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1 Introduction

Since the introduction of the autoregressive conditional heteroscedastic (ARCH) time series

model of Engle (1982), there have been huge developments on the theory and application of

this model and its various generalizations to economics and finance. ARCH models have been

used to represent the volatility, i.e, the strong dependence of the instantaneous variability of

a time series on its own past, in numerous economic and financial data sets. For a literature

review, see Bollerslev, Chou, and Kroner (1992), Shephard (1996), and Gouriéroux (1997),

among others. Most of the existing methodological literature have focused on developing

estimation procedures for the parameters associated with the conditional variability using

pseudo-likelihood methods. However, development of the estimation methods associated

with the conditional mean component of a heteroscedastic problem is also important from

the application point of view and this has been largely overlooked. In this paper, we aim to

fill that gap by developing a rank-based robust procedure for estimating the mean parameter

of an autoregressive model with conditional heteroscedastic errors.

In a parametric formulation, linearity of regression, independence and normality of er-

rors, homoscedasticity or form of heteroscedasticity etc. are typically assumed for drawing

conclusions about parameters of interest. However, there is no guarantee that such regularity

assumptions will be valid in a given situation and therefore it is natural to investigate alter-

native procedures that can perform well under probable departures from model assumptions.

Among different types of such robust procedures, estimators based on ranks or the so-called

R-estimators are sometimes preferable to their other competitors for their global robustness

property as they generally demand much less restrictive assumptions on the underlying dis-

tributions; see, for example, Jurečková and Sen (1996, Section 3.4) for a discussion on this.

The need for using such robust estimators is even more for financial data due to the empirical

finding that ‘outliers’ appear more often in asset returns than that implied by white noises
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having normal distribution. For more on this, see Tsay (2002, Section 3.3) and Engle and

Gonzalez-Rivera (1991) who quantified the loss of efficiency resulting from the use of estima-

tors arising from the first-order conditions for the normal MLE (called the quasi maximum

likelihood estimator or the QMLE) on non-normal distributions and concluded that ‘it is

worthwhile searching for estimators that can improve on QMLE’.

There is a vast literature on the R-estimation of parameters in homoscedastic regression

and autoregression models. For a glimpse, see Koul (1992, Section 4.4), Jurečková and Sen

(1996, Section 3.4, Chapter 6) and Hájek, Šidák and Sen (1999, Section 10.3), among others.

In linear regression model with i.i.d. or homoscedastic long memory errors, R-estimators are

known to have highly desirable efficiency; see, e.g., Jurečková (1971), Koul (1971), Jaeckel

(1972) and Koul and Mukherjee (1993). In the homoscedastic autoregressive time series

model (1.1) with σ ≡ 1, analogs of the R-estimators are known to have similar efficiency and

robustness properties as investigated by Koul and Ossiander (1994) and Mukherjee and Bai

(2002). It is thus natural to investigate their behavior in the heteroscedastic set up.

Accordingly, consider the following autoregressive model with heteroscedastic error where

for known integers s, p and r, {Xi, 1− s ≤ i ≤ n} is an observable time series. Set W i−1 :=

(Xi−1, Xi−2, . . . , Xi−s)
′ and Y i−1 = c(W i−1), 1 ≤ i ≤ n, where c : IRs → IRp is a known

function. Let Ωj, j = 1, 2, be open subsets of IRp, IRr, respectively with Ω := Ω1×Ω2 ⊂ IRm,

where m = p + r. Let σ be a known function from IRp × Ω2 to IR+ := (0,∞), differentiable

in its second argument. Consider the model

Xi = Y ′
i−1α + σ(Y i−1, β) ηi, 1 ≤ i ≤ n, (1.1)

where α ∈ Ω1, β ∈ Ω2 are the unknown parameters, and the unobservable errors {ηi, i ≥ 1}

are i.i.d. with zero mean and finite variance having a distribution function (d.f.) G and

probability density function (p.d.f.) g. Throughout, we also assume that {ηi, i ≥ 1} are

independent of W 0 := (X0, X−1, . . . , X1−s)
′ and hence independent of Y 0; for each y ∈ IRp,
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σ̇(y, t) is the derivative of σ(y, t) with respect to t; and {Xi} is strictly stationary and ergodic.

All of these assumptions will be referred to as the model assumptions in the sequel. Although

some sufficient conditions for the stationarity and ergodicity of {Xi} in the full generality of

the model (1.1) may not be possible at this stage, we discuss the relevant sufficient conditions

for particular examples cited below. Our goal here is to develop the asymptotics of the R-

estimators of the parameter α in addition to the estimation of the entire parameter vector

θ := (α′, β′)′ based on the data W 0, X1, X2, . . . , Xn.

Note in this connection that model (1.1) is not the ‘pure ARCH’ model since the condi-

tional variance depends on a lag of the observed dependent variable, rather than a lag of the

error term. In the following, we cite some examples of (1.1).

Example 1. (Engle’s ARCH model). In the ARCH model introduced by Engle (1982),

one observes {Zi, 1− s ≤ i ≤ n} such that

Zi = (α0 + α1Z
2
i−1 + . . . + αsZ

2
i−s)

1/2εi, 1 ≤ i ≤ n, (1.2)

where α = (α0, α1, . . . , αs)
′ ∈ IR+(s+1) := (0,∞)(s+1) is the unknown parameter and {εi; 1 ≤

i ≤ n} are unobservable i.i.d. with mean zero, variance 1 and finite fourth moment.

Squaring both sides of (1.2) and writing ηi := ε2
i−1, Xi = Z2

i , W i−1 = [Xi−1, . . . , Xi−s]
′ =

[Z2
i−1, . . . , Z

2
i−s]

′, and Y ′
i−1 = [1, W ′

i−1], model (1.2) can be recast as

Xi = Y ′
i−1α + (Y ′

i−1α) ηi, 1 ≤ i ≤ n. (1.3)

This is an example of the model (1.1) with α = β, c(w) = [1, w]′, w ∈ [0,∞)s, p = s + 1,

r = s+1, and σ(y, t) = t′y. For various sufficient conditions related to the strict stationarity

and ergodicity of the process {Zi; 1− s ≤ i}, see Nelson (1990), Bougerol and Picard (1992)

and Giraitis, Kokoszka and Lepius (2000).

Example 2. (Autoregressive Linear Square Conditional Heteroscedastic model)

(ARLSCH). Consider the first order autoregressive model with heteroscedastic errors where
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one observes {Xi; 0 ≤ i ≤ n} such that the conditional variance of the i-th observation Xi

depends linearly on the squares of past as follows:

Xi = αXi−1 + {β0 + β1X
2
i−1}1/2 ηi, 1 ≤ i ≤ n, (1.4)

where α ∈ IR, β = (β0, β1)
′ ∈ (0,∞)2 and {ηi}’s are i.i.d. with zero mean and unit variance.

With the identification s = 1 = p, c(w) = w, r = 2, and

σ(y, t) = (t0 + t1y
2)1/2, y ∈ IR,

model (1.4) can be seen as an example of (1.1).

The assumption needed on the parameters under which the process {Xi; i ≥ 0} of (1.4)

is strictly stationary and ergodic is as follows:

|α|+ E|η1|max{β1/2
0 , β

1/2
1 } < 1. (1.5)

This follows by using Lemma 3.1 of Härdle and Tsybakov (1997, p 227) with C1 = |α| and

C2 = max{β1/2
0 , β

1/2
1 } = sup{(β0 + β1x

2)1/2/(1 + |x|); x ∈ IR}.

Example 3. (Autoregressive Threshold Conditional Heteroscedastic model)

(ARTCH). Consider an s-th order autoregressive model with self exciting threshold het-

eroscedastic errors where the conditional standard deviation of the i-th observation Xi is

piecewise linear on the past as follows:

Xi = (α1Xi−1 + . . . αsXi−p) +
{
β1Xi−1I(Xi−1 > 0)− β2Xi−1I(Xi−1 ≤ 0)

+ . . . + β2s−1Xi−sI(Xi−s > 0)− β2sXi−sI(Xi−s ≤ 0)
}

ηi, 1 ≤ i ≤ n,

where all βj’s are positive and {ηi}’s are i.i.d. with zero mean and unit variance. For

applications and many probabilistic properties of this model including conditions on the

stationarity and ergodicity, see Rabemananjara and Zakoian (1993). For a discussion on the

difficulties associated with the asymptotics of the robust estimation in this model due to the

lack of differentiability caused by threshold, see Rabemananjara and Zakoian (1993, p 38).
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With the identification p = s, c(w) = w, r = 2p, and

σ(y, t) =
p∑

j=1

t2j−1yjI(yj ≥ 0) +
p∑

j=1

t2j(−yj)I(yj < 0), y ∈ IRp, t ∈ (0,∞)2p,

this can be seen as an example of (1.1).

Some of the important findings on R-estimation under the model (1.1) are as follows.

It turns out that efficiency properties similar to homoscedastic models continue to hold for

the heteroscedastic setup also; see Remark 3.3 for details. In particular, for every fixed

innovation density g satisfying some conditions, optimal R-estimator based on suitable score

function exists. Also, the Wilcoxon R-estimator have asymptotic relative efficiency (ARE)

of at least 0.864 with respect to the quasi maximum likelihood estimator for a large class of

innovation density. Our simulation results reported in Tables 1 and 2 also confirm some of

these theoretical efficiency results for a variety of innovation distributions. Moreover, using

three well-known real data examples, the robustness of R-estimators against misspecified

form of the heteroscedasticity is exhibited.

For estimation of the conditional mean parameters using the MLE and the least squares

method in an autoregressive model with errors generated by an ARCH process itself, see

Pantula (1988). See also Koenker and Zhao (1996) and Koul and Mukherjee (2002) for

related work on the least absolute deviation and M-estimators.

The paper is organized as follows. The class of R-estimators is defined in Section 2. Sec-

tion 3 states all distributional results and compares R-estimators with least squares estimator

based on their asymptotic efficiencies. In Section 4, we verify that conditions of the theorems

of Section 3 are satisfied for each of the above examples. Analysis of simulated and real data

are reported in Section 5. Section 6 gives detail proofs of the theoretical results of Section 3.
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2 Generalized R-estimators

To define the class of R-estimators, we proceed in three steps. First we estimate α in (1.1) by

a preliminary consistent estimator α̂p which only considers the linear additive autoregressive

structure of (1.1) but does not take into account the conditional heteroscedasticity of the

model. Next, we use α̂p to construct an estimator β̂ of the parameter β. Finally, an

estimator α̂ of α based on the estimator β̂ of β is defined which does take into account the

heteroscedastic structure of the model (1.1). Throughout, u̇ will denote the derivative of a

function u.

Step 1: Define H(τ 1) := n−1/2∑n
i=1 Y i−1

(
Xi − Y ′

i−1τ 1

)
. Since E[H(α)] = 0, a pre-

liminary least squares estimator of α is defined as a solution of H(τ 1) = 0 and is given

by

α̂p := [
n∑

i=1

Y i−1Y
′
i−1]

−1[
n∑

i=1

XiY i−1].

Step 2: For τ := (τ ′
1, τ

′
2)
′ ∈ Ω := Ω1 × Ω2, let ηi(τ ) := [Xi − Y ′

i−1τ 1]/σ(Y i−1, τ 2)

denote the i-th residual, 1 ≤ i ≤ n. Let κ be a nondecreasing right continuous functions

on IR such that E{η1κ(η1)} = 1. This is automatically satisfied, for example, when the

innovations have unit variance and κ is the identity function (κ(x) ≡ x) or when it is the

score function for location of the maximum likelihood estimator at the error distribution G

i.e., κ(x) ≡ −ġ(x)/g(x). Consider the statistic

Ms(τ ) := n−1/2
n∑

i=1

σ̇(Y i−1, τ 2)

σ(Y i−1, τ 2)

[
ηi(τ )κ(ηi(τ ))− 1

]
.

Since E[Ms(α, β)] = 0, an estimator of the scale parameter β is defined by the relation

β̂ := argmin{
r∑

j=1

|Msj(α̂p, τ 2)|; τ 2 ∈ Ω2},

where Msj(α̂p, τ 2) is the j-th coordinate of the vector Ms(τ ), 1 ≤ j ≤ r. This definition is

motivated by the discussion in Huber (1981, Ch. 7, Eqns. 7.3-7.7) pertaining to the linear
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regression model. The idea is to obtain estimates of the location and concomitant scale

parameters by solving a simultaneous system of equations. Estimates of the scale parameters

are obtained by substituting those of the location parameters.

Step 3: Finally, based on β̂, an improved estimator of α can be motivated as follows.

Note that (1.1) can be written as

Xi/σ(Y i−1, β) = Y ′
i−1α/σ(Y i−1, β) + ηi.

This in turn can be approximated by

Xi/σ(Y i−1, β̂) ≈ {Y i−1/σ(Y i−1, β̂)}′α + ηi. (2.1)

This can be thought as a linear autoregressive model with homoscedastic errors. Hence, ex-

tending Koul and Ossiander (1994), a class of R-estimators generalized to the heteroscedastic

model can be defined as follows. For 1 ≤ i ≤ n, let

ai(τ 2) := Xi/σ(Y i−1, τ 2),

and

Zi−1(τ 2) := Y i−1/σ(Y i−1, τ 2).

Let ϕ : [0, 1] → IR be a (score) function belonging to the class

F = {ϕ; ϕ : [0, 1] → IR is right continuous, non-decreasing, with

ϕ(1)− ϕ(0) = 1}.

The function ϕ(u) = u− 1/2 in this class corresponds to the Wilcoxon rank score.

Define a rank statistic as

Sϕ(τ ) = n−1/2
n∑

i=1

{Zi−1(τ 2)− Z̄(τ 2)}ϕ
(

Riτ
n + 1

)
, τ ∈ Ω,
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where Riτ =
∑n

j=1 I{aj(τ 2) − τ ′
1Zj−1(τ 2) ≤ ai(τ 2) − τ ′

1Zi−1(τ 2)} (the τ -residual rank of

the i-th residual), 1 ≤ i ≤ n and Z̄(τ 2) =
∑n

i=1 Zi−1(τ 2)/n.

Note that Riτ is also the rank of ηi(τ ) among {ηj(τ ); 1 ≤ j ≤ n}. Hence, E[Sϕ(α, β)] = 0

and so a generalized R-estimator of α corresponding to the score function ϕ is defined as

α̂ = argmin{
p∑

j=1

|Sϕj(τ 1, β̂)|; τ 1 ∈ Ω1},

where Sϕj(τ ) is the j-th coordinate of the vector Sϕ(τ ), 1 ≤ j ≤ p.

See Section 5 of this paper and Mukherjee (2006 b) for some algebraic expressions for R-

estimators based on Wilcoxon and the sign score function for simple linear model. Although

an algebraic expression for an R-estimator for more complex models may not exist in general,

fast computational algorithms for ranking are available. Using the initial estimator α̂p of α,

a Newton-Raphson type method can be used to solve this minimization problem. For more

on the existence of the solution to the above minimization problem and computation in the

analogous setup, see Jaeckel (1972), Huber (1981, Section 7.3) and Koul (1992, Section 7.3b).

Note that this minimization problem may not always have unique solution. However, as in

Jurečková (1971, Section 4) for the analogous case of linear regression models, it can be

shown using the asymptotic uniform linearity result (AUL) of Lemma 3.3 that all solutions

are asymptotically equivalent.

Remark 2.1 Strictly speaking, these estimators are not functions of the ranks of the τ -

residuals only. However, we borrow the terminology from the regression and the homoscedastic-

autoregression settings and still call them (generalized) R-estimators. When, for example,

ϕ(u) = u− 1
2
, α̂ = α̂ϕ is an analogue of the Wilcoxon type R-estimator.

3 Main results

Our first result is on the asymptotic distribution of α̂p. Here and in the sequel, the expecta-

tion of a random matrix is defined as the matrix of entry-wise expectations.
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Theorem 3.1 In the model (1.1), assume that E[Y 0Y
′
0σ(Y 0, β)2] < ∞. Then

n1/2(α̂p −α) =⇒ N

[
0, E(η2

1)[E(Y 0Y
′
0)]

−1[E(σ2(Y 0, β)Y 0Y
′
0)][E(Y 0Y

′
0)]

−1

]
. (3.1)

For the subsequent results, we need some additional notations and assumptions. Because

of (2.1), we standardize the mean, variance and various other quantities by σ(Y i−1, β).

Accordingly, for t1 ∈ IRp, t2 ∈ IRr, 1 ≤ i ≤ n, let

µni(t1) :=
Y ′

i−1(α + n−1/2t1)

σ(Y i−1, β)
, µ̇ni(t1) :=

Y i−1

σ(Y i−1, β)
,

σni(t2) :=
σ(Y i−1, β + n−1/2t2)

σ(Y i−1, β)
, σ̇ni(t2) :=

σ̇(Y i−1, β + n−1/2t2)

σ(Y i−1, β)
,

sni(t1, t2) =
µ̇ni(t1)

σni(t2)
=

Y i−1

σ(Y i−1, β + n−1/2t2)
, rni(t2) :=

σ̇ni(t2)

σni(t2)
=

σ̇(Yi−1, β + n−1/2t2)

σni(Yi−1, β + n−1/2t2)
.

Note that some of the above quantities, e.g., µ̇ni(t1), are free from both t1 and n; nevertheless,

we retain these arguments for consistency. In the sequel, µ̇i, µi, σ̇i, ri will stand for µ̇ni(0),

µni(0), σ̇ni(0) and rni(0) respectively, as they also do not depend on n. Also, the probability

and expectation are taken under the model (1.1) under θ := (α′, β′)′. We assume the

existence of the following limiting matrices as a consequence of the stationarity and ergodicity,

where → denotes the convergence in probability. Also condition (3.4) below is a smoothness

condition related to the heteroscedasticity.

There exist positive definite matrices M(θ), Σ̇(θ) and matrices G(θ) and Gc(θ) such that

n−1
n∑

i=1

[(µ̇i − n−1
n∑

i=1

µ̇i)(µ̇i − n−1
n∑

i=1

µ̇i)
′] →

E

{[
Y 0

σ(Y 0, β)
− E(

Y 0

σ(Y 0, β)
)

][
Y 0

σ(Y 0, β)
− E(

Y 0

σ(Y 0, β)
)

]′}
= M(θ), say, (3.2)

n−1
n∑

i=1

σ̇iσ̇
′
i → E

{[
σ̇(Y 0, β)

σ(Y 0, β)

][
σ̇(Y 0, β)

σ(Y 0, β)

]′}
= Σ̇(θ), say,

n−1
n∑

i=1

σ̇iµ̇
′
i → E

{[
σ̇(Y 0, β)

σ(Y 0, β)

][
Y 0

σ(Y 0, β)

]′}
= G(θ), say, and
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n−1
n∑

i=1

[(µ̇i − n−1
n∑

i=1

µ̇i)σ̇
′
i] →

E

{[
Y 0

σ(Y 0, β)
− E(

Y 0

σ(Y 0, β)
)

][
σ̇(Y 0, β)

σ(Y 0, β)

]′}
= Gc(θ), say.

There exists a matrix-valued (of order r × r) function Ṙ on IRp × Ω2 such that

E‖Ṙ(Y 0, β)‖ < ∞, (3.3)

and for every ε > 0, k > 0, s ∈ Ω2,

lim sup
n

P

 sup
1≤i≤n,n1/2‖t−s‖≤k

‖rni(t)− rni(s)− Ṙ(Y i−1, s)n−1/2(t− s)‖
‖t− s‖

> ε

 = 0. (3.4)

The next theorem gives a one-step Taylor-type expansion of Ms around the true parameter

θ, uniformly on its compact neighbourhood.

Lemma 3.1 Suppose that in the model (1.1) assumptions (3.3) and (3.4) hold. Also,

let κ be a nondecreasing twice differentiable function satisfying (i)
∫

xκ(x)G(dx) = 1, (ii)∫
x2|κ̇(x)|G(dx) < ∞, and (iii) the second derivative of κ is bounded.

Then, for every 0 < b < ∞,

sup
‖t‖≤b

∥∥∥∥∥Ms(θ + n−1/2t)−Ms(θ) +
[∫

κ(x)G(dx) +
∫

xκ̇(x) G(dx)
]
G(θ) t1

+
[∫

xκ(x)G(dx) +
∫

x2κ̇(x) G(dx)
]

Σ̇(θ) t2

∥∥∥∥∥ = op(1).

Therefore, substituting t1 = n1/2(α̂p − α) and t2 = n1/2(β̂ − β), and using the uniform

convergence over compacta, we have the following theorem.

Theorem 3.2 In addition to the assumptions of Theorem 3.1 and Lemma 3.1, assume

that

‖n1/2(β̂ − β)‖ = Op(1). (3.5)

Then [∫
xκ(x)G(dx) +

∫
x2κ̇(x) G(dx)

]
Σ̇(θ) n1/2(β̂ − β)

= Ms(θ)−
[∫

κ(x)G(dx) +
∫

xκ̇(x) G(dx)
]
G(θ) n1/2(α̂p −α) + op(1).
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If ∫
κ(x)G(dx) = 0 =

∫
xκ̇(x)G(dx) (3.6)

also, then

[∫
xκ(x)G(dx) +

∫
x2κ̇(x) G(dx)

]
n1/2(β̂ − β) = (Σ̇(θ))−1Ms(θ) + op(1).

Note that under (3.6), the asymptotic distribution of β̂ does not depend on the preliminary

estimator α̂p used in defining β̂.

Remark 3.1. Conditions (i)-(iii) of Lemma 3.1 and (3.6) are satisfied by κ(x) ≡ x when

E(η2
1) = 1. Another possible candidate is κ(x) = −ġ(x)/g(x). In this case

∫
xκ(x)G(dx) = 1

and when g is symmetric,
∫

κ(x)G(dx) = 0. Also for such choices conditions (i)-(iii) and

(3.6) does not impose any extra moment condition for normal, logistic or double-exponential

error densities since they are automatically satisfied.

The derivation of the asymptotic results on R-estimators depends on the uniform ap-

proximation of a randomly weighted empirical process by a perturbed empirical process. We

define these processes under the following probabilistic framework.

Probabilistic framework: Let {ηi, 1 ≤ i ≤ n} be i.i.d. with the d.f. G, {lni, vni, uni; 1 ≤

i ≤ n} be an array of measurable functions from IRm to IR such that for every t ∈ IRm, and

1 ≤ i ≤ n, (lni(t), vni(t), uni(t)) are independent of ηi. For x ∈ IR and t ∈ IRm, let

Ṽ(x, t) := n−1/2
n∑

i=1

lni(t)I
(
ηi < x + xvni(t) + uni(t)

)
,

J̃ (x, t) := n−1/2
n∑

i=1

lni(t) G
(
x + xvni(t) + uni(t)

)
,

Ũ(x, t) := Ṽ(x, t)− J̃ (x, t),

U∗(x, t) := n−1/2
n∑

i=1

lni(t)
[
I(ηi < x)−G(x)

]
.

Here U∗(., .) is a sequence of ordinary weighted empirical processes with weights {lni(.)} and

Ũ(., .) is a sequence of perturbed weighted empirical processes with location perturbations
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{uni(.)} and scale perturbations {vni(.)}. In Lemma 3.2 below it is shown that Ũ can be

uniformly approximated by U∗ and this, in turn, will be applied to Lemma 3.3 to approximate

empirical processes based on residuals that are different from actual errors by location and

scale factors.

The following conditions (3.7)-(3.15) will be referred to as Condition luv. Here in

(3.7)-(3.13), the assumptions/convergence hold pointwise for each fixed t ∈ IRm.

There exist numbers q > 2 and ε (both free from t) satisfying 0 < ε < q/2 such that with

Cn(t) :=
∑n

i=1 E|lni(t)|q,

Cn(t)/nq/2−ε = o(1), for each t ∈ IRm. (3.7)

For some positive random process `(t),(
n−1

n∑
i=1

l2ni(t)

)1/2

= `(t) + op(1), t ∈ IRm. (3.8)

E

(
n−1

n∑
i=1

l2ni(t)

)q/2

= O(1), t ∈ IRm. (3.9)

max
1≤i≤n

n−1/2|lni(t)| = op(1), t ∈ IRm. (3.10)

max
1≤i≤n

{|vni(t)|+ |uni(t)|} = op(1), t ∈ IRm. (3.11)

nq/2−ε

Cn(t)
E

[
n−1

n∑
i=1

l2ni(t){|uni(t)|+ |vni(t)|}
]q/2

= o(1), t ∈ IRm. (3.12)

n−1/2
n∑

i=1

|lni(t)| [|vni(t)|+ |uni(t)|] = Op(1), t ∈ IRm. (3.13)

∀ b and ε > 0, ∃ δ > 0, and an n1 3 whenever ‖s‖ ≤ b, and n > n1, (3.14)

P

(
n−1/2

n∑
i=1

|lni(s)|
{

sup
‖t−s‖<δ

|vni(t)− vni(s)|

+ sup
‖t−s‖<δ

|uni(t)− uni(s)|
}
≤ ε

)
> 1− ε.

∀ b and ε > 0, ∃ a δ > 0, and an n2, 3 whenever ‖s‖ ≤ b, and n > n2, (3.15)

P

 sup
‖t−s‖≤δ

n−1/2
n∑

i=1

|lni(t)− lni(s)| ≤ ε

 > 1− ε.

Conditions (3.7)-(3.15) are regularity conditions on the weights and perturbations of the
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two-parameters empirical processes. Conditions (3.14)-(3.15) are smoothness conditions on

the weights and perturbations. Under stationarity and ergodicity, many of these conditions

reduce to much simpler conditions based on existence of the moments. These conditions will

be verified for particular examples in Section 4.

We also make the following additional assumptions on the error d.f. G.

• (G.1) The d.f. G has Lebesgue density g satisfying the following: g is positive on the

set {x : 0 < G(x) < 1}, g(x) and xg(x) are bounded in x ∈ IR, and the functions

u 7→ g(G−1(u)) and u 7→ G−1(u)g(G−1(u)) are uniformly continuous on [0, 1].

• (G.2) The d.f. G is uniformly Lipschitz in scale: For some constant 0 < C < ∞ and

for every s ∈ IR, supx∈IR |G(x + xs)−G(x)| ≤ C |s|.

• (G.3) limδ→0 sup{|x|
∫ 1
0 |g(x)− g(x + txδ)|dt; x ∈ IR} = 0.

We remark here that if the error density g has decreasing tails, then (G.2) is implied by

supx∈IR |x|g(x) < ∞, which in turn, is guaranteed by Eη2 < ∞. In this case, more easily

verifiable conditions ensuring (G.3) can also be obtained. For example, if g is differentiable

with the derivative ġ satisfying sup[x2 sup{|ġ(y)|; x(1 − δ) < y < x(1 + δ)}, x ∈ IR] < ∞,

for some δ > 0, then (G.3) holds. In particular, (G.1)-(G.3) hold for standardized normal,

double-exponential logistic and t-distributions with degrees of freedom more than 2.

The following lemma is used for proving the needed result.

Lemma 3.2 Under the above framework, suppose that Condition luv and assumptions

(G.1)-(G.3) hold. Then for every 0 < b < ∞,

sup
x∈IR,‖t‖≤b

|Ũ(x, t)− U∗(x, t)| = op(1). (3.16)

Based on this lemma, the next result gives a Taylor-type expansion for the R-scores.

Lemma 3.3 Suppose that the assumptions of Lemma 3.2 hold with lni(t) equal to the j-th

coordinate (1 ≤ j ≤ p) of sni(t), uni(t) := µni(t1) − µi and vni(t) := σni(t2) − 1, 1 ≤ i ≤ n.
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Then

sup
‖t‖≤b

∥∥∥∥∥Sϕ(θ + n−1/2t)− Sϕ(θ)

−
(∫

g(x)ϕ(G(dx)) M(θ)t1 +
∫

xg(x)ϕ(G(dx)) Gc(θ)t2

) ∥∥∥∥∥ = op(1).

Therefore, we have the following theorem on the asymptotic distribution of the R-estimator.

Note that here the condition n1/2(α̂−α) = Op(1) is automatically satisfied as in Jurečková

(1971, Theorem 1.1) and Koul (1996, Corollary 1.1, Remark 1.2) since the mean function in

(1.1) is a linear function of the parameters.

Theorem 3.3 In addition to the assumptions of Lemma 3.3, assume that (3.5) holds.

Then

(i)
∫

g(x)ϕ(G(dx)) n1/2(α̂−α)

= −(M(θ))−1
[
Sϕ(θ) + Gc(θ)n1/2(β̂ − β)

∫
xg(x)ϕ(G(dx))

]
+ op(1). (3.17)

(ii) If, in addition to (i), either
∫

xg(x)ϕ(G(dx)) = 0 or Gc(θ) = 0, then

n1/2(α̂−α) = −{
∫

g(x)ϕ(G(dx))M(θ)}−1Sϕ(θ) + op(1).

In order to get the asymptotic normality of the R-estimator α̂, we need to establish the

same for

Sϕ(θ) = n−1/2
n∑

i=1

{Zi−1(β)− Z̄(β)}ϕ
(

Ri

n + 1

)
,

where Ri is the rank of ηi among {ηj; 1 ≤ j ≤ n}. But, this is a randomly weighted sum

of rank scores. Moreover, the random weights

{
Zi−1(β) − Z̄(β); 1 ≤ i ≤ n

}
as well as

{R1, . . . , Rn} are dependent. However, extending an argument of Koul and Ossiander (1994,

Theorem 1.2, Remark 1.1 and Lemma 1.2), Sϕ(θ) can be approximated by a randomly

weighted sum of independent random variables defined by

Ŝϕ = n−1/2
n∑

i=1

{Zi−1(β)− Z̄(β)}ϕ(G(ηi))
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= n−1/2
n∑

i=1

{Zi−1(β)− Z̄(β)}{ϕ(G(ηi))− E[ϕ(G(η1))]}.

Then the asymptotic normality of Ŝϕ can be established by using multivariate martingale

central limit theorem on Ŝϕ. We state that formally in the following proposition whose proof

is similar to Koul and Ossiander (1994, Lemma 1.2).

Proposition 3.1 Under the model (1.1),

Sϕ(θ)− Ŝϕ = op(1).

Moreover

Ŝϕ ⇒ N p[0, σ
2
ϕM(θ)],

where σ2
ϕ = V ar[ϕ(G(η1))]. Hence under the assumptions of Theorem 3.3(ii)

n
1
2 (α̂−α) =⇒ Np[0, Σ(θ)], (3.18)

where Σ(θ) := (M(θ))−1J(ϕ, G) with J(ϕ, G) :=
∫

ϕ2(u)du−(
∫

ϕ(u)du)2

(
∫

g(x)ϕ(G(dx)))2
.

Remark 3.2. The conditions of Theorem 3.3(ii) ensures that the preliminary estimator

and the scale estimator have no effect on the asymptotics of the final estimator. A sufficient

condition for
∫

xg(x)ϕ(G(dx)) = 0 is that g is symmetric i.e., g(−x) = g(x) and ϕ is skew

symmetric, i.e., ϕ(u) = −ϕ(1 − u), ∀u ∈ [0, 1]. Therefore, in practice, we recommend to

use a skew symmetric ϕ to ensure that Theorem 3.3(ii) holds when the innovations are

symmetrically distributed. For some model, e.g., in ARLSCH of Example 2, Gc(θ) = 0 when

X0 is symmetrically distributed around zero. However, for Example 1 (Engle’s ARCH) and

Example 3 (ARTCH), Gc(θ) 6= 0 and the use of a skew symmetric score function is essential.

If the conditions of Theorem 3.3(ii) are not satisfied, then there will be extra terms in the

variance-covariance matrix of the asymptotic distribution of α̂ that depend on α, β and κ

in a complex manner.
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Under Theorem 3.3(ii), the asymptotic distribution of α̂ is the same as that of an R-

estimator of α for the model

Xi

σ(Y i−1, β)
=

Y ′
i−1α

σ(Y i−1, β)
+ ηi, (3.19)

with β known. In general, an R-estimator is location invariant. However, since we compute

R-estimator basically for the model (3.19), even though the original model (1.1) may have a

location parameter like the ARCH model, (3.19) need not have that, unless σ is a constant.

Thus we can estimate the intercept parameter of the original model through R-estimation.

Remark 3.3. Comparison with other estimators. (i) Relative efficiency of an R-

estimator with respect to (wrt) the optimal R-estimator: From (3.18) it follows that for a

fixed score function ϕ, the asymptotic dispersion of the standardized R-estimator is a scalar

J(ϕ, G) that depends only on the underlying error distribution, multiplied by a matrix which

depends only on θ and the error distribution. Hence, for a given innovation density g,

the optimal R-estimator based on the score function ϕ∗
g(u) = −ġ(G−1(u))/g(G−1(u)) exists,

provided that ϕg ∈ F . In particular, when g is the logistic density, ϕ∗
g(u) = u − 1/2 and

when g is the double-exponential density, ϕ∗
g(u) = (1/2) sign (u− 1/2). Also

J(ϕ∗
g, G) = 1/Ig, (3.20)

where Ig is the Fisher’s information for g. See Jurečková and Sen (1996, Display 3.4.30) for a

similar result under homoscedastic linear model. Note also that for the Wilcoxon R-estimator

α̂W corresponding to the score function ϕ(u) = u− 1/2,

J(ϕ, G) = 1/{12(
∫

g2(x)dx)2} (3.21)

and for the R-estimator α̂S based on the signed-score function ϕ(u) = (1/2) sign {u−(1/2)},

J(ϕ, G) = 1/{4g2(0)}. (3.22)
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It is of natural interest to compare the performance of an R-estimator with the optimal R-

estimator ϕ∗
g. Accordingly, one can define the absolute relative efficiency of an R-estimator

based on ϕ as 1/[IgJ(ϕ, G)] which will be bounded above by one. From Mukherjee (2006

b), the absolute relative efficiency does not depend on the variance of G. Hence, from

(3.18) and Lehmann (1983, Section 2.6, Table 6.2 and Section 5.6, Table 6.2), the absolute

relative efficiencies of α̂W are 3/π = 0.955, 1 and 0.75 at the normal, logistic and the double-

exponential density, respectively. Also, from (3.18), Mukherjee (2006 b) and Lehmann (1983,

Section 5.4, Table 4.4), the absolute relative efficiencies of α̂S are 2/π = 0.637, 0.75 and 1 at

the normal, logistic and the double-exponential density, respectively.

(ii) Relative efficiency of an R-estimator wrt the quasi maximum likelihood estimator

(QMLE): From (2.1) and (3.19), a maximum likelihood estimator of α based on the normal

distribution of the errors can be defined as a minimizer α̂QMLE of

n∑
i=1

[Xi/σ(Y i−1, β̂)− {Y i−1/σ(Y i−1, β̂)}′τ 1]
2

with respect to τ 1. This yields

α̂QMLE = [
n∑

i=1

Y i−1Y
′
i−1/σ

2(Y i−1, β̂)]−1[
n∑

i=1

Y i−1Xi/σ
2(Y i−1, β̂)]. (3.23)

The estimator α̂QMLE can also be termed as the least squares estimator (LSE) and using

standard techniques, its asymptotic distribution can be obtained as

n
1
2 (α̂QMLE −α) =⇒ Np[0, (E[Y 0Y

′
0/σ

2(Y 0, β)])−1]. (3.24)

When, for example, E[Y 0/σ(Y 0, β)] = 0, we can use (3.18) and (3.24) to define the ARE of

an R-estimator based on ϕ, with respect to the QMLE as 1/J(ϕ, G). Therefore from (3.21),

the asymptotic relative efficiency (ARE) of the Wilcoxon R-estimator with respect to the

QMLE is 12(
∫

g2(x)dx)2 which is at least 0.864 for a large class of symmetric standardized

error densities g; see, for example, Lehmann (1983, Section 5.6) for similar result under

18



the location model. In particular, for the standardized normal, logistic and the double-

exponential g, ARE equals 3/π = 0.955, π2/9 = 1.10 and 1.50, respectively. In a similar

fashion, from (3.22), the ARE of the R-estimator based on signed score with respect to the

QMLE is 4g2(0) which is at least 1/3 for symmetric unimodal error densities g (with variance

1); see, for example, Lehmann (1983, Section 5.3) for similar result under the location model.

In particular, for the standardized normal, logistic and double-exponential g, ARE equals

2/π = 0.637, π2/12 = 0.82 and 2, respectively.

A classical result due to Chernoff-Savage (1958), translated to our setup, asserts that there

exists R-estimator that can ensure the ARE with respect to the QMLE to be at least one; in

other words, such estimator is even better than the Wilcoxon-type R-estimator for which the

minimum ARE is 0.864. Such R-estimator based on the unbounded normal score function

(van der Waerden type R-estimator) is asymptotically efficient at the normal errors and

has the ARE of at least 1 for all other error densities. In the homoscedastic autoregressive

model with σ ≡ 1, Mukherjee and Bai (2002) derived (3.18) for unbounded but square-

integrable score function and showed consequently that the Chernoff-Savage phenomenon

holds for the autoregressive models. We conjecture that (3.18) holds for the unbounded score

function under the heteroscedastic setup also, which, if proved, should give more motivation

for considering the R-estimators.

(iii) Relative efficiency of the optimal R-estimator wrt the QMLE: Note from (3.20) and

(3.24) that the ARE of the optimal R-estimator based on ϕ∗
g with respect the QMLE at the

error density g is given by

1/(1/Ig) = Ig. (3.25)

In particular, for the standardized normal, logistic and double-exponential g, this efficiency

equals 1, π2/9 = 1.10 and 2, respectively. However, in order to use the optimal estimator,

the form of g should be known.

19



Remark 3.4. In order to use the result of Proposition 3.1 to construct, for example,

confidence intervals, we need to estimate
∫

g(x)ϕ(G(dx)) appearing in J(ϕ, G). For the

R-estimation in the homoscedastic autoregressive model with σ ≡ 1 the same factor arise

and an estimate can be obtained by replacing g and G by a kernel density estimator and the

empirical distribution function based on the estimated residuals; see, for example, Koul (1992,

Section 7.3c). In a similar fashion, we can obtain an estimate
∫

g(x)ϕ(G(dx)) by replacing

g and G by a kernel density estimator and the empirical distribution function based on the

estimated residuals {ηj(α̂, β̂); 1 ≤ j ≤ n}; however, the performance of such estimator has

been investigated here neither theoreticaly nor empirically. In the empirical study we use

the Wilcoxon score function for which
∫

g(x)ϕ(G(dx)) =
∫

g2(x)dx and there we use simple

histogram estimator of g which performs very well; see Section 5 for details.

4 Examples

This section contains some details for verifying the general conditions of the previous section

in three examples. Here we check Condition luv with

uni(t) =
n−1/2Y ′

i−1t1

σ(Y i−1, β)
, vni(t) =

σ(Y i−1, β + n−1/2t2)− σ(Y i−1, β)

σ(Y i−1, β)
,

and

lni(t) =
j-th coordinate of Y i−1

σ(Y i−1, β + n−1/2t2)
, 1 ≤ j ≤ p.

We will also use the following fact repeatedly which states that if U = [u1, . . . , uk]
′, V =

[v1, . . . , vk]
′ and W are vectors with all entries nonnegative, then

W ′V /W ′U ≤ 1 + (v1/u1) + . . . (vk/uk), (4.1)

where we define vj/uj = 0 if uj = 0 = vj. See, for example, Mukherjee (2006 a, Lemma 2).

Example 1. (ARCH model). In this example, α = β, σ̇(Y i−1, t) = Y i−1 and (3.3)-(3.4)
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are satisfied with Ṙ(Y i−1, t) = −Y i−1Y
′
i−1/(Y

′
i−1t)

2. Now we check Condition luv with

lni(t) = either
1

Y ′
i−1(α + n−1/2t2)

, or
Xi−j

Y ′
i−1(α + n−1/2t2)

, 1 ≤ j ≤ s,

uni(t) =
n−1/2Y ′

i−1t1

Y ′
i−1α

and vni(t) =
n−1/2Y ′

i−1t2

Y ′
i−1α

.

Using (4.1), all coordinates of the vectors µ̇i and σ̇i are uniformly bounded and consequently

the existence of all the matrices in (3.2) is guaranteed. Also, there is a compact neighbourhood

containing zero on which {lni(t)}’s are all uniformly bounded and by the stationarity, ∀t,

Cn(t) = O(n). Any choice of q > 2 and 0 < ε < q/2 with 1 < q/2− ε will satisfy (3.7).

By the stationarity and boundedness, n−1∑n
i=1 E{lni(t)− lni(0)}2 = o(1). Therefore

`(t) = either
{
E

[
1

Y ′
0α

]2}1/2
, or

{
E

[
X−j

Y ′
0α

]2}1/2
, 1 ≤ j ≤ s,

and hence, condition (3.8) is satisfied. Conditions (3.9) and (3.10) are satisfied by bounded-

ness which is a consequence (4.1). Condition (3.11) is also a consequence of (4.1) and so is

(3.13) after taking expectation and using the stationarity.

For (3.12), the left hand side is bounded by a constant times nq/2−ε

n
[n−1/2]q/2 which is o(1)

if 0 < q/2− ε− 1 < q/4. In other words, any choice of q and ε satisfying q/4 < 1 + ε < q/2

will satisfy (3.7) and (3.12). Verification of (3.14) and (3.15) are immediate by writing down

the corresponding expressions.

Since here α = β, for estimation in this model, we use just a two-step procedure, i.e., use

α̂p instead of β̂ to define final α̂. Therefore, from (3.18), if either
∫

xg(x)ϕ(G(dx)) = 0 or

Gc(θ) = 0, then

n1/2(α̂−α) =⇒ Np(0, Σ(α)), Σ(α) := M−1(θ)J(ϕ, G).

Denote the estimator in (3.23) under a two-step procedure by α̂QMLE which is the most

commonly-used estimator for this model. Introduced by Engle (1982), it is a maximizer of
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the normal likelihood

−(1/2)
n∑

i=1

[{X2
i /(Y ′

i−1τ )}+ log(Y ′
i−1τ )].

Weiss (1986) proved that under the stationarity of {Xi}’s and the finite fourth moment

assumption on the i.i.d. errors εi (which is the same as finiteness of the second moment of

ηi), the asymptotic distribution of α̂QMLE is as follows:

n1/2(α̂QMLE −α) =⇒ Np(0, ΣQMLE), where ΣQMLE :=
(
E
[
Y 0Y

′
0/(α

′Y 0)
2
])−1

V ar(η).

Since in this example E[Y 0/σ(Y 0, β)] is non-null, computation of the ARE of a rank-

estimator α̂, relative to the commonly-used quasi maximum likelihood estimator in Engle’s

ARCH model is not straight-forward. However, the ratio of the scalar-factors is exactly

the same as that of the rank-estimator relative to the least squares estimator in the linear

regression model; see Remark 3.3 for more on this.

Example 2. (ARLSCH model). Letting Z̃i−1 = (1, X2
i−1)

′, σ̇(Y i−1, t) = Z̃i−1/{2(Z̃
′
i−1t)

1/2}.

Also, with Ṙ(Y i−1, t) = −Z̃i−1Z̃
′
i−1/{2(Z̃

′
i−1t)

2}, (3.3)-(3.4) are satisfied. Now we check

Condition luv with

lni(t) =
Xi−1{

(β + n−1/2t2)′Z̃i−1

}1/2
,

uni(t) =
n−1/2t′1Xi−1{
β′Z̃i−1

}1/2
, vni(t) =

{(β + n−1/2t2)
′Z̃i−1}1/2 − (β′Z̃i−1)

1/2

(β′Z̃i−1)1/2
.

Using the boundedness of the function x → x/(β0 + β1x
2)1/2 on [0,∞) and the stationarity

and the ergodicity of {Xi}, (3.2) holds. To verify (3.8), note that by the stationarity

n−1
n∑

i=1

E{lni(t)− lni(0)}2 = E
[ X0{

(β + n−1/2t2)′Z̃0

}1/2
− X0{

β′Z̃0

}1/2

]2

= E
[{ X0{

β′Z̃0

}1/2

}{ (β′Z̃0)
1/2

{(β + n−1/2t2)′Z̃0}1/2
− 1

}]2
.
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By (4.1), the sequence of r.v.’s under the expectation is bounded and tends to 0, a.s. Therefore

the above is o(1) by the bounded Convergence Theorem. Also

`(t) =
{
E

[
X2

0

(Z̃
′
0β)

]}1/2
,

and hence, condition (3.8) is satisfied. Conditions (3.9) and (3.10) are satisfied by bounded-

ness which is a consequence (4.1). Condition (3.11) is also a consequence of (4.1)

Next, we verify (3.13). Taking expectation, it is easy to see that n−1/2∑n
i=1 |lni(t)uni(t)| =

Op(1); next we check that n−1/2∑n
i=1 |lni(t)vni(t)| = Op(1). First note that

n−1/2
n∑

i=1

|lnivni| ≤ n−1/2
n∑

i=1

|Xi−1|
(β′Z̃i−1)1/2

∣∣∣∣∣∣
{

β′Z̃i−1

(β + n−1/2t2)′Z̃i−1

}1/2

− 1

∣∣∣∣∣∣
Next note that the derivative of the function s 7→ [x/(x+s)]1/2 at s = 0 is −1/(2x). Therefore

above is bounded by

n−1/2
n∑

i=1

|Xi−1|
(β′Z̃i−1)1/2

∣∣∣∣∣∣
{

β′Z̃i−1

(β + n−1/2t2)′Z̃i−1

}1/2

− 1 +
n−1/2Z̃

′
i−1t2

2 β′Z̃i−1

∣∣∣∣∣∣
+

1

2
n−1

n∑
i=1

|Xi−1|
(β′Z̃i−1)1/2

Z̃
′
i−1t2

Z̃
′
i−1β

.

Assuming E‖X0‖4 < ∞, we have E‖Z̃0‖2 < ∞, and hence max1≤i≤n |n−1/2Z̃
′
i−1t2| = op(1).

Using a two-step Taylor-type expansion of the function s 7→ [x/(x + s)]1/2 at s = 0, we get

a factor of n−1/2 × n−1 at the first term which together with the stationarity and ergodicity

forces the first term to go to zero in probability. The n−1 factor implies that the r.v.’s in

the second term converges in probability to E[{|Xi−1|Z̃
′
i−1t2}/{(β′Z̃i−1)

1/2Z̃
′
i−1β}], thereby

verifying (3.13) here.

Finally, we can verify (3.7) and (3.12) an in Example 1 since all the underlying quantities

are bounded. Verification of (3.14) and (3.15) can be done by writing down the corresponding

expressions and invoking the smoothness of the derivatives.

Therefore, to summarize, we obtain that if either
∫

xg(x)ϕ(G(dx)) = 0 or Gc(θ) = 0,
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then

n1/2(α̂−α) =⇒ N1(0, τ
2(θ)J(ϕ, G)), τ 2(θ) := [Var{X0/(β0 + β1X

2
0 )1/2}]−1.

Example 3. (ARTCH model). To verify the assumptions in this model, let

Z̃i−1 = [Xi−1I(Xi−1 > 0),−Xi−1I(Xi−1 ≤ 0), . . . , Xi−pI(Xi−p > 0),−Xi−pI(Xi−p ≤ 0)]′.

Then, in this example, σ̇(Y i−1, t) = Z̃i−1 and (3.3)-(3.4) are satisfied with Ṙ(Y i−1, t) =

−Z̃i−1Z̃
′
i−1(Z̃

′
i−1t)

−2. Next we can check Condition luv with

lni(t) =
Xi−j

Z̃
′
i−1(β + n−1/2t2)

, 1 ≤ j ≤ p,

uni(t) =
n−1/2Y ′

i−1t1

Z̃
′
i−1β

and vni(t) =
n−1/2Z̃

′
i−1t2

Z̃
′
i−1β

.

The details are similar to those of Example 1 since the standard deviation is a linear function

of the parameters; here one needs to use the fact that the functions x → x/(β2j−1xI(x ≥

0)− β2jxI(x < 0)) are bounded. Hence, from Proposition 3.1, if
∫

xg(x)ϕ(G(dx)) = 0, then

n1/2(α̂−α) =⇒ Np(0, Σ(θ)). (4.2)

5 Empirical study

In this section we first report Monte Carlo study comparing the Wilcoxon R-estimator (α̂W ),

the R-estimator based on the signed score (α̂S) and the QMLE (α̂QMLE) at three error

densities in terms of their average squared deviations from the true parameter. Consequently,

the performance of some optimal R-estimators at certain error densities are compared with

the Gaussian likelihood based MLE . Next we consider three important real data sets in the

financial time series and study the robustness of R-estimators against misspecified form of

the heteroscedasticity.
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Model. Among many different models, we choose the ARTCH model of Example 3 with

p = s = 1 and the ARLSCH model of Example 2 with p = s = 1, r = 2 with specific value

of the underlying true parameters, when the errors are simulated from the standardized (i)

normal (N), (ii) logistic (L) and (iii) double-exponential (D) distribution. For results with

different combinations of the underlying true parameters for which the model could be even

nonstationary, see Mukherjee (2006 b). To estimate the scale parameters, we use the score

function κ(u) = u. The computations become relatively simpler under such choice of the

score function with even closed form expressions for the scale estimators in the ARTCH

model. For each model, we compute (i) the preliminary estimator α̂p, (ii) the MLE based

on the normal distribution α̂QMLE, (iii) the Wilcoxon R-estimator α̂W based on the score

function ϕ(u) = u − (1/2) and (iv) the R-estimator α̂S based on the signed-score function

ϕ(u) = sign {u− (1/2)}.

Formulae for the ARTCH model. From

Xi = αXi−1 + {β1Xi−1I(Xi−1 > 0)− β2Xi−1I(Xi−1 ≤ 0)} ηi, 1 ≤ i ≤ n,

note that α̂p =
∑n

i=1 XiXi−1/
∑n

i=1 X2
i−1. Write Ms(τ ) = [p(τ1), n(τ2)]

′, where, for example,

p(τ1) = n−1/2
∑

i;Xi−1>0

Xi−1{(ηi(τ1))
2 − 1}/(τ1Xi−1),

with ηi(τ1) = (Xi − α̂pXi−1)/(τ1Xi−1). After some simplifications,

p(τ1) = c(n, τ1)
[ ∑

i;Xi−1>0

{(Xi − α̂pXi−1)/Xi−1}2/τ 2
1 − np

]
,

where c(n, τ1) is a constant and np is the total number of positive Xi−1’s. Hence p(τ1) = 0

has the solution β̂1 =
{∑

i;Xi−1>0{(Xi − α̂pXi−1)/Xi−1}2/np

}1/2
which estimates β1. Sim-

ilarly, n(τ2) = c(n, τ2)
[∑

i;Xi−1<0{(Xi − α̂pXi−1)/Xi−1}2/τ 2
2 − (n − np)

]
, which gives β̂2 ={∑

i;Xi−1<0{(Xi − α̂pXi−1)/Xi−1}2/(n− np)
}1/2

.
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To compute the Wilcoxon R-estimator, we apply the Hodges-Lehmann/Jaeckel (1972)’s

formula in the approximating ARTCH model

Xi

β̂1Xi−1

≈ 1

β̂1

× α + ηi, when Xi−1 > 0,

and

Xi

−β̂2Xi−1

≈ −1

β̂2

× α + ηi, when Xi−1 < 0,

to get

α̂W = median
{XiI(Xi−1 > 0)

β̂1Xi−1

+
XjI(Xj−1 < 0)

β̂2Xj−1

}
/{(β̂1)

−1 + (β̂2)
−1}. (5.1)

For α̂S, first order m number of {Xi/β̂2Xi−1}’s corresponding to negative Xi−1’s and call them

{y1, y2, · · · ym}; here we assume that all of {y1, y2, · · · ym} are distinct and m equals n − np

with probability one. Next order np number of {Xi/β̂1Xi−1}’s corresponding to positive

Xi−1’s and call them {ym+1, ym+2, · · · yn}. Then from Mukherjee (2006 b), we get that if n is

odd,

α̂S = median {(yj +yi)/[(β̂1)
−1+(β̂2)

−1]; i+j = (n+1)/2+m+1, 1 ≤ i ≤ m, m+1 ≤ j ≤ n},

(5.2)

whereas if n is even,

α̂S = median {(yj + yi)/[(β̂1)
−1 + (β̂2)

−1]; i + j = (n)/2 + m + 1, 1 ≤ i ≤ m, m + 1 ≤ j ≤ n}.

Finally, from (3.23), the QMLE for the ARTCH model is obtained as

α̂QMLE = {np(β̂1)
−2 + (n− np)(β̂2)

−2}−1
[ ∑

i;Xi−1>0

{ Xi

Xi−1β̂2
1

}+
∑

j;Xj−1<0

{ Xj

Xj−1β̂2
2

}
]
. (5.3)

Formulae for the ARLSCH model. From

Xi = αXi−1 + {β0 + β1X
2
i−1}1/2 ηi, 1 ≤ i ≤ n,
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note that α̂p =
∑n

i=1 XiXi−1/
∑n

i=1 X2
i−1. To estimate the scale parameters β0 and β1, write

Ms(τ ) = [m1(τ ), m2(τ )]′, where τ = [τ0, τ1]
′ and with ci = (Xi − α̂pXi−1)

2,

m1(τ ) =
n∑

i=1

{ci/(τ0 + τ1X
2
i−1)− 1}/(τ0 + τ1X

2
i−1),

and

m2(τ ) =
n∑

i=1

X2
i−1{ci/(τ0 + τ1X

2
i−1)− 1}/(τ0 + τ1X

2
i−1).

Write r̃ = τ1/τ0. Then the equations m1(τ) = 0 = m2(τ) can be rewritten as

n∑
i=1

ci

(1 + r̃X2
i−1)

2
= τ0

n∑
i=1

1

(1 + r̃X2
i−1)

and
n∑

i=1

ciX
2
i−1

(1 + r̃X2
i−1)

2
= τ0

n∑
i=1

X2
i−1

(1 + r̃X2
i−1)

.

Now eliminating τ0 one can get an equation in r̃ which can be solved using numerical method.

To compute the Wilcoxon R-estimator, we apply Jaeckel (1972)’s formula in the approx-

imating ARLSCH model

Xi

(β̂0 + β̂1X2
i−1)

1/2
≈ Xi−1

(β̂0 + β̂1X2
i−1)

1/2
× α + ηi

to get α̂W as the median of the set of numbers {αij} with corresponding probability propor-

tional to {pij} where

αij =
Yi − Yj

di − dj

and pij = di − dj, (5.4)

with Yi = Xi/(β̂0 + β̂1X
2
i−1)

1/2, di = Xi−1/(β̂0 + β̂1X
2
i−1)

1/2; here pij’s are defined only for

those {(i, j)} for which di − dj > 0.

For computing α̂S we obtain from Mukherjee (2006 b) that it is the median of the set of

numbers {αij} with corresponding probability proportional to {pij} where pij’s are defined

positive only for those 1 ≤ i, j ≤ n for which di−dj > 0 and for which Yi−diαij (also equal to

Yj−djαij by the definition of αij) is the “median” of the n numbers {Yu−duαij; u 6= i, j, Yi−
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diαij, Yj − djαij}; for this later “median”, the definition is the n/2-th ordered observation

when n is even and as usual the (n + 1)/2-th ordered observation when n is even.

Simulation results and analysis. For simulation, we use r = 100 replications. For each

of the k-th replication (1 ≤ k ≤ r), we generate a sample of size n = 100 from the underlying

model with parameters α = 0.1, β1 = 0.2, β2 = 0.3 for the ARTCH model and α = 0.1, β0 =

0.2, β1 = 0.3 for the ARLSCH model and compute α̂p(k) = α̂p, α̂W , α̂S and α̂QMLE. For

each estimator (denoted generically by α̂(k)), we also compute r−1∑r
k=1(α̂(k)−α)2 which is

the average (over all replications) squared deviation of the estimate from the true parameter

value α and this is an estimate of mean squared error (MSE) of α̂. These are reported in

columns (2)-(5) in Tables 1 and 2 below. Columns (6) and (8) are obtained from dividing

Column (5) by Columns (3) and (4) respectively and represent the estimated ARE of α̂W

and α̂S with respect to α̂QMLE (denoted by E(α̂W ) etc.); Columns (7) and (9) represent the

corresponding theoretical ARE of α̂W and α̂S as explained in Remark 3.3(ii) (denoted by

T(α̂W ) etc.). For each scenario (corresponding to a particular row in the tables), we have run

simulations five times under identical setup and have reported the result of that simulation

which has best estimated ARE (in the sense that it is either more than or the closest to

the theoretical ARE); for simulation results of all five runs and also the results when the

observations were generated under different true parameters, see Mukherjee (2006 b).

Table 1 : Estimated MSE’s and ARE’s of the different estimators of α (ARTCH model)

g MSE(α̂p) MSE(α̂W ) MSE(α̂S) MSE(α̂QMLE) E(α̂W ) T(α̂W ) E(α̂S) T(α̂S)
N 0.0544951888 0.0005477203 0.0005744816 0.0005382787 0.983 .96 0.940 .64
L 0.0458744400 0.0006679956 0.0006526314 0.0007891252 1.181 1.1 1.209 .82
D 0.0415501346 0.0004704636 0.0004387167 0.0007328313 1.558 1.5 1.670 2
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Table 2 : Estimated MSE’s and ARE’s of the different estimators of α (ARLSCH model)

g MSE(α̂p) MSE(α̂W ) MSE(α̂S) MSE(α̂QMLE) E(α̂W ) T(α̂W ) E(α̂S) T(α̂S)
N 0.01827685 0.02077171 0.02907107 0.01875711 0.903 .96 0.645 .64
L 0.02324641 0.01353362 0.02136932 0.01540861 1.139 1.1 0.721 .82
D 0.02168655 0.01279244 0.01333624 0.01732438 1.354 1.5 1.300 2

Simulation results as well as several histograms conform with our theoretical finding on the

asymptotic distributions of the different estimators. In several cases, the estimated ARE is

more than the theoretical ARE even at much smaller value of n. In particular, the estimated

AREs of α̂W at the logistic density are 1.181 and 1.139 for the ARTCH and ARLSCH

models respectively, exceeding the theoretical ARE of 1.10 which, from (3.25), represents

the relative efficiency of the optimal R-estimator with respect to the QMLE. However, the

estimated AREs of α̂S at the double-exponential density are 1.670 and 1.300 for the ARTCH

and ARLSCH models respectively which are far below the theoretical relative efficiency of 2

of the optimal R-estimator with respect to the QMLE. A plausible reason for this could be

that n = 100 may not be ‘large enough’ for asymptotics to hold at the double-exponential

density.

In many other simulations not reported here with different combinations of the underlying

parameters, it was observed that the ARE-results for α̂W and α̂S approximately hold even

when the models are nonstationary. In general, to a practitioner, we recommend the use of

α̂W as a good alternative to the QMLE which has high ARE for a wide number of distributions

with a ‘small sacrifice’ at the normal distribution. Hence, in the real data examples below,

we use only α̂W and α̂QMLE for our analysis.

Financial Data. Tsay (2002, Chapter 3 on Conditional Heteroscedastic Models) have

analyzed three important data sets, namely, (A) The monthly log stock returns of the Intel

Corporation from 1973 to 1997 (300 observations with first value 0.010050 and last value

−0.095008), (B) The monthly excess returns of S & P 500 from 1926 to 1991 (792 observations
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with first value 0.0225 and last value 0.1116) and (C) The monthly log returns of IBM stock

from 1926 to 1999 (888 observations with first value 1.0434 and last value 4.5633) and fitted

various types of conditional heteroscedastic models to them. These data can be found in

http://www.gsb.uchicago.edu/fac/ruey.tsay/teaching/fts/m-intc.dat

For Data A, denoted by {Xi; 0 ≤ i ≤ n = 299}, Tsay’s analysis of the autocorrelation function

(ACF) of log returns, absolute log returns and squared log returns suggests that monthly

returns are serially uncorrelated but dependent. The mean, median, standard deviation

and kurtosis of {Xi} are 0.0286162, 0.019202, 0.1297513 and 3.370, respectively. Other

exploratory analysis show presence of heavy tails.

Next we fitted the centered {Xi} with the ARLSCH model. We use (5.4) and other related

formulae from the previous subsection to compute α̂W . For estimating its standard error (SE),

we estimate (i) M(θ) using the lhs of (3.2) with β replaced by β̂ and (ii)
∫

g2(x)dx using

the standardized residuals {ηi(α̂, β̂); 1 ≤ i ≤ n}. For the integral, we use simple histogram

estimator of g by dividing [min{ηi(α̂, β̂)}, max{ηi(α̂, β̂)}] into an ad hoc choice of m = 15

equal intervals over each of which the estimate of g is constant and then estimate the integral

based on the integral of the step function. For estimating the SE of α̂QMLE using (3.24), we

use a formula similar to (3.2). The efficiency of the R-estimator is defined as the square of

the ratio of two estimated SE’s. The estimates are reported in Table 3 below.

Table 3 : Estimates of α for the Intel Corporation data based on the ARLSCH model.

Auxiliary Estimates α̂QMLE α̂ Efficiency
α̂p = 0.05654418 0.05174328 0.05043456 1.18223914

β̂0 = 0.01052003 SE=0.05779476 SE=0.05315395

β̂1 = 0.4322009

Tsay (2002, Example 3.1) used a standard ARCH model (where p = 1) with intercept

to analyze this data. Using Xi = µ + ai with ai = σi−1(β)εt, where σ2
i−1(β) = β0 + β1a

2
i−1,
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1 ≤ i ≤ n = 299, Tsay (2002) obtained µ̂ = 0.0213, β̂0 = 0.00998 and β̂1 = 0.4437 using

the QMLE. Note that our estimates β̂0 and β̂1 of the variance parameters are quite close to

those of Tsay. The differences are due to the fact that we used centered (mean-subtracted)

observations and used preliminary estimate of α before estimating the variance parameters

with κ(x) = x. Introduction of the autoregressive term ‘α’ seems to have misspecified the

model for this data. This is reflected in the studentized ratio of α̂W which equals 0.95 and

hence the null hypothesis α = 0 is not significant. The conclusion remains same using the

studentized ratio of α̂QMLE also.

Asymmetry is an inherent feature in the financial market as the market seems to be more

sensitive to a negative news. Usual ARCH model of volatility may not capture this feature

because of its symmetric dependence on the past values in the form of squares. Sometimes

an ARTCH model with {β2j−1 6= β2j; 1 ≤ j ≤ p} may be a reasonable model to capture

such asymmetry. Hence we now fit an ARTCH model with p = s = 1 to Data A where we

estimate the parameter α using α̂W and α̂QMLE. Formulae (5.1) and (5.3) yield the following

estimates.

Table 4 : Estimates of α for the Intel Corporation data based on the ARTCH model.

Auxiliary Estimates α̂QMLE α̂W Efficiency
α̂p = 0.05654418 0.40840697 0.03742153 8.73970912

β̂1 = 8.84610615 SE=0.57839845 SE=0.19564945

β̂2 = 11.46261069

The asymmetric feature of the data set is reflected by the fact that β̂1 < β̂2. Since

β̂2/β̂1 = 1.296, impact of a negative shock is about 29.6% higher than that of a positive

shock of the same magnitude. Also, similar to the ARLSCH fitting, α is not significant using

both α̂W and α̂QMLE as the model is misspecified. For both models, the R-estimator turned

out to be much more efficient (in the sense of smaller estimated MSE) than the commonly-

used α̂QMLE.
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Next consider Data B denoted by {Xi; 0 ≤ i ≤ n = 791}. Similar analysis with the

ARLSCH and ARTCH models yields the following estimates of the parameters reported in

Tables 5 and 6. Tsay (2002, Example 3.3) fitted an AR(3)-GARCH(1, 1) model to this data

and the joint estimation of the parameters in the model yields 0.021 as the estimate of the

intercept at lag 1. Clearly, in the ARLSCH model, α̂W is closer to this estimate than α̂QMLE.

However, as in Tsay, the coefficient is insignificant using both α̂W and α̂QMLE.

Table 5 : Estimates of α for the S & P 500 data based on the ARLSCH model.

Auxiliary Estimates α̂QMLE α̂W Efficiency
α̂p = 0.09023211 0.03311225 0.01982906 1.27527764

β̂0 = 0.002768820 SE=0.03558038 SE=0.03150709

β̂1 = 0.1657376

Table 6 : Estimates of α for the S & P 500 data based on the ARTCH model.

Auxiliary Estimates α̂QMLE α̂W Efficiency
α̂p = 0.09023211 -0.52288761 0.04611074 2.31178836

β̂1 = 12.51359399 SE= 0.51621701 SE=0.33951446

β̂2 = 18.27277865

For both Data sets A and B, we observe that the R-estimate and the QMLE of the au-

toregressive parameter α are small and turned out to be ‘not significant’ while fitting the

ARLSCH model; hence there was little for the R-estimator to target other than concluding

that the model is misspecified. However, under the ARTCH model, the absolute values of

the QMLE are higher than α̂W for both data sets. As the inclusion of the autoregressive

parameter seems to have misspecified the model, the R-estimate resulted in a small value

rightfully while the QMLE resulted in high value. Moreover, R-estimators are highly efficient

compared to the QMLE in terms of smaller estimated MSE for both models and data sets

with estimated relative efficiency well above one.

Finally, we consider Data (C). Tsay (2002, Example 3.5) fitted an AR(1) model with

GARCH error to this data to obtain the estimate of the autoregressive parameter as 0.099
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with SE 0.037 and the model seemed to be adequate. We use the ARLSCH model to get

the preliminary estimate α̂p = 0.10601551 and the R-estimate α̂W = 0.10864080 with SE

0.01903097. Therefore the intercept parameter is close to Tsay’s estimate and is significant

in accord with Tsay’s result. However, the QMLE turns out to be α̂QMLE = 0.31733076 with

SE 0.09571206 and is very different than the estimate obtained by Tsay using the QMLE of

AR(1)-GARCH model. This shows that α̂W is more robust to the specification between the

ARCH or GARCH model than α̂QMLE. Moreover, the estimated ARE of the R-estimator

wrt the QMLE is as high as 25.29363788.

Let L(k) denote the Ljung-Box statistic with lag k for the portmanteau test of the random-

ness of the residuals. Using the R-estimate for residuals, the Ljung-Box statistics turn out to

be L(10) = 6.8387 and L(20) = 15.0339 while using the QMLE for residuals, L(10) = 6.9607

and L(20) = 14.7694. Since the Ljung-Box statistics have high p-values, the ARLSCH model

seems to be adequate using both R-estimate and the QMLE.

Next we appeal to the asymmetric feature of Data C. Tsay (2002, Section 3.7.2) fitted an

AR(1)-EGARCH model to this data to obtain the estimate of the autoregressive parameter as

0.092. Fitting an ARTCH model to this data, we obtain the preliminary estimate 0.10601551

and α̂W = 0.09289947 with SE 0.14118706. However, the QMLE is very different from

the R-estimate and Tsay’s comparable estimate with value α̂QMLE = 0.41444369 and SE

0.26747658. Note that the intercept parameter appears to be not significant using both

estimates. Using the Ljung-Box statistics, with rank-estimate for residuals L(10) = 7.0857

and L(20) = 31.7230 while with the QMLE, L(10) = 7.4309 and L(20) = 31.3810 and

the ARTCH model seems to be adequate. This shows, as before, that the R-estimator

performs better with model misspecification between the ARTCH and the EGARCH models.

Moreover, the estimated ARE of the R-estimator is 3.58906858.
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6 Proofs

Proof of Theorem 3.1. Clearly

n1/2(α̂p −α) =

[
n−1

n∑
i=1

Y i−1Y
′
i−1

]−1 [
n−1/2

n∑
i=1

Y i−1σ(Y i−1, β)ηi

]
,

and so the result follows by applying the martingale CLT on the second term. ⊥⊥

In the following, for two sequences of vector-valued stochastic processes {Xn(.)} and

{Yn(.)}, we write Xn(t) = up(1), if ∀b > 0 ε > 0, P [sup{||Xn(t)||; ||t|| ≤ b} > ε] = o(1) and

Xn(t) = Yn(t) + up(1) if Xn(t)− Yn(t) = up(1).

Proof of Lemma 3.1. The proof of this uses a simple Taylor expansion of the function

xκ(x) as follows. Fix a 0 < b < ∞. Let h(x) = xκ(x), and for a t = (t′1, t
′
2)
′ ∈ IRm, ‖t‖ ≤ b,

let

η̃i(t) := ηi(θ + n−1/2t) = [Xi − Y ′
i−1(α + n−1/2t1)]/σ(Y i−1, β + n−1/2t2).

Recall that rni(t2) = σ̇ni(t2)/σni(t2). Then

Ms(θ + n−1/2t)−Ms(θ)

= n−1/2
n∑

i=1

rni(t2)[h(η̃i(t))− h(ηi)] + n−1/2
n∑

i=1

[rni(t2)− ri][h(ηi)− 1]

= M1(t) + M2(t), say.

Using the second differentiability of κ, M1(t) = n−1/2∑n
i=1 rni(t2)[η̃i(t) − ηi]ḣ(ηi) + up(1),

where ḣ(ηi) = ηiκ̇(ηi) + κ(ηi). Next, using σni(0) = 1, rewrite

ηi(t)− ηi =
[ηi − (µni(t1)− µi(0))]

σni(t2)
− ηi

= −σni(t2)− 1

σni(t2)
ηi −

µni(t1)− µi(0)

σni(t2)
.

Therefore, the leading term in the above approximation of M1 can be further rewritten a

M11(t) + M12(t), where

M11(t) = −n−1/2
n∑

i=1

rni(t2)
σni(t2)− 1

σni(t2)
ηiḣ(ηi) = −Σ̇(θ) t2 E[ηḣ(η)] + up(1),
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M12(t) = −n−1/2
n∑

i=1

rni(t2)
µni(t1)− µi

σni(t2)
ḣ(ηi) = −G(θ) t1 E[ḣ(η)] + up(1).

In the above approximations, the conditions (3.3)-(3.4) are used. Similarly, one obtains

M2(t) = up(1), thereby completing the proof of the Lemma. ⊥⊥

The proof of Lemma 3.2 depends on the following technical result.

Let {(ηi, γni, δni, ξni), 1 ≤ i ≤ n} be an array of 4-tuple r.v.’s defined on a probability

space such that {ηi, 1 ≤ i ≤ n} are i.i.d. according to a d.f. G, and for each 1 ≤ i ≤ n,

ηi is independent of (γni, δni, ξni). Let {Ani; 1 ≤ i ≤ n} be an array of sub-σ-fields such

that Ani ⊂ Ani+1, Ani ⊂ An+1i, 1 ≤ i ≤ n, n ≥ 1; (γn1, δn1, ξn1) is An1 measurable,

and {{(γni, δni, ξni); 1 ≤ i ≤ j}, η1, η2, . . . , ηj−1} are Anj measurable, 2 ≤ j ≤ n. Define the

following processes for x ∈ IR.

Ṽn(x) := n−1/2
n∑

i=1

γniI(ηi < x + xδni + ξni), (6.1)

J̃n(x) := n−1/2
n∑

i=1

γniG(x + xδni + ξni),

Vn(x) := n−1/2
n∑

i=1

γniI(ηi < x + ξni), Jn(x) := n−1/2
n∑

i=1

γniG(x + ξni),

V ∗
n (x) := n−1/2

n∑
i=1

γniI(ηi ≤ x), J∗
n(x) := n−1/2

n∑
i=1

γniG(x),

Ũn(x) := Ṽn(x)− J̃n(x), Un(x) := Vn(x)− Jn(x), U∗
n(x) := V ∗

n (x)− J∗
n(x).

We assume that the following conditions are satisfied by the weights {γni} and the pertur-

bations {δni, ξni}.

Let Cn :=
∑

E|γni|q. Then for some q > 2 and ε, with 0 < ε < q/2,

Cn/n
q/2−ε = o(1). (6.2)(

n−1
n∑

i=1

γ2
ni

)1/2

= γ + op(1), γ a positive r.v. (6.3)

E

(
n−1

n∑
i=1

γ2
ni

)q/2

= O(1). (6.4)

max
1≤i≤n

n−1/2|γni| = op(1). (6.5)
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(a) max
1≤i≤n

|ξni| = op(1), (b) max
1≤i≤n

|δni| = op(1). (6.6)

nq/2−ε

Cn

E

[
n−1

n∑
i=1

{γ2
ni(|ξni|+ |δni|)}

]q/2

= o(1). (6.7)

(a) n−1/2
n∑

i=1

|γniξni| = Op(1), (b) n−1/2
n∑

i=1

|γniδni| = Op(1). (6.8)

The following theorem states that uniformly over the entire real line, the perturbed process

Ũn can be approximated by U∗
n.

Theorem 6.1. Under the above setup and under the assumptions (6.2)-(6.8) and (G.1)-

(G.3),

sup
x∈IR

|Ũn(x)− Un(x)| = op(1), (6.9)

sup
x∈IR

|Ũn(x)− U∗
n(x)| = op(1). (6.10)

Proof. The proof of such uniform approximation theorem depends on efficient partitioning

of the real line; here pointwise convergence can be shown easily and then we invoke the

monotone structure of the empirical processes to achieve the uniform convergence. The

uniform closeness of the processes Un and U∗
n was proved in Koul and Ossiander (1994,

Theorem 1.1 ), under the assumption that G has uniformly continuous positive density g,

and under (6.3), (6.5), (6.6)(a) and (6.8)(a). Thus, the claim (6.10) is a consequence of that

theorem and (6.9).

To prove (6.9), assume without loss of generality that all γni are non-negative. Next,

write Ũn(x) = Ũ+
n (x) + Ũ−

n (x), where Ũ+
n (x), Ũ−

n (x) correspond to that part of the sum in

Ũn(x) which has δni ≥ 0, δni < 0, respectively. Decompose Un(x) similarly. It thus suffices

to show that

sup
x∈IR

|Ũ+
n (x)− U+

n (x)| = op(1), (6.11)

sup
x∈IR

|Ũ−
n (x)− U−

n (x)| = op(1). (6.12)

Details will be given only for (6.11), they being similar for (6.12).
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Fix a δ > 0 and let Cn = Cn(q) :=
∑n

i=1 Eγq
ni. Let −∞ = x0 < x1 ≤ . . . ≤ xrn−1 ≤ xrn =

∞ be a weight-dependent partition of IR where xj = G−1(jδCn/n
(q/2)−ε), 0 ≤ j ≤ rn − 1 and

rn := [nq/2−ε/(Cnδ)] + 1, with [x] denoting the integer part of x. Note that

[G(xj)−G(xj−1)] ≤ δCn/n
q/2−ε, ∀ 1 ≤ j ≤ rn. (6.13)

The dependence of xj’s on n, δ and q is suppressed for the sake of convenience.

Using the monotonicity of the indicator function and the d.f. G, we obtain that for

xj−1 < x ≤ xj,

|Ũ+
n (x)− U+

n (x)|

≤ |Ũ+
n (xj)− U+

n (xj−1)|+ |Ũ+
n (xj−1)− U+

n (xj)|

+ 2 |J̃+
n (xj)− J̃+

n (xj−1)|+ 2 |J+
n (xj)− J+

n (xj−1)|

= |Anj,1|+ |Anj,2|+ 2|Anj,3|+ 2|Anj,4|, say. (6.14)

Note that the number of partitions varies with n; nevertheless, intuitively, we show the

convergence of the j-th partition and consequently, the uniform convergence over it. First,

consider Anj,1. For the sake of brevity, let tni = δni + 1. Then, one can rewrite Anj,1 as

n−1/2
n∑

i=1

γni

{
I(ηi < xjtni + ξni)− I(ηi < xj−1 + ξni)−G(xjtni + ξni) + G(xj−1 + ξni)

}
,

which is a sum of martingale differences. We need the following inequality on the tail proba-

bility of a sum of martingale differences; see Hall and Heyde (1980, Corollary 2.1 and Theorem

2.12).

Rosenthal Inequality. Suppose Mj =
∑j

i=1 Di is a sum of martingale differences with

respect to the underlying increasing filtration {Di} and q ≥ 2. Then, there exists a constant

C = C(q) such that for any ε > 0,

P [|Mn| > ε] ≤ P
[
max
1≤j≤n

|Mj| > ε
]

≤ Cε−q

 n∑
i=1

E|Di|q + E

{
n∑

i=1

E(D2
i |Di−1)

}q/2
 .
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Apply the above inequality with D0 = σ < γn1, δn1, ξn1 > and for 2 ≤ i ≤ n, Di−1 =

σ < η1, . . . , ηi−1; (γnj, δnj, ξnj), 1 ≤ j ≤ i >; Di = n−1/2γni

{
I(xj−1 + ξni ≤ ηi < xjtni +

ξni) − G(xjtni + ξni) + G(xj−1 + ξni)
}
. Use |Di| ≤ n−1/2|γni|, and the fact E(D2

i |Di−1) ≤

n−1γ2
ni{|G(xjtni + ξni)−G(xj−1 + ξni)|}, to obtain

P [|Anj,1| > ε]

≤ Cε−qn−q/2Cn + Cε−qE

[
n−1

n∑
i=1

γ2
ni{|G(xjtni + ξni)−G(xj−1 + ξni)|}

]q/2

.

The first term in the above inequality is free from j. Next, we shall obtain an upper-bound

(free of j) for the second term using (i) the Taylor expansion of G and the boundedness of

g, and (ii) assumptions (G.2) as follows.

n∑
i=1

γ2
ni{|G(xjtni + ξni)−G(xj−1 + ξni)|}

≤
n∑

i=1

γ2
ni{|G(xj)−G(xj−1)|}+

n∑
i=1

γ2
ni{|G(xjtni + ξni)−G(xjtni)|}

+
n∑

i=1

γ2
ni{|G(xjtni)−G(xj)|}+

n∑
i=1

γ2
ni{|G(xj−1 + ξni)−G(xj−1)|}

≤ K1

n∑
i=1

γ2
ni

[
δ Cnn

−(q/2−1) + 2 |ξni| + |δni|
]
.

The above bound is obtained by using (6.13) for the first term, the boundedness of g for the

2nd and 4th terms, and (G.2) for the 3rd term. Now using the so called ‘Cr’-inequality

[
n−1

n∑
i=1

γ2
ni{|G(xjtni + ξni)−G(xj−1 + ξni)|}

]q/2

≤ K2[Cnn
−(q/2−ε)δn−1

n∑
i=1

γ2
ni]

q/2 + K2

[
n−1

n∑
i=1

γ2
ni{|ξni| + |δni|}

]q/2
.

Hence, using rn = O(nq/2−ε/Cn), for some constant C(δ) > 0,

P
(

max
1≤j≤rn

|Anj,1| > ε
)

≤ C(δ)

[
Cε−qn−q/2Cn ×

nq/2−ε

Cn

+
{

Cn

n(q/2−ε)

}q/2−1

(δ)q/2 E[n−1
n∑

i=1

γ2
ni]

q/2

+
nq/2−ε

Cn

E
{
n−1

n∑
i=1

γ2
ni(|ξni|+ |δni|)

}q/2
]

= o(1), (6.15)
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using (6.2), (6.4) and (6.7). This implies that max1≤j≤r |Anj,1| = op(1). Note that for (6.15)

to hold, the order of the total number of partitions rn is carefully chosen. A similar statement

holds for Anj,2. Next,

Anj,3 = n−1/2
n∑

i=1

γni

[
G(xjtni + ξni)−G(xj−1tni + ξni)

]
=

{
n−1/2

n∑
i=1

γni[G(xj)−G(xj−1)] + n−1/2
n∑

i=1

γni[G(xjtni + ξni)−G(xjtni)]

+n−1/2
n∑

i=1

γni[G(xjtni)−G(xj)]− n−1/2
n∑

i=1

γni[G(xj−1tni)−G(xj−1)]

−n−1/2
n∑

i=1

γni[G(xj−1tni + ξni)−G(xj−1tni)]

}

Hence

|Anj,3| ≤
{

(n−1/2
n∑

i=1

γni)
Cn

nq/2−ε
δ + n−1/2

n∑
i=1

γni|G(xjtni + ξni)−G(xjtni)− ξnig(xjtni)|

+n−1/2
n∑

i=1

γni|G(xjtni)−G(xj)− δnixjg(xj)|

+ n−1/2
n∑

i=1

γni|G(xj−1tni)−G(xj−1)− δnixj−1g(xj−1)|

+n−1/2
n∑

i=1

γni|G(xj−1tni + ξni)−G(xj−1tni)− ξnig(xj−1tni)|

+n−1/2
n∑

i=1

γniξni|g(xjtni)− g(xj−1tni)|

+n−1/2
n∑

i=1

γniδni|xjg(xj)− xj−1g(xj−1)|
}

.

Now, let mn := max1≤i≤n |ξni|, µn := max1≤i≤n |δni|. Note that the sum of the absolute values

of the second and fifth term in the right hand side of the above equation is bounded above

by

n−1/2
n∑

i=1

|γniξni| sup
|x−y|≤mn

|g(x)− g(y)| = op(1),

uniformly in j = 1, . . . ,m, by the uniform continuity of g and (6.8)(a).

Next we handle the third term; the fourth term can be handled similarly. By the one-

step Taylor expansion of G with remainder in the integral form, for all large n such that
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max{|δni|; 1 ≤ i ≤ n} is sufficiently small, the absolute value of the third term is bounded by

n−1/2
n∑

i=1

|γniδnixj|
∫ 1

0
|g(xj + txjδni)− g(xj)|dt

≤ n−1/2
n∑

i=1

|γniδni| sup{|x|
∫ 1

0
|g(x + txδ)− g(x)|dt; x ∈ IR} = op(1),

by (G.3) and (6.8)(b).

Finally, consider the sixth term; the seventh one can be dealt with similarly. To begin

with observe that by (G.2), max1≤i≤n,1≤j≤rn |G(xjtni)−G(xj)| ≤ C max1≤i≤n |δni|, and hence

by (G.1), (6.6)(b) and (6.8)(b), max1≤i≤n,1≤j≤rn |g(xjtni) − g(xj)| = op(1). Upon combining

all these bounds and using E(n−1∑n
i=1 γni) = O(1), we obtain

max
1≤j≤m

|Anj,3| ≤ Op(1) o(1) δ + op(1).

A similar result holds for Anj,4. All the above facts together with the arbitrariness of δ thus

imply (6.9), thereby completing the proof of the lemma. ⊥⊥

Remark 6.1. Boldin (1998) proved an analog of (6.10) for the ordinary residual empirical

processes in Engle’s ARCH model with p = 1, using a different method of proof. Koul and

Mukherjee (2002) also proved an anologous result using more stringent moment assumptions.

Proof of Lemma 3.2.. Fix a 0 < b < ∞. Observe that if in (6.1), we take

γni = lni(t), δni = vni(t), ξni = uni(t), 1 ≤ i ≤ n, (6.16)

then, Ũn(x) and U∗
n(x) are, respectively equal to Ũ(x, t) and U∗(x, t), for all x ∈ IR, t ∈ IRm.

Clearly the assumptions (3.7)-(3.13) for each fixed t imply (6.2)-(6.8). Hence, (6.10) implies

that for each t ∈ IRm,

sup
x∈IR

|Ũ(x, t)− U∗(x, t)| = op(1). (6.17)

The uniform convergence with respect to t over compact sets can be proved as in Koul (1996)

and Koul and Mukherjee (2002) using the last two assumptions (3.14) and (3.15) which are

related to the smoothness assumptions on the weights. ⊥⊥
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Proof of Lemma 3.3. Using ϕ(y)−ϕ(0) =
∫ 1
0 I(y ≥ u)ϕ(du), and Riτ = nGnτ {ηi(τ )},

where Gnτ is the empirical distribution function based on {ηj(τ ), 1 ≤ j ≤ n} we get

ϕ
(

Riτ
n + 1

)
− ϕ(0) =

∫ 1

0
I
(

Riτ
n + 1

≥ u
)

ϕ(du) =
∫ 1

0
I

(
Gnτ (ηi(τ )) ≥ (n + 1)u/n

)
ϕ(du)

=
∫ 1

0
I

(
ηi(τ ) ≥ G−1

nτ {(n + 1)u/n}
)
ϕ(du),

where for any distribution function H, H−1(u) = inf{x; u ≤ H(x)}, 0 < u < 1. In the

following, suppressing the dependence of Zi−1 on τ 2, we get

n1/2Sϕ(τ )

=
n∑

i=1

(Zi−1(τ )− Z̄(τ ))ϕ
(

Riτ
n + 1

)

=
n∑

i=1

(Zi−1 − Z̄){ϕ
(

Riτ
n + 1

)
− ϕ(0)}

=
∫ n∑

i=1

(Zi−1 − Z̄)I

(
ηi(τ ) ≥ G−1

nτ {(n + 1)u/n}
)
ϕ(du)

=
∫ n∑

i=1

(Zi−1 − Z̄)I

(
Xi ≥ σ(Y i−1, τ 2)G

−1
nτ {(n + 1)u/n}+ Y ′

i−1τ 1

)
ϕ(du)

=
∫ n∑

i=1

(Zi−1 − Z̄)I

(
Y ′

i−1α + σ(Yi−1, β)ηi ≥ σ(Yi−1, τ 2)G
−1
nτ {(n + 1)u/n}+ Y ′

i−1τ 1

)
ϕ(du)

=
∫ n∑

i=1

(Zi−1 − Z̄)I

(
ηi ≥ G−1

nτ {(n + 1)u/n}σ(Y i−1, τ 2)

σ(Yi−1, β)
+

(τ 1 −α)′Y i−1

σ(Yi−1, β)

)
ϕ(du)

= −
∫ n∑

i=1

(Zi−1 − Z̄)I

(
ηi < G−1

nτ {(n + 1)u/n}σ(Y i−1, τ 2)

σ(Yi−1, β)
+

(τ 1 −α)′Y i−1

σ(Yi−1, β)

)
ϕ(du).

Substituting τ = θn in the above where θn = θ + n−1/2t, and using Lemma 3.2, and the

boundedness of ϕ,

Sϕ(θ + n−1/2t)

= n−1/2
n∑

i=1

{Zi−1(β + n−1/2t2)− Z̄(β + n−1/2t2)}ϕ
(

R
i(θ+n−1/2t)

n + 1

)

= −n−1/2
∫ n∑

i=1

(
Zi−1(θn)− Z̄(θn)

)

I

(
ηi < G−1

nθn
{(n + 1)u/n}σ(Y i−1, β + n−1/2t2)

σ(Yi−1, β)
+

n−1/2t′1Y i−1

σ(Yi−1, β)

)
ϕ(du)
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= −n−1/2
∫ n∑

i=1

(
Zi−1(θn)− Z̄(θn)

)
I

(
ηi < G−1

nθn
{(n + 1)u/n}+ G−1

nθn
{(n + 1)u/n}(σni(t2)− 1) + (µni(t1)− µi)

)
ϕ(du)

= −n−1/2
∫ n∑

i=1

(
Zi−1(θn)− Z̄(θn)

)

G

(
G−1

nθn
{(n + 1)u/n}+ G−1

nθn
{(n + 1)u/n}(σni(t2)− 1) + (µni(t1)− µi)

)
ϕ(du)

+ n−1/2
∫ n∑

i=1

(
Zi−1(θn)− Z̄(θn)

)
{

I(ηi < G−1

nθn
{(n + 1)u/n})−G(G−1

nθn
{(n + 1)u/n})

}
ϕ(du) + up(1)

= −T1 + T2 + up(1), say.

Similarly, substituting τ = θ, we have

Sϕ(θ) = −n−1/2
∫ n∑

i=1

(
Zi−1(θ)− Z̄(θ)

)
G(G−1

nθ{(n + 1)u/n})ϕ(du)

+n−1/2
∫ n∑

i=1

(
Zi−1(θ)− Z̄(θ)

)

{I(ηi < G−1

nθ{(n + 1)u/n})−G(G−1

nθ{(n + 1)u/n})}ϕ(du) + op(1) = −T3 + T4 + op(1), say.

For the terms T2 and T4 involving centered empirical processes, note that T2 − T4 equals

n−1/2
∫ n∑

i=1

(Zi−1(θn)− Z̄(θn))

{
I(ηi < G−1

nθn
{(n + 1)u/n})−G(G−1

nθn
{(n + 1)u/n})

}
ϕ(du)

− n−1/2
∫ n∑

i=1

(Zi−1(θ)− Z̄(θ)){I(ηi < G−1

nθ{(n + 1)u/n})−G(G−1

nθ{(n + 1)u/n})}ϕ(du)

= n−1/2
∫ n∑

i=1

{
(Zi−1(θn)− Z̄(θn))− (Zi−1(θ)− Z̄(θ))

}
{

I(ηi < G−1

nθn
{(n + 1)u/n})−G(G−1

nθn
{(n + 1)u/n})

}
ϕ(du)

− n−1/2
∫ n∑

i=1

(Zi−1(θ)− Z̄(θ)){
I(ηi < G−1

nθ{(n + 1)u/n})− I(ηi < G−1

nθn
{(n + 1)u/n})

+G(G−1

nθn
{(n + 1)u/n})−G(G−1

nθ{(n + 1)u/n})
}

ϕ(du) = T5 − T6, say.
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Since |I(ηi < G−1

nθn
{(n + 1)u/n}) − G(G−1

nθn
{(n + 1)u/n})| ≤ 1, T5 is up(1) by assumption

(3.15) with lni(t) = sni(t). Next we heavily use the result of Koul and Ossiander (1994,

Theorem 1.1) on the tightness of U∗
n and the following fact from Koul and Ossiander (1994,

Eqns (3.11), (3.12))

sup{|G(G−1

nθ+n−1/2t{(n + 1)u/n})− u|; u ∈ [0, 1], ‖t‖ ≤ b} = op(1), (6.18)

which entails sup{|G(G
nθn

{(n+1)u/n})−G(G
nθ{(n+1)u/n})|; u ∈ [0, 1], ‖t‖ ≤ b} = op(1).

Therefore T6 = op(1).

Next, it remains to examine T1 − T3 which equals

n−1/2
∫ n∑

i=1

(Zi−1(θn)− Z̄(θn))

G

(
G−1

nθn
{(n + 1)u/n}+ G−1

nθn
{(n + 1)u/n}(σni(t2)− 1) + (µni(t1)− µi)

)
ϕ(du)

− n−1/2
∫ n∑

i=1

(Zi−1(θ)− Z̄(θ))G(G−1

nθ{(n + 1)u/n})ϕ(du).

Now subtracting and adding

n−1/2(Zi−1(θ)− Z̄(θ))G(G−1

nθn
{(n+1)u/n}+G−1

nθn
{(n+1)u/n}(σni(t2)−1)+(µni(t1)−µi))

to the i-th summand, and using

n−1/2
∫ n∑

i=1

(
(Zi−1(θn)− Z̄(θn)−Zi−1(θ) + Z̄(θ)

)

×G

(
G−1

nθn
{(n + 1)u/n}+ G−1

nθn
{(n + 1)u/n}(σni(t2)− 1) + (µni(t1)− µi)

)
ϕ(du) = up(1),

and

n−1/2
∫ n∑

i=1

(Zi−1(θ)− Z̄(θ)){G(G−1

nθn
{(n + 1)u/n})−G(G−1

nθ{(n + 1)u/n})}ϕ(du) = up(1),

T1 − T3 equals

n−1/2
∫ n∑

i=1

(
Zi−1(θ)− Z̄(θ)

)
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×G

(
G−1

nθn
{(n + 1)u/n}+ G−1

nθn
{(n + 1)u/n}(σni(t2)− 1) + (µni(t1)− µi)

)
ϕ(du)

−n−1/2
∫ n∑

i=1

(Zi−1(θ)− Z̄(θ))G(G−1

nθ{(n + 1)u/n})ϕ(du) + up(1).

Next we use the mean value theorem on G around the point G−1

nθn
{(n + 1)u/n}, and write

g(G−1

nθn
{(n+1)u/n}+ξinut) = gG−1

(
G(G−1

nθn
{(n+1)u/n}+ξinut)

)
. We also use the uniform

continuity of the function gG−1 and G(G−1

nθn
{(n + 1)u/n}+ ξinut) = g(G−1

nθn
{(n + 1)u/n}) +

ξinut), (6.18) and

sup
‖t‖≤b

∥∥∥n−1/2
n∑

i=1

{
µ̇ni(t1)

σni(t2)
− n−1

n∑
i=1

(
µ̇ni(t1)

σni(t2)
)

}
{σni(t2)− 1} −Gc(θ)t2

∥∥∥ = op(1)

sup
‖t‖≤b

∥∥∥n−1/2
n∑

i=1

{
µ̇ni(t1)

σni(t2)
− n−1

n∑
i=1

(
µ̇ni(t1)

σni(t2)
)

}
{µni(t1)− µi} −M(θ)t1

∥∥∥ = op(1),

we get that T1 − T3 equals

∫
G−1(u)g(G−1(u))ϕ(du)Gc(θ)t2 +

∫
g(G−1(u))ϕ(du)M(θ)t1 + up(1).

Hence Lemma 3.3 follows. ⊥⊥
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Hájek, J., Šidák, Z. and P. Sen, 1999, Theory of Rank Tests. Academic Press, San Diego.

Hall P. and C. Heyde, 1980, Martingale Limit Theory and its Application. Academic Press,

New York.
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Jurečková, J., 1971, Nonparametric estimates of regression coefficients. Annals of Mathe-

matical Statistics 42, 1328-1338.
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