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Abstract

In robust optimization, the general aim is to find a solution that performs well
over a set of possible parameter outcomes, the so-called uncertainty set. In this
paper, we assume that the uncertainty size is not fixed, and instead aim at finding a
set of robust solutions that covers all possible uncertainty set outcomes. We refer to
these problems as robust optimization with variable-sized uncertainty. We discuss
how to construct smallest possible sets of min-max robust solutions and give bounds
on their size.

A special case of this perspective is to analyze for which uncertainty sets a nom-
inal solution ceases to be a robust solution, which amounts to an inverse robust
optimization problem. We consider this problem with a min-max regret objective
and present mixed-integer linear programming formulations that can be applied to
construct suitable uncertainty sets.

Results on both variable-sized uncertainty and inverse problems are further sup-
ported with experimental data.

Keywords: Robustness and sensitivity analysis; uncertainty sets; inverse optimiza-
tion; optimization under uncertainty

1 Introduction

Robust optimization has become a vibrant field of research with fruitful practical appli-
cations, of which several recent surveys give testimonial (see [ABV09,BTGN09,BBC11,
GYd15, GS16, CG16b]). Two of the most widely used approaches to robust optimiza-
tion are the so-called (absolute) min-max and min-max regret approaches (see, e.g., the
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classic book on the topic [KY97]). For some combinatorial optimization problem of the
form

(P) min
{
ctx : x ∈ X ⊆ {0, 1}n

}
with a set of feasible solutions X , let U denote the set of all possible scenario outcomes
for the objective function parameter c. Then the min-max counterpart of the problem
is given as

min
x∈X

max
c∈U

ctx

and the min-max regret counterpart is given as

min
x∈X

reg(x,U)

with
reg(x,U) := max

c∈U

(
ctx− opt(c)

)
where opt(c) denotes the optimal objective value for problem (P) with objective c.

In the recent literature, the problem of finding suitable sets U has come to the focus
of attention, see [BS04, BPS04, BB09]. This acknowledges that the set U might not be
“given” by a real-world practitioner, but is part of the responsibility of the operations
researcher.

In this paper we consider the question how robust solutions change when the size of the
uncertainty set changes. We call this approach variable-sized robust optimization and
analyze how to find minimal sets of robust solutions that can be applied to any possible
uncertainty sets. This way, the decision maker is presented with candidate solutions that
are robust for different-sized uncertainty sets, and he can choose which suits him best.
Results on this approach for min-max robust optimization are discussed in Section 2.

The notion of variable uncertainty has also been used in [Pos13], but is different to
our approach: In their paper, the size of the uncertainty set depends on the solution x,
i.e., U = U(x), while we use size parameter that does not depend on x. Further related
is the notion of parametric programming (see, e.g., [Car83]). Our approach can be seen
as being a parametric robust optimization problem.

As a special case of variable-sized robust optimization, we consider the following ques-
tion: Given only a nominal problem (P) with objective ĉ, how large can an uncertainty
set become, such that the nominal solution still remains optimal for the resulting robust
problem? Due to the similarity in our question to inverse optimization problems, see,
e.g., [AO01, Heu04, ABP09, NC15] we denote this as the inverse perspective to robust
optimization. The approach from [CN03] is remotely related to our perspective. There,
the authors define the robustness of a solution via the largest possible deviation of the
problem coefficients in a facility location setting. In a similar spirit, the R-model for
robust satisficing [JJNS16] aims at finding a solution that remains feasible for an un-
certainty set that is as large as possible. Our approach can also be used as a means of
sensitivity analysis. Given several solutions that are optimal for some nominal problem,
the decision maker can choose one that is most robust in our sense. In the same vein,
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one can check which parts of a solution are particularly fragile, and strengthen them
further. This approach is presented for min-max regret in Section 3.

Our paper closes with a conclusion and discussion of further research directions in
Section 4.

2 Variable-Sized Min-Max Robust Optimization

In this section, we analyze how optimal robust solutions change when the size of the
uncertainty set increases. We assume to have information about the midpoint (nominal)
scenario ĉ, and the shape of the uncertainty set U . The actual size of the uncertainty
set is assumed to be uncertain.

More formally, we assume that the uncertainty set is given in the form

Uλ = {ĉ}+ λB

where B is a convex set containing the origin and ĉ > 0 is the midpoint of the uncertainty
set. The parameter λ ≥ 0 is an indicator for the size of the uncertainty set. For λ = 0,
we have U0 = {ĉ}, i.e., the nominal problem, and for λ→∞ we obtain the extreme case
of complete uncertainty.

We consider the min-max robust optimization problem

min
x∈X

max
c∈Uλ

ctx. (P(λ))

The goal of variable-sized robust optimization is to compute a minimal set S ⊂ X such
that for any λ ≥ 0, S contains a solution that is optimal for P(λ). Note that for λ = 0,
set S must contain a solution x̂ that is optimal for the nominal problem. By increasing
λ, we trace how this solution needs to change with increasing degree of uncertainty.

Section 2 is structured as follows. In Section 2.1, we demonstrate the close relation
between the variable-sized robust problem and a bicriteria optimization problem. We
consider different shapes for set B in Section 2.2 and discuss the resulting variable-sized
robust optimization problems. In Section 2.3, we transfer the general results of the
previous section to the shortest path problem. We end the discussion of the shortest
path problem with a case study.

2.1 Relation to Bicriteria Optimization

We reformulate the objective function of P(λ):

max
c∈Uλ

ctx = ĉtx+ max
c∈λB

ctx = ĉtx+ max
c̃∈B

λc̃tx = ĉtx+ λmax
c̃∈B

c̃tx = f1(x) + λf2(x)

where f1(x) = ĉtx and f2(x) = maxc∈B c
tx. Note that both functions are convex. It is

immediate that the variable-sized robust optimization problem is closely related to the
bicriteria optimization problem:

min
x∈X

(
f1(x)
f2(x)

)
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We define the map F : X → R2
+, F (x) = (f1(x), f2(x))t which maps every feasible

solution in the objective space. Further, we define the polytope V = conv({F (x) : x ∈
X})+R2

+. We call a solution x ∈ X an efficient extreme solution if F (x) is a vertex of V.
Denote the set of all efficient extreme solutions with E . We call two different solutions
x 6= x′ equivalent if F (x) = F (x′). Let Emin ⊂ E be a maximal subset such that no two
solutions of Emin are equivalent. The next lemma gives the direct relation between Emin

and the variable-sized robust optimization problem.

Lemma 1. Emin is a solution of the variable sized robust optimization problem.

Proof. We need to prove two properties:

(I) For every λ ≥ 0 there exists a solution in Emin which is optimal for P(λ).

(II) Emin is a smallest possible set with property (I).

(I) Let λ ≥ 0 be fixed. We transfer the problem P(λ) in the objective space. The optimal
value of P(λ) is equal to the optimal value of problem O(λ) since each optimal solution
of this problem is a vertex of V.

min
v∈V

v1 + λv2 (O(λ))

Let v∗ be the optimal solution of O(λ). By definition, Emin contains a solution x∗ with
F (x) = v∗, i.e., an optimal solution for P(λ).
(II) Note that there is a one-to-one correspondence between vertices of V and solutions
in Emin. Since for each vertex v′ of V a λ′ ≥ 0 exists such that v′ is optimal for O(λ),
it follows that Emin is indeed minimal. Note that it is important to ensure that Emin

contains no equivalent solutions.

Different methods are known to compute Emin. The complexity of these methods depends
linearly on the size of Emin. To find an additional efficient extreme solution a weighted
sum problem of the form minx∈X f1(x) +λf2(x) needs to be solved. In the following, we
denote by T the time which is necessary to solve the nominal problem minx∈X c

Tx and
by T ′ the time that is necessary to solve a weighted sum problem. Note that if f2(x) is
linear in x, O(T ′) = O(T ). We restate the following well known result (see e.g. [Mor86]).

Lemma 2. Emin can be computed in O(|Emin|T ′).

Using Lemma 1, we can transfer this result to the variable-sized robust problem.

Theorem 3. The variable-sized robust problem can be solved in O(|Emin|T ′).

2.2 General Results

We assume that B is the unit ball of some norm. An overview of different norms and
the corresponding functions maxc∈Uλ c

tx is presented in Table 1. This list does not cover
the large set of different uncertainty sets which is studied in the literature. For more
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Name of the uncertainty Norm ‖c‖ Shape of B maxc∈Uλ c
tx

Proportional growth maxi
|ci|
ĉi

×i[−ĉi, ĉi] (1 + λ)ĉtx

Arbitrary growth maxi
|ci|
di
, di > 0 ×i[−di, di] ĉtx+ λdtx

Constant growth maxi |ci| ×i[−1, 1] ĉtx+ λ‖x‖1
Generalized Manhattan norm

∑
i
|ci|
di
, di > 0 {c :

∑
i
|ci|
di
≤ 1} ĉtx+ λmaxi dixi

Generalized Euclidean norm

√∑
i
c2i
di
, di > 0 {c :

∑
i
c2i
di
≤ 1} ĉtx+ λ

√∑
i dix

2
i

Ellipsoidal norm
√
ctQ−1c,Q � 0 {c : ctQ−1c ≤ 1} ĉtx+ λ

√
xtQx

Table 1: Overview of different shapes for the uncertainty set Uλ.

information about different shapes for uncertainty sets and the resulting robust objective
function we refer to [BTdHV15].

We add to the first three cases the suffix growth since the sets B have the form of a
hyper box and, hence, each cost coefficient grows linear in λ and independent from the
other coefficients. For proportional growth the coefficients ci grow proportional to the
nominal cost vector ĉ, for arbitrary growth each cost coefficient ci has its own growth
speed di, and for constant growth all cost coefficients grow at unit speed. For the last
three cases set B has a more complex structure, we name them by the norm defining B.
The generalized Euclidean norm leads to an ellipsoidal uncertainty set which is axis
aligned. Whereas the more general ellipsoidal norm leads to an ellipsoidal uncertainty
set with arbitrary rotation.

For proportional growth it is immediate that a nominal solution x̂ which is optimal for
cost vector ĉ is optimal for any λ ≥ 0. Hence, the optimal solution for the variable-sized
robust optimization problem consists of a single element, S = {x̂}.

Note that the case of constant growth leads to the concept of L1-regularization, which
is closely related to the well known Lasso method (we refer to [BBC11] for a discussion
of Lasso and robust optimization).

Consider function f2(x) = maxc∈B c
Tx for constant growth (f2(x) = ‖x‖1) and for

the generalized Manhattan norm (f2(x) = maxi dixi). Since we consider combinatorial
optimization problems we conclude that |{f2(x) : x ∈ X}| ≤ n for both cases. Note that
this gives an direct bound for the number of efficient extreme solutions |Emin| ≤ n. We
summarize these findings in the next two theorems.

Theorem 4. The variable-sized robust optimization problem with constant growth can
be solved in O(nT ) and |S| ≤ n.

Theorem 5. The variable-sized robust optimization problem with the generalized Man-
hattan norm can be solved in O(nT ′) and |S| ≤ n.

The next lemma helps to simplify the objective functions for the cases of the general-
ized Euclidean norm and the ellipsoidal norm.

5



Lemma 6. Let f1(x), f2(x) ≥ 0 ∀x ∈ X . Each efficient extreme solution of

min
x∈X

(
f1(x)√
f2(x)

)
(P1)

is an efficient extreme solution of

min
x∈X

(
f1(x)
f2(x)

)
. (P2)

Proof. We define the maps cd : X → R2, cd(x) = (f1(x), f2(x)) and cd′ : X → R2, cd′(x) =
(f1(x),

√
f2(x)). Further denote by Cmin = minx∈X f1(x) and Dmin = minx∈X f2(x).

Let x′ be an efficient extreme solution of P1. If cd(x′)1 = Cmin or cd(x′)2 = Dmin, it is
straightforward to show that x′ is also efficient extreme for P2. Hence, we assume in the
following that cd(x′)1 > Cmin and cd(x′)2 > Dmin. We assume, for the sake of contradic-
tion, that x′ is not an efficient extreme solution of P2. This means that two other solu-
tions x1, x2 ∈ X and an α ∈ [0, 1] exists such that αcd(x1)1+(1−α)cd(x2)1 = cd(x′)1 and
αcd(x1)2 +(1−α)cd(x2)2 ≤ cd(x′)2. It follows that αcd′(x1)1 +(1−α)cd′(x2)1 = cd′(x′)1

and αcd′(x1)2 + (1 − α)cd′(x2)2 ≤
√
αcd(x1)2 + (1− α)cd(x2)2 ≤

√
cd(x′)2 = cd′(x′)2,

since the square root is a concave and monotone function. This yields the desired con-
tradiction, since x′ is an efficient extreme solution for P1.

Note that instead of using the square root function on f2(x) in P1, the proof can be
extended to any increasing, concave function. Observe that ĉtx+λ

∑
i dix

2
i = ĉtx+λdtx,

since we consider combinatorial optimization problems. Hence, using Lemma 6 we can
solve the variable-sized robust optimization problem with generalized Euclidean norm by
computing the set of extreme efficient solutions for the bicriteria optimization problem
with objective functions ĉtx and dtx. In this way may found some solutions which
are not extreme efficient for the original bicriteria optimization problem with objective
functions ĉtx and

√
dtx. After these solutions are removed, we have found the solution

to the variable-sized robust optimization problem with generalized Euclidean norm.
The same approach can be applied in the case of an ellipsoidal norm. In this case, the

alternative bicriteria optimization problem has the objective functions ĉTx and xtQx.

2.3 Application to the Shortest Path Problem

In this section, we transfer the general results from the last section to the shortest path
problem. The problem is defined on a graph G = (V,E) with N nodes and M edges.
We denote by P the set of all paths from start node s ∈ V to end note t ∈ V . For a
path P ∈ P, we write c(P ) =

∑
e∈P ce for its cost and |P | for its number of edges.
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2.3.1 Constant growth

We consider in more detail the implications of Theorem 4 to the shortest path problem.
The corresponding bicriteria optimization problem is

min
P∈P

(
ĉ(P )
|P |

)
Note that it suffices to consider simple paths for this bicriteria optimization problem
as we assume that all edge costs are positive. As each simple path contains at most N
edges |P | ∈ {1, . . . , N}, the cardinality of Emin is bounded by N . The computation of
this set can be done at once using a labeling algorithm that stores for each path Q from
s to v the cost of the path ĉ(Q) and the number of edges contained in the path |Q|.
Note that at each node at most N labels needs to be stored, this ensures the polynomial
running time of the labeling algorithm. An alternative approach is to use an efficient
procedure to compute Emin (see [Mor86]). Each weighted sum computation corresponds
to a shortest path problem.

Theorem 7. The variable-sized robust shortest path problem for a graph G = (V,E)
with |V | = N and |E| = M with constant growth can be solved in O(NM +N2 log(N))
and |S| ≤ N .

Proof. The nominal problem can be solved by Dijkstra’s algorithm in O(M+N log(N)).

2.3.2 Generalized Manhattan norm

We consider in more detail the implications of Theorem 5 to the shortest path problem.
The corresponding bicriteria optimization problem is

min
P∈P

(
ĉ(P )

maxe∈P de

)
The set Emin is bounded by the number of different values of de, e ∈ E, which is bounded
by M . The computation of this set can be done at once using a labeling algorithm that
stores for each path Q from s to v the cost of the path ĉ(Q) and the most expensive edge
of Q with respect to cost function d. Note that at each node at most M labels needs
to be stored, this ensures the polynomial running time of the labeling algorithm. An
alternative approach is to use an efficient procedure to compute Emin (see [Mor86]). If we
use Dijkstra’s algorithm to solve the nominal problem we obtain the following running
time.

Theorem 8. The variable-sized robust shortest path problem for a graph G = (V,E)
with |V | = N and |E| = M with the generalized Manhattan norm can be solved in
O(M2 +NM log(N)) and |S| ≤M .

For more details on bicriteria problems of this type, we refer to [GKR12].
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2.3.3 Arbitrary Growth

Carstensen presents in her PhD thesis [Car83] bicriteria shortest path problems with

two linear objective functions in which |Emin| ∈ 2Ω(log2(N)), which is not polynomial in
N . Further, she proved for acylic graphs that K ∈ O(nlog(n)) which is subexponential.
Note that this result can directly been applied to the variable-sized robust shortest path
problem with arbitrary growth.

Theorem 9. The variable-sized robust shortest path problem on acyclic graphs with
arbitrary growth can be solved in subexponential time and |S| is also subexponential.

If we further restrict the graph class of G, the following results can be obtained.

Theorem 10. Let G be a series-parallel graph with N nodes and M arcs. Then, K ≤
M−N+2, and the variable-sized robust shortest path problem can be solved in polynomial
time.

Proof. We do a proof by an induction over the depth D(G) of the decomposition tree
of graph G. For the induction start, note that if D(G) = 1, G only consists of a single
edge. Hence, there exists exactly one s − t path, which is obviously also an extreme
efficient solution. Therefore, K = 1. There are two nodes and one arc, i.e., N = 2 and
M = 1. Hence, K ≤M −N + 2 holds.

We distinguish two cases for the induction step:

Case 1: G is a parallel composition of two series-parallel graphs G1 and G2.
Every path that is an extreme efficient solution for the shortest path problem in graph

G is then either completely contained in G1 or G2, and, hence, must also be an extreme
efficient solution of the shortest path instance described by G1 or G2. Therefore, the
number of extreme efficient paths in G1 plus the number of extreme efficient paths
in G2 is an upper bound for the number of extreme efficient paths in G. Note that
D(G1) < D(G) and D(G2) < D(G). Hence, we can apply the induction hypothesis to
G1 and G2. Denote by Ki the number of extreme efficient paths in Gi, by Ni the number
of nodes, and by Mi the number of edges of Gi for i = 1, 2. We have that

K ≤ K1 +K2 ≤ (M1 −N1 + 2) + (M2 −N2 + 2)

= M1 +M2 − (N1 +N2 − 2) + 2 = M −N + 2

Case 2: G is a series composition of two series-parallel graphs G1 and G2.
Note that for every extreme efficient path, there exists an open interval (λ, λ) such that

this path is the unique optimal path with respect to the weight function λc+(1−λ)d for
all λ ∈ (λ, λ). Hence, we can find an ordering of all extreme efficient paths with respect
to the λ values. Note that all extreme efficient paths in G must consist of extreme
efficient paths of G1 and G2. The extreme paths of G can be obtained in the following
way. We start with the shortest paths with respect to c in G1 and G2 and combine these
two paths. Next we decrease the value of λ until either the extreme path in G1 or G2
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changes. This change will define a new extreme path. We continue until all extreme
paths of G1 and G2 are contained in at least one extreme path. Note that D(G1) < D(G)
and D(G2) < D(G). Hence, we can apply the induction hypothesis to G1 and G2. Note
that the number of changes is bounded by the number of extreme efficient paths minus 1.
Since, for every such change, we get one additional extreme efficient path, we get in total

K ≤ 1 + (M1 −N1 + 2− 1) + (M2 −N2 + 2− 1)

= M1 +M2 − (N1 +N2 − 1) + 2

= M −N + 2.

Using a similar proof technique we can bound K also for layered graphs. A layered
graph consists of a source node s and a destination node t and ` layers, each layer consists
of w nodes. Node s is fully connected to the first layer, the nodes of the ith layer are
fully connected to the nodes of the (i + 1)th layer, and the last layer is fully connected
to node t.

Theorem 11. Let G be a layered graph with ` layers and width w. Then, K ≤
(2w)dlog(`+1)e.

Proof. Without loss of generality we can assume that ` = 2k − 1 for some k ∈ N. Then,
the claimed bound simplifies to K ≤ (2w)k. Denote by E(t) the number of extreme
efficient paths in G with 2t − 1 many layers. The base case is given by E(0) = 1, since
the corresponding graph consists of a single edge. To bound E(k) we make the following
observation. Each s − t path contains a single node j ∈ [w] from the middle layer (the
middle layer is the (2k−1 − 1)th layer). Hence, we can separate all s − t paths into w
disjoint different classes. Let Ej be the number of extreme efficient solutions in each
class j ∈ [w]. The same arguments as in Case 2 in the proof of Theorem 10 can be used
to show that Ej is at most the number of extreme efficient paths from s to j plus the
number of extreme efficient paths from j to t minus 1. Observe further that all paths
from s to a node j on the middle layer and all paths from j to t are contained in a
layered graph with width w and 2k−1 − 1 layers. Using these arguments we obtain the
bound: E(k) ≤ w(2E(k − 1)− 1). Using this bound we can derive the claimed bound

K = E(k) ≤ w(2E(k − 1)− 1) ≤ 2wE(k − 1) ≤ (2w)kE(k − k) = (2w)k

Remark: The bound proved in Theorem 11 is subexponential for general layered graphs.
But if ` or w is assumed to be fixed, the bound is polynomial: Since N ≈ `w, w ≈ N

`

and ` ≈ N
w , we have for ` fixed K ∈ O

(
(N` )log(`)

)
∈ O

(
N log(`)

)
and, conversely, for w

fixed K ∈ O
(

(2w)log(N
w

)
)
∈ O

(
N log(w)+1

)
.
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Name of the uncertainty Graph type Computation Time

Proportional growth General O(T )
Constant growth General O(NT )
Generalized Manhattan norm General O(MT )
Arbitrary growth Acylic Subexponential
Arbitrary growth Series-parallel O(MT )

Arbitrary growth Layered O((2w)dlog(`+1)eT )

Table 2: Results for the variable-sized robust shortest path problem.

2.3.4 Ellipsoidal Norm

The feasible set of the shortest path problem, i.e. all incidence vectors of s-t paths can
be represented in the following way

X =

x ∈ {0, 1}M :
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = bv ∀v ∈ V

 with bv =


+1, if v = s

−1, if v = t

0, else

where δ+(v)(δ−(v)) is the set of are all edges leaving (entering) v. Note that the
constraints defining X do not forbid cycles for the s-t paths. Nevertheless, we can use
this set for the optimization problem, since all solutions containing cycles are suboptimal.
The weighted sum problem which needs to be solved to compute the set of extreme
efficient solutions can be represented by the following mixed integer second order cone
programming problem.

min ctx+ r

s.t. xtQx ≤ r2

x ∈ X

The computational complexity of this problem is NP-complete and even APX-hard as
shown in [RCH+16]. Nevertheless, real world instances can be solved exactly using
modern solvers.

Before we conclude the section with a case study of the variable-sized robust shortest
path problem with ellipsoidal uncertainty, we present an overview of the different results
obtained in this section in Table 2.

2.3.5 Case Study

In this case study we consider the problem of finding a path through Berlin, Germany.
We use a road network of Berlin which consists of 12, 100 nodes and 19, 570 edges. The
data set was also used in [JMSSM05], and taken from the collection [BG16]. We use the
following probabilistic model to describe the uncertain travel times of each road segment.

c = ĉ+ Lξ
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Figure 1: Berlin case study - Solution of the variable-sized robust shortest path prob-
lem. The color of each edge indicates the degree of uncertainty that affects
this edge: Black - almost no uncertainty, green - small uncertainty, orange -
medium uncertainty, and red - high uncertainty. The 11 different paths found
as solution of the robust problem are drawn in blue: Light blue represents the
nominal solution and dark blue the most robust solution.

where ξ ∼ N (0, I) is a k-dimensional random vector which is multivariate normal dis-
tributed, L ∈ RM×k, and ĉ is taken from the data set. Under this assumption c is also
multivariate normally distributed with mean ĉ and variance LLt. Note that the most
likely realization of c form an ellipsoid. Protecting against these realizations we obtain
an ellipsoidal uncertainty set.

Entries of L are chosen such that the road segments in the center of Berlin tend
to be affected by more uncertainty. We compute all solutions to the variable-sized
robust problem, solving the resulting mixed integer second order cone programming
problem with Cplex v.12.6. Computation times were less than three minutes on a desktop
computer with an Intel quad core i5-3470 processor, running at 3.20 GHz. The solution
of the variable-sized robust problem contains 11 different paths. These paths are shown
in Figure 1.

The start node is placed in the north of Berlin and the target node in the south. The
nominal solution ignores that the center of Berlin is affected by high uncertainty and
goes right through it. The most robust solution avoids all green edges, i.e., edges that
are affected by small uncertainty, and takes a long detour around the center of Berlin.
Beside these two extreme solutions 9 compromise solutions are found which balance
uncertainty and nominal travel time.
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Figure 2: Berlin case study - Robustness chart. The curve indicates the nominal cost of
the robust solution for some fixed uncertainty level λ.

In the robustness chart (see Figure 2) it is shown how the nominal cost (ĉtx) of the
different compromise solution increase with an increasing level of uncertainty (λ). The
chart provides the decision maker with detailed information about the cost of considering
larger levels of uncertainty, and shows for how long solutions remain optimal.

We find that variable-sized robust optimization gives a more thorough assessment of
an uncertain optimization problem than classic robust approaches would be able to do,
while also remaining suitable with regards to computational effort.

3 Inverse Min-Max Regret Robustness

3.1 General Discussion

Having considered variable-sized approaches in the previous section, we now consider
the special case of analyzing the nominal solution only.

Let x̂ be an optimal solution to the nominal problem (P) with costs ĉ, i.e.,

x̂ ∈ arg min{ĉtx : x ∈ X}

Note that in this case, x̂ is also an optimizer of the min-max and min-max regret coun-
terparts for the singleton set Û = {ĉ}, i.e.,

x̂ ∈ arg min

{
max
c∈Û

ctx : x ∈ X
}

and x̂ ∈ arg min
{
reg(x, Û) : x ∈ X

}
.

In this section on inverse robustness, we analyze for which larger uncertainty sets
these properties still hold. We focus on the min-max regret setting, as the more general
variable-sized approach covers min-max counterparts in Section 2. Several ways to do
so need to be differentiated.
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Firstly, the “size of an uncertainty set” needs to be specified. In this section, we
discuss two approaches:

• For uncertainty sets of the form

U(λ) = {c : ci ∈ [(1− λ)ĉi, (1 + λ)ĉi]} ,

the parameter λ ∈ [0, 1] specifies the uncertainty size, with U(0) = Û . We call
these sets regular interval sets. Note that this corresponds to proportional growth
in the previous section.

• For general interval uncertainty sets

U(d+, d−) = {c : ci ∈ [ĉi − d−i , ĉi + d+
i ] ∀i ∈ [n]},

the size of U(d+, d−) is the length of intervals |U(d+, d−)| :=
∑

i∈[n] d
−
i + d+

i , with

|Û | = |Û(0, 0)| = 0.

For general uncertainty sets, there are different ways to distribute a fixed amount
of slack d− ≥ 0,d+ ≥ 0, all resulting in the same uncertainty size. Depending on the
application, it may be useful to use upper bounds d− ≤M− and d+ ≤M+.

Secondly, one can either look for the uncertainty set of the smallest possible size for
which x̂ is not optimal for the resulting robust objective function; or one can look for
the largest possible uncertainty set for which x̂ is still optimal in the robust sense. We
refer to these approaches as worst-case or best-case inverse robustness, respectively. Our
approach may also be used to choose the most robust of several candidate solutions.
The problem of finding the best robust solution in a lexicographic sense has also been
considered in a different setting in [IT13].

In Section 3.2, we discuss regular interval uncertainty sets, while Section 3.3 presents
results on general interval sets.

3.2 Regular Interval Uncertainty Sets

3.2.1 Problem Structure

Note that reg(x, λ) := reg(x,U(λ)) is a monotonically increasing function in λ for all x.
The following calculations show that reg(x, λ) is a piecewise-linear function in λ.

reg(x, λ) = max
c∈U(λ)

(
ctx−min

y∈X
cty

)
= max

y∈X
max
c∈U(λ)

ctx− cty

= max
y∈X

c(x, λ)tx− c(x, λ)ty

= max
y∈X

(1 + λ)ctx−
∑
i∈[n]

ci(1− λ+ 2λxi)yi

13



Here we use that the scenario c ∈ U(λ) maximizing reg(x, λ) is given by c(x, λ)i =
ci(1− λ+ 2λxi). Observe that c(x, λ)ixi = (1 + λ)cixi.

This gives rise to the question: Is there also any difference between worst-case and
best-case inverse robustness for regular interval sets? That is, is it possible that a
situation occurs as shown in Figure 3, where the regret of the nominal solution becomes
larger than the regret of another solution for some λ1, but for another λ2 > λ1, this
situation is again reversed? Here, the best-case robustness approach would yield λ = λ2

as the largest value of λ for which x̂ is an optimal regret solution. However, the worst-
case approach would give λ1 as the smallest value for which x̂ is not regret optimal.
Such a situation can indeed occur, as the following example demonstrates.

Figure 3: Comparison of the regret of two solutions x̂ and x′ for different values of λ.

Example 12. Consider the shortest path instance presented in Figure 4. A feasible path
starts at node 1 and ends at node 6.

Figure 4: A sample shortest path instance with regular interval sets. The label over each
edge specifies the midpoint of this edge ĉi.

We describe paths by the succession of nodes they visit. There are five feasible paths
in the graph, P1 = (1, 2, 3, 6), P2 = (1, 2, 4, 5, 6), P3 = (1, 2, 4, 5, 3, 6), P4 = (1, 4, 5, 3, 6)
and P5 = (1, 4, 5, 6). The regret of each path, depending on λ, is shown in Table 3.
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λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

reg(P1, λ) 0.0 2.5 6.0 9.5 13.0 16.5 20.0 23.5 27.0 30.5 34.0
reg(P2, λ) 4.0 6.2 8.4 10.6 12.8 15.0 19.2 23.4 27.6 31.8 36.0
reg(P3, λ) 13.0 16.2 20.4 24.6 28.8 33.0 37.2 41.4 45.6 49.8 54.0
reg(P4, λ) 10.0 13.0 16.0 19.0 22.8 27.0 31.2 35.4 39.6 43.8 48.0
reg(P5, λ) 1.0 4.5 8.0 11.5 15.0 18.5 22.0 25.5 29.0 32.5 36.0

Table 3: Regret of paths in Figure 4 depending on λ.

A unique minimizer of the nominal scenario (i.e., λ = 0) is the path P1 with a regret
of zero, while path P2 has a regret of four. For λ = 0.5, the regret of path P1 becomes
16.5, but is only 15 for path P2. Finally, for λ = 1, path P1 has a regret of 34, but path
P2 has a regret of 36, i.e., path P2 has the better regret for λ = 0.5, but not for λ = 0
and λ = 1. Also, P1 is indeed the path with the smallest regret for λ = 1.

Note how such an example is in contrast to variable-sized min-max robust optimiza-
tion, where a solution that ceases to be optimal for some value λ will not be optimal
again for another value λ′ > λ. The above example can also be extended such that a
path is optimal on an arbitrary number of disjoint intervals of λ.

In the following, we analyze the best-case setting in Section 3.2.2 and the worst-case
setting in Section 3.2.3. We only focus on analyzing the nominal solution; an extension
how this approach can be used to solve the complete variable-sized problem is given in
Section 3.2.4.

3.2.2 Best-Case Inverse Robustness

The best-case inverse problem we consider here can be summarized as: Given some
solution x̂, what is the largest amount of uncertainty that can be added such that x̂ is
still optimal for the resulting min-max regret problem? The method we present in the
following to answer this question can in fact be applied to any solution x ∈ X , in the
sense that we find the largest set U(λ) such that x is an optimal regret solution, if it
exists.

More formally, the best-case inverse problem we consider here is given as:

max λ

s.t. reg(x̂, λ) ≤ reg(x̃, λ) ∀x̃ ∈ X
λ ∈ [0, 1]

where reg(x, λ) = maxc∈Uλ
(
ctx− opt(c)

)
.

We now focus on combinatorial problems, where we assume that the strong duality
property holds, i.e., when can solve the continuous relaxation of the problem to find
an optimal solution. Example problems where this is the case include the assignment
problem, the shortest path problem, or the minimum spanning tree problem. Strong

15



duality is an important tool in classic min-max regret problems, as it allows a compact
problem formulation [ABV09]. As an example, we consider the assignment problem in
the following. The nominal problem is given by

min
∑
i∈[n]

∑
j∈[n]

ĉijxij

s.t.
∑
i∈[n]

xij = 1 ∀j ∈ [n]

∑
j∈[n]

xij = 1 ∀i ∈ [n]

xij ∈ {0, 1} ∀i, j ∈ [n]

Using that reg(x, λ) = ct(x)x− opt(c(x)) with

cij(x) =

{
(1 + λ)ĉij if xij = 1,

(1− λ)ĉij else

and dualizing the inner optimization problem, we find a compact formulation of the
min-max regret problem as follows:

min
∑
i∈[n]

∑
j∈[n]

(1 + λ)ĉijxij −
∑
i∈[n]

(ui + vi)

s.t. ui + vj ≤ (1− λ)ĉij + 2λĉxij ∀i, j ∈ [n]∑
i∈[n]

xij = 1 ∀j ∈ [n]

∑
j∈[n]

xij = 1 ∀i ∈ [n]

xij ∈ {0, 1} ∀i, j ∈ [n]

ui, vi ≷ 0 ∀i ∈ [n]

We now re-consider the inverse problem. Note that to reformulate the constraints

reg(x̂, λ) ≤ reg(x̃, λ) ∀x̃ ∈ X

we can use the same duality approach for the left-hand side (as an optimal solution aims
at having this side as small as possible), but not for the right-hand side (which should
be as large as possible). Instead, for each x̃ ∈ X , we need to provide a primal solution.
Enumerating all possible solutions in X as x̃k, k ∈ [|X |], the inverse problem can hence
be reformulated as

max λ (1)

s.t.
∑
i,j∈[n]

(1 + λ)ĉij x̂ij −
∑
i∈[n]

(ui + vi)
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≤
∑
i,j∈[n]

(1 + λ)ĉij x̃
k
ij −

∑
i,j∈[n]

((1− λ)ĉij + 2λĉij x̃
k
ij)x

k
ij ∀k ∈ [|X |] (2)

ui + vj ≤ (1− λ)ĉij + 2λĉij x̂ij ∀i, j ∈ [n] (3)

λ ∈ [0, 1] (4)

ui, vi ≷ 0 ∀i ∈ [n] (5)

xk ∈ X ∀k ∈ [|X |] (6)

Here, the objective function (1) is to maximize the size of the uncertainty set λ. Con-
straints (2) model that the regret of x̂ needs to be at most as large as the regret of all
possible alternative solutions x̃k. To calculate the regret of these solutions, additional
solutions xk are required. The duality constraints in (3) ensure that the regret of x̂ is
calculated correctly.

To solve this problem, not all variables and constraints need to be included from the
beginning. Instead, we can generate them during the solution process of the master prob-
lem by solving subproblems that aim at minimizing the right-hand side of Constraint (2).
This is a classic min-max regret problem again.

To resolve the non-linearity between xk and λ, we use additional variables ykij := λxkij .
The resulting mixed-integer program is then given as:

max λ (7)

s.t.
∑
i,j∈[n]

(1 + λ)ĉij x̂ij −
∑
i∈[n]

(ui + vi) (8)

≤
∑
i,j∈[n]

(1 + λ)ĉij x̃
k
ij −

∑
i,j∈[n]

(ĉijx
k
ij + (2x̃kij − 1)ĉijy

k
ij) ∀k ∈ [|X |] (9)

ui + vj ≤ (1− λ)ĉij + 2λĉij x̂ij ∀i, j ∈ [n] (10)

0 ≤ ykij ≤ λ ∀i, j ∈ [n], k ∈ [|X |] (11)

λ+ xkij − 1 ≤ ykij ≤ xkij ∀i, j ∈ [n], k ∈ [|X |] (12)

λ ∈ [0, 1] (13)

ui, vi ≷ 0 ∀i ∈ [n] (14)

ykij ≥ 0 ∀i, j ∈ [n], k ∈ [|X |] (15)

xk ∈ X ∀k ∈ [|X |] (16)

For a more general formulation, which is not restricted to the assignment problem,
let us assume that X = {x : Ax ≥ b, x ∈ {0, 1}n} with A ∈ Rm×n and b ∈ Rm, and
that strong duality holds. Then the min-max regret problem with interval sets Uλ can
be formulated as

min
x∈X ,u∈Y

(
(1 + λ)ĉx− btu

)
with Y = {u : Atu ≤ c(x), u ≥ 0}, see [ABV09]. Using this compact formulation for
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min-max regret, we can substitute Constraint (9) for∑
i∈[n]

(1 + λ)ĉix̂i − btu ≤
∑
i∈[n]

(1 + λ)ĉix̃
k
i −

∑
i∈[n]

(ĉix
k
i + (2x̃ki − 1)ĉiy

k
i ) ∀k ∈ [|X |]

and Constraints (10) for

(Atu)i ≤ (1− λ)ĉi + 2λĉix̂i ∀i ∈ [n]

with dual variables ui ≥ 0 for all i ∈ [m].
We conclude this section by briefly considering the case where the original problem

(P) does not have zero duality gap. In this case, we rewrite the constraints

reg(x̂, λ) ≤ reg(x̃k, λ) ∀k ∈ [|X |]

as ∑
i∈[n]

(1 + λ)ĉix̂i −
∑
i∈[n]

((1− λ)ĉi + 2λĉix̂i) x̄
`
i

≤
∑
i∈[n]

(1 + λ)ĉix̃
k
i −

∑
i∈[n]

((1− λ)ĉi + 2λĉix̃
k
i )x

k
i ∀k, ` ∈ [|X |]

i.e., we compute the regret on both sides of the inequality by using all primal solutions
as comparison. As before, variables and constraints can be generated iteratively during
the solution process. To find the next solution x̄`, only a problem (P) or the original
type needs to be solved.

3.2.3 Worst-Case Inverse Robustness

We now consider the worst-case inverse problem, which may be summarized as: Given
some solution x̂, what is the smallest amount of uncertainty that needs to be added such
that x̂ is not optimal for the resulting min-max regret problem anymore?

More formally, the problem we consider can be denoted as:

min λ (17)

s.t. reg(x̂, λ) ≥ reg(x̃, λ) + ε (18)

λ ∈ [0, 1] (19)

x̃ ∈ X (20)

where ε is a small constant, i.e., we need to find an uncertainty parameter λ and an
alternative solution x̃ such that the regret of x̃ is at least better by ε than the regret of
x̂.

As in the previous section, we use the assignment problem as an example how to
rewrite this problem in compact form. As an optimal solution will aim at having the
right-hand side of Constraint (37) as small as possible, we use strong duality to write:

min λ
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s.t. reg(x̂, λ) ≥
∑
i,j∈[n]

(1 + λ)ĉij x̃ij −
∑
i∈[n]

(ui + vi) + ε

ui + vj ≤ (1− λ)ĉij + 2λĉij x̃ij ∀i, j ∈ [n]

λ ∈ [0, 1]

x̃ ∈ X

For the left-hand side of Constraint (18), we need to include an additional primal solution
x′ as an optimal solution for the worst-case scenario of x̂. Linearizing the resulting
products by setting yij := λx′ij and βij := λx̃ij , the resulting problem formulation is
then:

min λ (21)

s.t.
∑
i,j∈[n]

(1 + λ)ĉij x̂ij −
∑
i,j∈[n]

(ĉijx
′
ij + (2x̂ij − 1)ĉijyij) (22)

≥
∑
i,j∈[n]

(ĉij x̃ij + ĉijβij)−
∑
i∈[n]

(ui + vi) + ε (23)

ui + vj ≤ (1− λ)ĉij + 2ĉijβij ∀i, j ∈ [n] (24)

0 ≤ yij ≤ λ ∀i, j ∈ [n] (25)

λ+ x′ij − 1 ≤ yij ≤ λ ∀i, j ∈ [n] (26)

0 ≤ βij ≤ λ ∀i, j ∈ [n] (27)

λ+ x̃ij − 1 ≤ βij ≤ λ ∀i, j ∈ [n] (28)∑
i∈[n]

x′ij = 1 ∀i ∈ [n] (29)

∑
j∈[n]

x′ij = 1 ∀j ∈ [n] (30)

∑
i∈[n]

x̃ij = 1 ∀i ∈ [n] (31)

∑
j∈[n]

x̃ij = 1 ∀j ∈ [n] (32)

λ ∈ [0, 1] (33)

x′ij , x̃ij ∈ {0, 1} ∀i, j ∈ [n] (34)

yij , βij ∈ [0, 1] ∀i, j ∈ [n] (35)

Note that this formulation has polynomially many constraints and variables, and thus
can be attempted to be solved without an iterative procedure. In general, for a problem
with X = {x : Ax ≥ b, x ∈ {0, 1}n} and the strong duality property, we can substitute
Constraint (23) for∑

i∈[n]

(1 + λ)ĉix̂i −
∑
i∈[n]

(ĉix
′
i + (2x̂i − 1)ĉiyi) ≥

∑
i∈[n]

(ĉix̃i + ĉiβi)− btu+ ε
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and Constraints (24) for

(Atu)i ≤ (1− λ)ĉi + 2ĉiβi ∀i ∈ [n]

with dual variables ui ≥ 0 for all i ∈ [m].
In the case that problem (P) does not have a zero duality gap, we propose to follow a

similar strategy as in Section 3.2.2. That is, we consider constraints∑
i∈[n]

(1 + λ)ĉix̂i −
∑
i∈[n]

(ĉix
′
i + (2x̂i − 1)ĉiyi)

≥
∑
i∈[n]

(1 + λ)ĉix̃i −
∑
i∈[n]

((1− λ)ĉi + 2λĉix̃i)x
k
i + ε ∀k ∈ [|X |]

and generate them iteratively in a constraint relaxation procedure. Note that no addi-
tional variables are required.

3.2.4 Extension to the Variable-Sized Problem

Recall the relationship between the variable-sized min-max robust optimization problem
and a bicriteria optimization problem discussed in Section 2, which allowed us to effi-
ciently solve the problem. Unfortunately, such a connection cannot be derived for the
variable-sized min-max regret robust optimization problem. Nevertheless, it is possible
to compute a solution for the problem, i.e. a minimal set S such that for each λ ∈ [0, 1]
there exists a solution x ∈ S which is optimal for the min-max regret problem with
uncertainty set U(λ). In the following, we sketch a method that can be used to compute
S.

Let x be a fixed solution. Recall that reg(x, λ) is a piecewise linear function in λ
(see Figure 3). Each linear part of this function corresponds to a solution of the classic
optimization problems. Hence, the function can be computed by solving a sequence
of classic optimization problem. For an detailed description of the algorithm which
computes the piecewise linear function reg(x, λ) we refer to [CG16a]. A brute force
method to solve the variable-sized problem is to compute for each solution x ∈ X the
function reg(x, λ). Then, we form the minimum over all these functions, i.e. we compute
F (λ) = minx∈X reg(x, λ). Note that F is again piecewise linear. Given F , to obtain
solution S of the variable-sized optimization problem is straightforward. Simply chose
all solutions which contribute to function F . We can improve this brute force method
by iteratively generating function F .

We start with some arbitrary solution x0. We compute reg(x0, λ) and set X ′ = {x0}.
Further, we define F ′(λ) = minx∈X ′ reg(x, λ). The idea is to iteratively increase set X ′
until F ′(λ) = F (λ) for all λ ∈ [0, 1]. To do this, we pick an interval [λ1, λ2] ⊂ [0, 1]
for which F ′ is linear. Assume that F ′(λ) = mλ + b for all λ ∈ [λ1, λ2]. To verify that
F ′(λ) = F (λ) for all λ ∈ [λ1, λ2], we have to verify that for all x ∈ X it holds that
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reg(x, λ) ≥ mλ+ b. This can be done by solving the following optimization problem.

min reg(x, λ)−mλ− b
x ∈ X
λ ∈ [λ1, λ2]

Denote by x′ the optimal solution and by f ′ the optimal value of this optimization
problem. Note that this problem can be transformed to a mixed integer programming
problem using strong duality and the same linearization technique as used for prob-
lem (7)–(16). If f ′ ≥ 0, we have verified that F ′(λ) = F (λ) for all λ ∈ [λ1, λ2]. If f ′ < 0,
we add solution x′ to X ′, compute reg(x′, λ), and update F ′. In both cases, we pick
a new interval for which we have not yet verified that F ′(λ) = F (λ). Note that this
process terminates after a finite number of steps with F ′ = F .

3.3 General Interval Uncertainty Sets

3.3.1 Best-Case Inverse Robustness

We now consider consider general interval uncertainty, where the size of the uncertainty
is the summed length of intervals, i.e., the best-case inverse problem we consider here is
given as:

max
∑
i∈[n]

d+
i + d−i

s.t. reg(x̂, d+, d−) ≤ reg(x̃, d+, d−) ∀x̃ ∈ X
d+
i ∈ [0,M+

i ] ∀i ∈ [n]

d−i ∈ [0,M−i ] ∀i ∈ [n]

where M+
i , M−i denote the maximum possible deviations in each coefficient, and

reg(x, d+, d−) = max
c∈U(d+,d−)

ctx− opt(c).

By setting M+
i = 0 or M−i = 0 for some index i, we can model that this coefficient may

not deviate in the respective direction.
We first consider this setting with the unconstrained combinatorial optimization prob-

lem, where X = {0, 1}n.
Let x̂ be optimal for ĉ. Note that for some fixed c, an optimal solution is to pack all

items with negative costs. Therefore, we assume

x̂i =

{
1 if ĉi ≤ 0

0 else

There are no other optimal solutions, except for indices where ĉi = 0. To describe
optimal solutions for the min-max regret problem under uncertainty, we make use of the
following lemma:
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Lemma 13. (See [CG17]) Let U = ×i∈[n][ĉi−di, ĉi+di] for the unconstrained combina-
torial optimization problem. Then, an optimal solution for ĉ is also an optimal solution
for the min-max regret problem.

In our setting, this becomes:

Lemma 14. Let U = U(d+, d−). Then, x∗ with

x∗ =

{
1 if 2ĉi + d+

i − d
−
i ≤ 0

0 else

is an optimal solution for the min-max regret problem.

Note that there are no other optimal solutions, except for indices where 2ĉi+d
+
i −d

−
i =

0. We can therefore describe the largest possible uncertainty set such that x̂ remains
optimal for the min-max regret problem in the following way:

Theorem 15. Let an unconstrained problem with cost ĉ be given. The largest uncertainty
set of the form U(d+, d−) such that x̂ remains optimal for the resulting regret problem is
given by d+ and d− with the following properties:

• If ĉi ≤ 0, then

d+
i = min{M−i − 2ĉi,M

+
i }

d−i = M−i

• If ĉi > 0, then

d+
i = M+

i

d−i = min{M+
i + 2ĉ,M−i }

Proof. Let ĉi ≤ 0 and x̂i = 1. Using Lemma 14, we choose d+
i and d−i such that

2ĉi ≤ d−i −d
+
i . Setting d−i = M−i and solving for d+

i , we find d+
i = min{M−i − 2ĉi,M

+
i }.

Analogously for ĉi > 0 and x̂i = 0.

Corollary 16. For M−i = 0 and M+
i = ∞ when x̂i = 1, and M−i = ∞ and M+

i = 0
when x̂i = 0, we have

d+
i = −2ĉi for ĉi < 0 and d−i = 2ĉi for ĉi ≥ 0

and the corresponding uncertainty size is hence |U(d+, d−)| =
∑

i∈[n] 2|ĉi|.

For general combinatorial problems with the strong duality property, we can follow a
similar reformulation procedure as described in Section 3.2.2. For the sake of brevity,
we only give the final, linearized formulation for X = {x : Ax ≥ b, x ∈ {0, 1}n} here:

max
∑
i∈[n]

d+
i + d−i
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s.t.
∑
i∈[n]

(ĉi + d+
i )x̂i − btu

≤
∑
i∈[n]

(ĉi + d+
i )x̃ki −

∑
i∈[n]

(ĉix
k
i − zki + x̃ki y

k
i + x̃ki z

k
i ) ∀k ∈ [|X |]

(Atu)i ≤ ĉi − d−i + (d+
i + d−i )x̂i ∀i ∈ [n]

0 ≤ yki ≤ d+
i ∀i ∈ [n],∀k ∈ [|X |]

d+
i −M

+
i (1− xki ) ≤ yki ≤M+

i x
k
i ∀i ∈ [n],∀k ∈ [|X |]

0 ≤ zki ≤ d−i ∀i ∈ [n],∀k ∈ [|X |]
d−i −M

−
i (1− xki ) ≤ zki ≤M−i x

k
i ∀i ∈ [n],∀k ∈ [|X |]

Axk ≥ b ∀k ∈ [|X |]
d+
i ∈ [0,M+

i ] ∀i ∈ [n]

d−i ∈ [0,M−i ] ∀i ∈ [n]

ui ≥ 0 ∀i ∈ [m]

yki ∈ [0,M+
i ] ∀i ∈ [n], ∀k ∈ [|X |]

zki ∈ [0,M−i ] ∀i ∈ [n],∀k ∈ [|X |]
xki ∈ {0, 1} ∀i ∈ [n],∀k ∈ [|X |]

3.3.2 Worst-Case Inverse Robustness

We now consider the worst-case inverse problem with general interval uncertainty. It
can be denoted as:

min
∑
i∈[n]

d+
i + d−i (36)

s.t. reg(x̂, d+, d−) ≥ reg(x̃, d+, d−) + ε (37)

d+
i ∈ [0,M+

i ] ∀i ∈ [n] (38)

d−i ∈ [0,M−i ] ∀i ∈ [n] (39)

x̃ ∈ X (40)

where ε is a small constant, i.e., we need to find uncertainty parameters d+, d− and an
alternative solution x̃ such that the regret of x̃ is at least better by ε than the regret of
x̂.

Note that if x̂ is not a unique minimizer of the nominal scenario, there is an uncertainty
set U with arbitrary small size such that x̂ is not the minimizer of the regret anymore.
It suffices to increase an element of x̂, which is not included in another minimizer of the
nominal scenario. Hence, this approach is most relevant for unique minimizers of the
nominal scenario.

As in the previous sections, we use the assignment problem as an example how to
rewrite this problem in compact form. The resulting problem formulation for X = {x :

23



Ax ≥ b, x ∈ {0, 1}n} is then:

min
∑
i∈[n]

d+
i + d−i

s.t.
∑
i∈[n]

(ĉi + d+
i )x̂i −

∑
i∈[n]

(ĉix
′
i − zi + x̂iyi + x̂izi)

≥
∑
i∈[n]

(ĉix̃i + βi)− btu+ ε

(Atu)i ≤ ĉi − d−i + βi + γi ∀i ∈ [n]

0 ≤ yi ≤ d+
i ∀i ∈ [n]

d+
i −M

+
i (1− x′i) ≤ yi ≤M+

i x
′
i ∀i ∈ [n]

0 ≤ zi ≤ d−i ∀i ∈ [n]

d−i −M
−
i (1− x′i) ≤ zi ≤M−i x

′
i ∀i ∈ [n]

0 ≤ βi ≤ d+
i ∀i ∈ [n]

d+
i −M

+
i (1− x̃i) ≤ βi ≤M+

i x̃i ∀i ∈ [n]

0 ≤ γi ≤ d−i ∀i ∈ [n]

d−i −M
−
i (1− x̃i) ≤ γi ≤M−i x̃i ∀i ∈ [n]

Ax′ ≥ b
Ax̃ ≥ b
d+
i , y

′
i, βi ∈ [0,M+

i ] ∀i ∈ [n]

d−i , z
′
i, γi ∈ [0,M−i ] ∀i ∈ [n]

ui ≥ 0 ∀i ∈ [m]

x′i, x̃i ∈ {0, 1} ∀i ∈ [n]

3.4 Computational Insight

3.4.1 Setup

In this section we consider best-case and worst-case inverse robustness as a way to find
structural insight into differences of robust optimization problems.

To this end, we used the following experimental procedure. We generated random as-
signment instances in complete bipartite graphs of size 15×15 (i.e., there are 225 edges).
For every edge e, we generate a random nominal weight ĉe uniformly in {0, . . . , 20}. We
generated 2,500 instances this way.

For each instance, we solve the best-case and worst-case inverse robustness problems,
where we allow symmetric deviations (i.e., d+ = d−) in the interval [0, 20]. Best-case
problems are solved as described in Section 3.3.1 using the iterative procedure that
constructs additional variables and constraints by solving a min-max regret problem
as sub-procedure. Worst-case problems are solved using the compact formulation from
Section 3.3.2.
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Additionally, for each instance, we create 500 min-max regret problems with randomly
generated symmetric interval uncertainty within the same maximum range [0, 20] of
possible deviations. Each min-max regret instance is solved to optimality using the
compact formulation based on dualizing the inner problem. Additionally, we calculate
the objective value of the nominal solution for each min-max regret instance.

To solve optimization problems, we used Cplex v.12.6 on a computer with a 16-core
Intel Xeon E5-2670 processor, running at 2.60 GHz with 20MB cache, and Ubuntu 12.04.
Processes were pinned to one core.

3.4.2 Results and Discussion

We present key values for worst-case inverse problems in Table 4. We categorized in-
stances according to the objective value ”WC” of the worst-case problem. The smallest
observed objective value was 4, and the largest was 28 (the value 2 could not be achieved,
as we required the difference between regret values to be at least 1).

Column ”Freq” denotes how often an objective value was observed over the 2,500
instances. Columns ”Reg” and ”NomReg” show the average optimal regret, and the
average regret of the nominal solution within each instance class, respectively. In column
”Ratio”, the ratio between these two values is given. Column ”BC” shows the average
best-case inverse value for problems within each class. The BC values are given as the
negative difference to the maximum BC value, which is 9000 (i.e., smaller BC values
mean that the largest possible interval uncertainty for which the nominal solution is
also the optimal solution for the regret problem is smaller). ”WCT” and ”BCT” show
the average time to solve the worst-case and the best-case inverse problems in seconds,
respectively. ”RegT” is the average time to solve the 500 min-max regret problems we
generated per instance and is also given in seconds.

WC Freq Reg NomReg Ratio BC WCT BCT RegT

4 569 297.014 348.673 1.1739 -3.47 0.36 13.96 61.49
6 633 296.930 347.238 1.1694 -2.25 0.66 11.73 61.49
8 139 296.789 345.395 1.1637 -1.78 1.12 6.07 61.99

10 662 296.780 346.153 1.1663 -1.53 2.07 6.96 61.85
12 270 296.851 344.544 1.1606 -0.94 2.41 5.32 62.00
14 43 296.754 343.172 1.1564 -0.47 3.00 4.71 61.33
16 116 296.534 342.997 1.1567 -0.52 4.83 4.64 62.07
18 38 296.084 339.757 1.1475 -0.63 5.34 4.30 62.50

≥ 20 30 296.073 338.392 1.1429 -0.13 10.39 3.43 63.13

Table 4: Statistics for worst-case inverse problems.

Note that NomReg is decreasing with increasing WC values, i.e., when only little
uncertainty is required to modify the instance such that the nominal solution is not the
optimal regret solutions, then the regret of the nominal solution tends to be higher.
Looking at the ratio between NomReg and Reg, we see that the quality of the nominal
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solution improves for larger values of WC. As the nominal solution is sometimes used
as the baseline heuristic for solution algorithms (see, e.g., [CG15]), this may lead to
structural insight on the performance of such algorithms for different instance classes.

The computation time for WC increases with the resulting objective value, while
computation times for BC decreases for the respective instance classes. WC and BC
values are connected, with instances having small WC values also tending to have large
BC values. That is, if only little uncertainty is required to disturb the nominal solution,
then the largest possible uncertainty set for which it is optimal also tends to be smaller.
Our results do not show a significant increase in computation time for RegT, depending
on WC.

Summarizing, we find that the WC value is able to categorize instances according to
the relative performance of the nominal solution. While the ratio of NomReg and Reg
is easier to compute than WC, if offers structural insight on why these instances behave
differently, and can be used to structure benchmark sets as an example application.

4 Conclusion and Further Research

In classic robust optimization problems, one aims at finding a solution that performs well
for a given uncertainty set of possible parameter outcomes. In this paper, we considered
a more general problem where we assume only the shape of the uncertainty set to be
given, but not its actual size.

The resulting variable-sized min-max robust optimization problem is analyzed for
different uncertainty sets, and results are applied to the shortest path problem. In
a brief case study, we demonstrated the value of alternative solutions to the decision
maker, which can be found in little computation time.

As a special case of variable-sized uncertainty, we considered inverse problems with
min-max regret objective. To solve such problems, mixed-integer programming formu-
lations were derived. Inverse robust optimization can also be applied to give structural
insight to robust optimization instances, which was demonstrated with experimental
data.

Our research is the first of its kind, with possible applications in decision support,
sensitivity analysis, and benchmarking.

Future research will consider inverse problems for min-max regret, and more complex
uncertainty sets than hyperboxes. In particular, Γ uncertainty or ellipsoidal uncertainty
might be considered. Furthermore, models and algorithms to extend our ideas to so-
lutions which are not optimal for the nominal scenario will be helpful. One possible
approach to this end is to measure the biggest difference of the regret of the given solu-
tion to the best possible regret for varying uncertainty sizes. Finally, we restricted our
analysis to combinatorial problems with uncertainty in the objective; its extension to
continuous problems and problems with uncertainty in the constraints is further research.
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