still had $p < 1.35 \times 10^{-6}$ when jointly fitted in the
658		multi-signal model. We selected the combination with the highest joint marginal
659		likelihood (equation 8 in Supplementary Methods).
660	Ph	enotype assignment of signals
661	Th	e provisional phenotype assignment carried out during the signal merging described

above is merely a point estimate, and does not capture the uncertainty associated with the

663 phenotypic assignment. We therefore recomputed the assignment of each signal as CD-664 specific, UC-specific or shared using the Bayesian multinomial model from fine-mapping method 2, Empirical covariance prior with Laplace approximation⁴⁹, as it is designed to 665 666 assess evidence of sharing in the presence of potentially correlated effect sizes. For the 667 lead variant for each credible set, we calculated the marginal likelihoods as in equation 668 13 from Supplementary Methods, restricting either $\beta_{UC} = 0$ (for the CD-only model) or 669 $\beta_{CD} = 0$ (for the UC-only model), as well as using the unconstrained prior (for the 670 associated-to-both model). We then calculated the log Bayes factor in favor of sharing, 671 i.e. the log of the ratio of marginal likelihoods between the associated-to-both model and 672 the best of the single-phenotype associated models. These sharing log Bayes factors are 673 given in Supplementary Table 1 (column 'sharingBF'), and are a probabilistic assessment 674 of phenotype assignment: for instance, the log Bayes factor of 97.4 for the primary signal 675 at *IL23R* suggests a very high certainty that this signal is shared across both CD and UC, 676 whereas the log Bayes factor of 0.4 for the primary signal at FUT2 is more ambiguous. In 677 addition to providing the log Bayes factor itself, we also applied a log Bayes factor cut-678 off of 10 to select variants with strong evidence of being shared across phenotypes.

679 Final filters

These procedures generated some signals where all three methods largely agreed, and some where they differed. While the signals where the methods disagree are of interest for methods development, here we chose to focus on the most concordant signals, as they are most straightforward to interpret biologically. We therefore discarded all signals found by only one method (which completely removed one locus), and two loci where the ratio of marginal likelihoods (equation 8 in Supplementary Methods) for the best

686 model and the second-best model was < 10 (Supplementary Notes). After these filters

687 (Extended Data Figure 7) we considered 139 signals from 94 regions (containing a total

of 181,232 variants) to be confidently fine-mapped, and took them forward for

689 subsequent analysis.

690 Estimating the variance explained by the fine-mapping

691 We used a mixed model framework to estimate the total risk variance attributable to the

692 IBD risk loci, and to the signals identified in the fine-mapping. We used the GCTA

693 software package⁵⁰ to compute a gametic relationship matrix (G-matrix) using genotype

694 dosage information for the genotyped variants in the high-density regions (which we will

695 call G_{HD}). We then fit a variety of variance component models by restricted maximum

696 likelihood analysis using an underlying liability threshold model implemented with the

697 DMU package⁵¹. The first model is a standard heritability mixed-model that includes

698 fixed effects for five principal components (to correct for stratification) and a random

699 effect summarizing the contribution of all variants in the fine-mapping regions, such that

the liabilities across all individuals are distributed according to

701
$$\boldsymbol{L} \sim \boldsymbol{N}(\beta_1 P C_1 + \dots + \beta_5 P C_5, \lambda_1 \mathbf{G}_{HD} + (1 - \lambda_1) I))$$

where λ_1 is thus the variance explained by all variants in fine-mapping regions, which we estimate. We then fitted a model that included an additional random effect for the contribution of the lead variants that have been specifically identified (with G-matrix **G**_{*sianals*}), such that the liability is distributed as

706
$$\boldsymbol{L} \sim \boldsymbol{N}(\beta_1 P C_1 + \dots + \beta_5 P C_5, \lambda'_1 \mathbf{G}_{HD} + \lambda_2 \mathbf{G}_{Signals} + (1 - \lambda'_1 - \lambda_2) \boldsymbol{I}).$$

The variance explained by the signals under consideration is then given by the reductionin the variance explained by all variants in the fine-mapping regions between the two

models ($\lambda_1 - \lambda'_1$). We used this approach to estimate what fraction of this variance was

710 accounted for by (i) the single strongest signals in each region (as would be typically

711 done prior to fine-mapping), or (ii) all signals identified in fine-mapping. We used Cox

and Snell's method⁵² to estimate the variance explained across individual signals

713 (Extended Data Figure 3b) for computational efficiency.

714 **Overlap between transcription factor binding motifs and causal variants**

715 For each motif in the ENCODE TF ChIP-seq data (http://compbio.mit.edu/encode-

motifs/, accessed Nov 2014)²⁰, we calculated the overall information content (IC) as the

sum of IC for each position⁵³, and only considered motifs with overall IC \ge 14 bits

718 (equivalent to 7 perfectly conserved positions). For every variant in a high-density region

719 we determined whether it creates or disrupts a motif at a high-information site (IC \ge 1.8).

720 Overlap between epigenetic signatures and causal variants

721 For each combination of 120 tissues and three histone marks (H3K4me1, H3K4me3 and 722 H3K27ac) from the Roadmap Epigenome Project we calculated an overlap score, equal 723 to the sum of fine-mapping posterior probabilities for all variants in peaks of that histone 724 mark in that tissue. We generated a null distribution of this score for each tissue/mark by 725 shifting chromatin marks randomly (between 0bp and 44.53Mbp, the length of all high-726 density regions) and circularly (peaks at the end of the region shifted to the beginning of 727 the region) over the high-density regions while keeping the same inter-peak distances. 728 To summarize these correlated results across many cell and tissue types we defined a set of "core" H3K4me1 immune and H3K27ac gut peaks as sets of overlapping peaks in 729 730 cells that showed the strongest enrichment. Intersects were made using bedtools v2.24.0 default settings⁵⁴. We selected 6 immune cell types for H3K4me1 and 3 gut cell types for 731

732	H3K27ac (Supplementary Table 2). We also chose controls (Supplementary Table 2)
733	from non-immune and non-gut cell types with similar density of peaks in the fine-
734	mapped regions as compared to immune/gut cell types to confirm the tissue-specificity of
735	the overlap. We used the phenotype assignments (described above) in dissecting the

- enrichment for the CD and UC signals. Sixty-five CD and 21 UC signals that were
- mapped to \leq 50 variants were used in this analysis.

738 Published eQTL summary statistics

- 739 We used eQTL summary statistics from three published studies:
- Peripheral blood eQTLs from the GODOT study²⁹ of 2,752 twins, reporting loci with

741 MAF>0.5%. Imputation was performed using the 1000 genomes reference panel¹¹.

• Peripheral blood eQTLs from the Westra *et al.* study³⁰ of 8,086 individuals, including

variants with MAF>5%. Imputation was performed using the HapMap 2 CEU

- 744 population reference panel⁵⁵.
- CD14+ monocyte eQTLs from Table S2 in Fairfax *et al.*³¹, comprised of 432
- European individuals, measured in a naïve state and after stimulation with interferon-
- 747 γ (for 2 or 24 hours) or lipopolysaccharide, reporting loci with MAF>4% and

FDR<0.05. Imputation was performed using the 1000 genomes reference panel¹⁰.

749 Processing and quality control of new eQTL ULg dataset

A detailed description of the ULg dataset is in preparation (Momozawa et al., in

751 preparation). Briefly, we collected venous blood and intestinal biopsies at three locations

- 752 (ileum, transverse colon and rectum) from 350 healthy individuals of European descent,
- average age 54 (range 17-87), 56% female. SNPs were genotyped on Illumina Human
- 754 OmniExpress v1.0 arrays interrogating 730,525 variants, and SNPs and individuals were

755	subject to standard QC procedures using call rate, Hardy-Weinberg equilibrium, MAF \geq
756	0.05, and consistency between declared and genotype-based sex as criteria. We further
757	imputed genotypes at ~7 million variants on the entire cohort using the Impute2 software
758	package ¹³ and the 1,000 Genomes Project as reference population (Phase 3 integrated
759	variant set, released 12 Oct 2014) ^{11,14} . From the blood, we purified CD4+, CD8+,
760	CD19+, CD14+ and CD15+ cells by positive selection, and platelets (CD45-negative) by
761	negative selection. RNA from all leucocyte samples and intestinal biopsies was
762	hybridized on Illumina Human HT-12 arrays v4. After standard QC, raw fluorescent
763	intensities were variance stabilized ⁵⁶ and quantile normalized ⁵⁷ using the lumi R
764	package ⁵⁸ , and were corrected for sex, age, smoking status, number of probes with
765	expression level significantly above background as fixed effects and array number
766	(sentrix id) as random effect. For each probe with measureable expression (detection P
767	value < 0.05 in $>25\%$ of samples) we tested for <i>cis</i> -eQTLs at all variants within a 500
768	kbp window. The nominal P value of the best SNP within a cis-window was Sidak-
769	corrected for the window-specific number of independent tests. The number of
770	independent test in each window was estimated exactly in the same manner as for the
771	number of independent test for fine-mapping methods (Establishing a P value threshold,
772	Methods). We estimated false discovery rates (q-values) from the resulting P values
773	across all probes using the qvalue R package ⁵⁹ . 480 <i>cis</i> -eQTL with FDR ≤ 0.10 for
774	which the lead SNPs (i.e. the SNP yielding the best P value for the cis-eQTL) mapped
775	within the 97 high-density regions (94 fine-mapped plus 3 unresolved) were retained for
776	further analyses.

777 Naïve colocalization using lead SNPs

We calculated the number of IBD credible sets that contain a lead eQTL variant in a
particular tissue ("observed"). This number is then compared to the background number
of overlaps ("expected"):

781
$$\sum_{i \in S} (1 - (1 - N_i^{-1})^{C_i})$$

where N_i is the total number of variants in region *i* in 1000 genomes with an allele 782 783 frequency greater than a certain threshold (equal to the threshold used for the original eQTL study), C_i is the number of these variants that lie in IBD credible sets, and S is a set 784 785 of regions that have at least one significant eQTL. We simulated 1,000 trials per region with binomial probability equal to the regional background overlap rate: 1 - (1 - 1)786 $N_i^{-1})^{C_i}$. Empirical P values were estimated by comparing the observed number of 787 788 overlaps with the simulated number of the overlaps. More specifically, P value is defined 789 as the proportion of trails that have equal or more overlaps in the simulations than the 790 observed.

791 Frequentist colocalization using conditional *P* values

We next used conditional association to test for evidence of colocalization, as described in Nica *et al.*²⁵. This method compares the *P* value of association for the lead SNP of an

eQTL before and after conditioning on the SNP with the highest posterior in the credible

set, and measures the drop in $-\log(P)$. An empirical *P* value for this drop is then

calculated by comparing it to the drop for all variants in the high-density region. Because

this method requires full genotypes we could only apply it to the ULg dataset (MAF >

- 798 5%). An empirical *P* value ≤ 0.05 was considered as evidence that the corresponding
- redible set is colocalized with the corresponding *cis*-eQTL. To evaluate whether our
- 800 fine-mapping associations colocalized with *cis*-eQTL more often than expected by

801 chance we counted the number of credible sets affecting at least one *cis*-eQTL with

802 $P \le 0.05$, and compared how often this number was matched or exceeded by 1,000 sets of

803 variants that were randomly selected yet distributed amongst the loci in accordance with

- the real credible sets. The number of variants per set is same as the number of credible
- sets in this eQTL analysis (MAF matched, size≤50), shown in Extended Data Table 2.

806 Bayesian colocalization using Bayes factors

807 Finally, we used the Bayesian colocalization methodology described by Giambartolomei *et al.*⁶⁰, modified to use the credible sets and posteriors generated by our fine-mapping 808 809 methods (similarly only applicable to the ULg full genotype data). The method takes as input a pair of IBD and eQTL signals, with corresponding credible sets S^{IBD} and S^{eQTL} , 810 and posteriors for each variant p_i^{IBD} and p_i^{eQTL} (with $p_i^X = 0 \forall i \notin S^X$). Credible sets 811 812 and posteriors were generated for eQTL signals using the Bayesian quantitative 813 association mode in SNPTest (with default parameters), with credible sets in regions with 814 multiple independent signals generated conditional on all other signals. Our method 815 calculates a Bayes factor (BF) summarizing the evidence in favor of a colocalized model 816 (i.e. a single underlying causal variant between the IBD and eQTL signals) compared to a 817 non-colocalized model (where different causal variants are driving the two signals), given 818 by the ratio of marginal likelihoods

819
$$BF = \frac{L(Colocalized)}{L(Not \ colocalized)}$$

820 The marginal likelihood for the colocalized model (i.e. hypothesis H_4 in Giambartolomei 821 *et al.*) is given by

822
$$L(Colocalized) \propto \frac{1}{N} \sum_{i \in S^{IBD} \cup S^{eQTL}} p_i^{IBD} p_i^{eQTL}$$

and the marginal likelihood for the model where the signals are not colocalized (i.e., hypothesis H_3) is given by:

825
$$L(Not \ colocalized) \propto \frac{1}{N^2 - N} \sum_{i,j \in S^{IBD} \cap S^{eQTL}, i \neq j} p_i^{IBD} p_j^{eQTL}$$

826 In both cases, N is the total number of variants in the region. We only count towards N 827 variants that have $r^2 > 0.2$ with either the lead eQTL variant or the lead IBD variant.

To measure enrichment in colocalization BFs compared to the null, we carried out a permutation analysis. In this analysis, we randomly reassigned eQTL signals to new fine-mapping regions to generate a set of simulated null datasets. This is carried out using

the following scheme on variants and credible sets with the same MAF cut-off as the

832 eQTL dataset (ULg, MAF
$$>$$
 5%)

833 1. Estimate the standarized effect size β_g for each eQTL signal g, equal to standard

deviation increase in gene expression for each dose of the minor allele.

835 2. Randomly reassign each eQTL signal to a new fine-mapping region, and then select a

new causal variant with a MAF within 1 percentage point of the lead variant from the

real signal. If multiple such variants exist, select one at random. If no such variants

exist, pick the variant with the closest MAF.

839 3. Generate new simulated gene expression signals for each individual from

840 Normal($\beta_g x_j$, $1 - \beta_g^2 2f(1 - f)$) where x_j is the individual's minor allele dosage at

- the new causal variant and f is the minor allele frequency.
- 842 4. Carry out fine-mapping and calculate colocalization BFs for each pair of (real) IBD
 843 signal and (simulated) eQTL signal.
- 844 5. Repeat stages 2-4 1000 times for each tissue type

845	We can use these permuted BFs to calculate P values for each IBD credible set, given by
846	the proportion of time the permuted BFs were as large or greater than the one observed in
847	the real dataset. To generate a high-quality set of colocalized eQTL and IBD signals, we
848	take all IBD signals that have the colocalization BF > 2, $P < 0.01$ and r^2 (with the eQTL
849	variant) >0.8.
850	Code availability
851	Computer code used in this study is provided in the 'Software availability' sections in
852	Supplementary Methods.
853	Data availability
854	The data that support the findings of this study are available from the international IBD
855	Genetics Consortium but restrictions apply to the availability of these data, which were
856	used under license for the current study, and so are not publicly available. Data are
857	however available from the authors upon reasonable request and with permission of the
858	international IBD Genetics Consortium.

860	Refer	ences
861	40.	Shah, T. S. et al. optiCall: a robust genotype-calling algorithm for rare, low-
862		frequency and common variants. 28, 1598–1603 (2012).
863	41.	Price, A. L. et al. Long-Range LD Can Confound Genome Scans in Admixed
864		Populations. Am J Hum Genet 83, 132–135 (2008).
865	42.	Anderson, E. et al. LAPACK Users' Guide. (Society for Industrial and Applied
866		Mathematics, 1999).
867 868	43.	Yang, J. <i>et al.</i> Genomic inflation factors under polygenic inheritance. <i>European</i>
000 960	11	Dulik Sullivan D V at al ID Saara ragrassion distinguishes confounding from
009 070	44.	builk-Sullivali, D. K. <i>et al.</i> LD Scole regression distinguishes comounding from
870 871		doi:10.1038/ng.3211
872	15	de Lange K M at al Genome wide association study implicates immune
072 872	43.	activation of multiple integrin genes in inflammatory howel disease. Nat Canat
873 874		(2017) doi:10.1028/ng.2760
875	16	Delaneau O. Marchini I & Zagury I F A linear complexity phasing method for
876	40.	thousands of genomes Nature Methods 0 , 170, 181 (2011)
870	17	Delaneau O. Zagury L-E & Marchini I. Improved whole-chromosome phasing
878	Τ /.	for disease and nonulation genetic studies. <i>Nature Methods</i> 10 , 5–6 (2012)
870	18	Morris I A Bandall I C Maller I B & Barrett I C Evoker: a visualization
880	40.	tool for genotype intensity data 26 1786–1787 (2010)
881	49	Losting I & McVean G Trinculo: Bayesian and frequentist multinomial logistic
887	τ).	regression for genome-wide association studies of multi-category phenotypes
883		<i>Rightermatics</i> (2016). doi:10.1093/bioinformatics/btw075
884	50	Vang I Lee S H Goddard M E & Visscher P M GCTA: A Tool for
885	50.	Genome-wide Complex Trait Analysis The American Journal of Human Genetics
886		88 76_82 (2011)
887	51	Madsen P Su G Labouriau R & Christensen F DML-a nackage for analyzing
888	51.	multivariate mixed models. Proceedings of the Ninth World Congress on Genetics
889		Applied to Livestock Production (2010)
890	52	Cox D R & Snell E I Analysis of Binary Data Second Edition (CRC Press
891	52.	1989)
892	53	D'haeseleer P What are DNA sequence motifs? 24, 423–425 (2006)
893	54	Ouinlan A R & Hall I M BEDTools: a flexible suite of utilities for comparing
894	0	genomic features 26. 841–842 (2010)
895	55	Gibbs R A <i>et al.</i> The International HapMap Project <i>Nature</i> 426. 789–796
896		(2003)
897	56.	Lin, S. M., Du, P., Huber, W. & Kibbe, W. A. Model-based variance-stabilizing
898		transformation for Illumina microarray data. <i>Nucleic Acids Res</i> 36. e11–e11
899		(2008).
900	57.	Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of
901	- / -	normalization methods for high density oligonucleotide array data based on
902		variance and bias. 19 , 185–193 (2003).
903	58.	Du, P., Kibbe, W. A. & Lin, S. M. lumi: a pipeline for processing Illumina
904	-	microarray. 24, 1547–1548 (2008).
905	59.	Dabney, A., Storey, J. D. & Warnes, G. Q-value estimation for false discovery rate

- control. *R package version* **1**, (2006). Giambartolomei, C. *et al.* Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. *PLoS Genet* **10**, e1004383 (2014). 60.

Extended Data Figure 1. Power of the fine-mapping analysis. Power (y axis) to identify the causal variant in a correlated pair (strength of correlation shown by color) increases with the significance of the association (x axis), and therefore with sample size and effect size. The vertical dashed line shows the genome-wide significance level. To estimate the relationship between the strength of association and our ability to fine-map it, we assumed that the association has only two causal variant candidates, and we defined the signal as successfully fine-mapped if the ratio of Bayes factors between the true causal variant and the non-causal variant is greater than 10 (a 91% posterior, assuming equal priors for the two candidate variants). Using equation (8) in Supplementary Methods, we have

$$\log BF = \log \frac{\Pr(\boldsymbol{Y} | SNP1)}{\Pr(\boldsymbol{Y} | SNP2)} \approx \log \frac{\Pr(\boldsymbol{Y} | SNP1, \theta_1^*)}{\Pr(\boldsymbol{Y} | SNP2, \theta_2^*)}$$

in which θ^* is maximum likelihood estimate of the parameter values. The log-likelihood ratio follows a chi-square distribution:

logBF~
$$-\frac{1}{2}(\chi^2_{\text{SNP1}} - \chi^2_{\text{SNP2}}) = -\frac{1}{2}\lambda(1 - r^2)$$

in which λ is the chi-square statistic of the lead variant and *r* is the correlation coefficient between the two variants. Because of the additive property of the chi-square distribution, logBF follows a non-central chi-square distribution with 1 degree of freedom and non-centrality parameter $\lambda(1 - r^2)/2$. Therefore, the power can calculated as the probability that logBF > log(10), given by the cumulative distribution function of the non-central chi-squared distribution.

Extended Data Figure 2. Procedures in the fine-mapping analysis. Details for each stage are described in Methods. The dashed line means the imputation was performed only once after the manual inspection (not iteratively).

Extended Data Figure 3. Variance explained. Variance explained by secondary, tertiary, ... variants as a fraction of the primary signal at each locus.

Extended Data Figure 4. Functional annotations. a, Functional annotation for 45 variants having posterior probability > 50%. **b,** Functional annotation for 116 association signals that are fine-mapped to \leq 50 variants. Annotations are defined in Methods. We additionally grouped eQTLs into "Immune/Blood" (CD4+, CD8+, CD19+, CD14+ CD15+, platelets) and "Gut" (ileum, transverse colon and rectum). The eQTLs were generated from the ULg dataset using the "frequentist colocalization using conditional *P* values" approach (Methods).

Extended Data Figure 5. Size of credible sets. Comparison of credible set sizes for primary signals using each of our fine-mapping methods (methods 1, 2 and 3), the combined approach (as adopted in final results) and the approach described in Maller *et al.*⁶ (y axis) and the $R^2 > 0.6$ cut-off (x axis). Fine-mapping maps most signals to smaller numbers of variants.

Extended Data Figure 6. Distributions of the allele frequency and the imputation quality.

Panels **a-c**: distribution of the risk allele frequency for 45 variants having > 50% posterior probability plotted against (**a**) posterior probability, (**b**) significance of the association as $-\log_{10}(P)$, and (**c**) odds ratio of the association. Variants are color coded according to their

functions. Odds ratio for IBD associations was the larger of odds ratios for CD and UC. Panels **d-f**: distribution of imputation quality (INFO measure from the IMPUTE2 program) for variants having MAF \geq 5% (**d**), between 5% and 1% (**e**) and <1% (**f**).

Extended Data Figure 7. Merging and adjudicating signals across methods. The number of signals for each method is shown in the brackets, and for each method a black bar indicates a signal with $p < 1.35 \times 10^{-6}$, and a grey bar a signal that does not reach that threshold. The colored bar shows the final status of each signal after merging and model selection (Methods). "Low info" corresponds to INFO < 0.8 (the threshold used for signals reported by 1 or 2 methods) and "rare and imputed" to MAF < 0.01 and no genotyped variants in the credible set, regardless of INFO (Methods).

Extended Data Table 1. Study samples. Genotyped samples in each batch for healthy controls (Control), Crohn's disease (CD) and ulcerative colitis (UC). Batches were grouped into cohorts for further analysis (Controlling for population structure, batch effects and other confounders, Methods).

Extended Data Table 2. Colocalization with eQTL. The number of IBD credible sets that colocalize with eQTLs using the naïve, frequentist and Bayesian approaches. Significant observations are boldfaced. 'Number of credible sets' reports the number of credible sets that have MAF above the cut-off.

Extended Data Table 3. Genomic inflation. Genomic inflation factors and LD score regression intercept for Crohn's disease (CD), ulcerative colitis (UC) and both (IBD). **a**, Genomic inflation factors using the first four, five and six principal components. The factors were calculated using 2,853 background variants from the Immunochip. **b**, Genomic inflation factors for subsets of the data (using five principal components for the same 2,853 background variants). Balanced, imbalanced and down-sampled cohorts are defined in Methods. Numbers in brackets indicate the 95% confidence interval for the inflation factors (only estimated for the down-sampled cohorts). **c**, LD score regression intercept and genomic inflation factors (λ_{GC} and λ_{1000}) from the largest IBD meta-analyses with genome-wide data (CD:GWAS and UC:GWAS).

Batch	Control	CD	UC	Cohort
IMSGC	5740	0	0	imbalanced
NIDDK	1786	3653	3020	balanced
D. Ellinghaus	4559	2696	1006	balanced
E. Theatre	713	1109	559	balanced
H. Huang	3	551	316	imbalanced
J. Barrett	4397	2715	2835	balanced
K. Fransen	1598	1234	430	balanced
L. Jostins	1354	1252	1063	balanced
P. Gregersen	1611	0	0	imbalanced
R. Duerr	1696	321	1611	balanced
S. Rich	4259	0	0	imbalanced
S. Sommeren	107	77	201	balanced
S. Vermeire	922	1539	838	balanced
T. Balschun	5511	1882	1683	balanced
T. Haritunians	1	1938	1066	imbalanced

Tissue	Method	Overlaps	Overlaps	P value	Dataset	MAF cut-	Number of credible
/cell line		observed	Expected			off	sets
whole blood	Naïve	3	3.7	0.746	GODOT	0.005	113
whole blood		8	4.2	0.060	Westra	0.05	95
CD14 naïve		8	2.7	0.001	Fairfax	0.04	98
CD14 IFN stimulated		4	3.2	0.398	Fairfax	0.04	98
CD14 LPS 2h stimulated		1	2.1	0.869	Fairfax	0.04	98
CD14 LPS 24h stimulated		5	2.5	0.106	Fairfax	0.04	98
CD4		3	0.4	0.005	ULg	0.05	95
CD8		1	0.3	0.306	ULg	0.05	95
CD14		0	0.2	1.000	ULg	0.05	95
CD15		1	0.2	0.199	ULg	0.05	95
CD19		0	0.1	1.000	ULg	0.05	95
platelets		0	0.0	1.000	ULg	0.05	95
ileum		2	0.3	0.020	ULg	0.05	95
colon		1	0.2	0.202	ULg	0.05	95
rectum		1	0.2	0.189	ULg	0.05	95
CD4	Frequentist	6	1.9	0.013	ULg	0.05	95
CD8		3	1.5	0.186	ULg	0.05	95
CD14		4	2.3	0.180	ULg	0.05	95
CD15		1	1.8	0.863	ULg	0.05	95
CD19		0	1.4	1.000	ULg	0.05	95
platelets		0	0.1	1.000	ULg	0.05	95
ileum		4	1.1	0.018	ULg	0.05	95
colon		3	1.7	0.216	ULg	0.05	95
rectum		4	1.4	0.039	ULg	0.05	95
CD4	Bayesian	4	1.0	0.010	ULg	0.05	95
CD8		1	0.8	0.566	ULg	0.05	95
CD14		1	0.9	0.595	ULg	0.05	95
CD15		0	0.7	1.000	ULg	0.05	95
CD19		0	0.6	1.000	ULg	0.05	95
platelets		0	0.1	1.000	ULg	0.05	95
ileum		2	0.4	0.069	ULg	0.05	95
colon		3	0.8	0.040	ULg	0.05	95
rectum		2	0.6	0.124	ULg	0.05	95

а			
	CD	UC	IBD
PC 1-4	1.41	1.31	1.38
PC 1-5	1.29	1.25	1.31
PC 1-6	1.28	1.25	1.32

b

	CD	UC	IBD
Balanced cohort	1.24	1.21	1.20
Down-sampled (balanced)	1.24 (1.14-1.36)	1.21 (1.11-1.31)	1.23 (1.14-1.36)
Imbalanced cohort	1.02	1.08	1.00
Down-sampled (imbalanced)	1.08 (0.97-1.23)	1.04 (0.96-1.16)	1.07 (0.95-1.21)
All samples	1.29	1.25	1.31

С

		genome-wide		"background SNPS"	
	LDscore intercept	λ_{GC}	λ ₁₀₀₀	λ_{GC}	λ ₁₀₀₀
CD: Immunochip (this study)	-	-	-	1.29	1.012
CD: GWAS	1.09	1.23	1.014	1.28	1.016
UC: Immunochip (this study)	-	-	-	1.25	1.012
UC: GWAS	1.09	1.29	1.016	1.21	1.012

χ²

