
August 21, 2006

On the alignment of multiple time series fragments

BY KANCHAN MUKHERJEE

Department of Mathematical Sciences, The University of Liverpool,

Liverpool L69 7ZL, U.K.

k.mukherjee@liverpool.ac.uk

ROBERT H. SHUMWAY

Department of Statistics, University of California, Davis, California 95616 U.S.A.

rhshumway@ucdavis.edu

AND KENNETH L. VEROSUB

Department of Geology, University of California, Davis, California 95616 U.S.A.

klverosub@ucdavis.edu

SUMMARY

We consider a local least-squares criterion for aligning multiple time series fragments differing

by locations and show the consistency of the time-lag estimator and the asymptotic normality

of the location estimator. We apply the criterion to the problem of aligning 50 glacial varve

fragments and construct a 3000-year surrogate for global temperature.
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1. INTRODUCTION

The current debate over the possible human induced contributions to rising global temper-

ature values has underscored the need to understand historical climatic variability. Con-

sequently, there have been attempts to obtain surrogates for temperature that extend over

longer intervals of time than current global temperature records that generally go back about

150 years. These temperatures have risen steeply over the last 25 years and there is a sub-

stantial rise of about one degree Centigrade over the past 100 years.

In order to obtain longer records from a wider array of phenomena with a broader geo-

graphic distribution, it is necessary to turn to biological recorders, such as tree-rings and coral

growth bands, and geological recorders, such as glacial varves. Glacial varves are laminated

sediments that record annual depositional cycles in certain lakes that are fed by glaciers. The

thickness of each layer represents the amount of silt and sand deposited by a melting glacier

over a period of one year. In this sense, changes in varve thickness are an indication of yearly

temperature changes. Therefore, reconstruction of a record of such thickness changes, known

as a varve chronology, can be useful as a potential long-term proxy for paleoclimate.

As a result of the vagaries of geological depositional and erosional processes, an entire

glacial varve sequence is seldom found at any particular site and the complete varve chronol-

ogy must be pieced together from different outcrops or drill cores. Figure 1 shows some of the

log-transformed varve thickness series collected from sites in Connecticut and Massachussets

by Antevs (1922, 1928) and Verosub (1979a, 1979b). The Connecticut series, labeled Conn.

in Fig. 1(a), is a master series of length 871 years, that started at 15,600 years before present

(BP), as determined by carbon dating, according to Ridge & Larson (1990). The notation

15,600 years BP means approximately that many years before 1990. The Broadbrook series

is an individual site and represents those collected by Verosub. There are a total of 50 series

in the database, 12 from the Antevs paper tapes collected from Connecticut, Massachussets,
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New Hampshire, New York and Vermont and 28 series collected from the same states by

Verosub. The series lengths ranged from short series with only 25 years to the 871-year

master Connecticut series. The total time span represented by all series, taken as a whole,

is 3000 years, and this is the length of the signal that we would like to construct by aligning

these 50 time series fragments.

INSERT Fig. 1 HERE

2. LAG ESTIMATION FOR TIME SERIES FRAGMENTS

Suppose {Xt, Yt}t≥1 is a stationary ergodic time series. Consider the following model where

one observes {Yt; 1 ≤ t ≤ n} and {Xt; 1 ≤ t ≤ nX}, nX ≥ n, satisfying

Yt = β + Xt+J + εt, 1 ≤ t ≤ n, (1)

where β is the unknown location parameter and J , with 0 ≤ J < ∞, is the unknown lag. It

is assumed that J ≤ nX − n. We wish to estimate β and J . We assume that {εt; 1 ≤ t ≤ n}

are independent and identically distributed with zero mean and finite variance σ2 and that

{εt; 1 ≤ t ≤ n} are independent of {Xt; 1 ≤ t ≤ nX}. Typically, {Xt; 1 ≤ t ≤ nX} are taken

as the observations of the master series whereas {Yt; 1 ≤ t ≤ n} is the series to be aligned.

The simplified linear model in (1) is motivated by Fig. 1, which shows that the logarithms

of the series are dominated by fixed differences, with no apparent scale changes. Although

general correlation methods based on the usual linear regression model and various nonlinear

metrics can improve upon the above model in certain cases, as shown in a University of Bergen

technical report by B. Auestad, D. Tjostheim, R. Shumway and K. Verosub, we concentrate

on the simple model here in the development of asymptotics. Note that, for stationarity, we

will generally be dealing with increments log Vt− log Vt−1 = log(Vt/Vt−1) of the original varve

series Vt.
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Alignment problems occur because the sequences may only match near the beginning or

end of the master series or because varve sequences will sometimes have extra or missing

values, called insertions and deletions. This difficulty is compounded by the need to consider

a large number of fragments with unknown time delays. R. H. Shumway and K. L. Verosub,

in a paper at the Clay Varve Chronology Workshop at Trosa, Sweden, in 1993, considered

minimisation of a local least-squares measure of distance between a target series Xt and a

potential matching fragment Yt, where the series can be assumed to differ by a constant (Fig.

1). They proposed the criterion

s2(j, k) = minβ

{
1

n

n∑

t=1

(Yt+k −Xt+j − β)2
}
, k ≥ 0,

with the shift relative to a start point 1 + k on the matching fragment estimated by

ĵ(k) = argminj{s2(j, k)} − k.

INSERT Fig. 2 HERE

Figure 2 shows the local least-squares matching for just four of the 50 segments based on

the local least-squares criterion with window-width n = 30. Consistent local matches will

appear as horizontal straight lines in the (k, ĵ(k)) diagram in Fig. 2, where k is the point

on the fragment and ĵ(k) is the value on the master series. In Fig. 2(a), there is a strong

match between the first Massachussets series and the Connecticut series at ĵ(k) = 450 on the

Connecticut series. This extends the record beyond the n = 871 years covered by the master

Connecticut series. In Fig. 2(b), the match is good only for the first segment of the second

Massachussets series and the estimated start point is ĵ(k) = 767 on the Connecticut series.

In Fig. 2(c), we see that the first Verosub record, called the Broadbrook series, matches at

several different lags in the diagram, corresponding to possible extra varves; the middle value

ĵ(k) = 153 was assigned for the series since it was difficult to tell exactly where the changes

occurred. The final match between the 14th Verosub series, called the Will Mansett series,
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shows matches with the second Massachussets series at ĵ(k) = 309; 308 indicates a missing

varve somewhere between k = 40 and k = 60.

In general, many ‘two-at-a-time’ comparisons were made between the 50 varve sequences

in order to align them all with the master or target sequences. For example, two other

Massachussets varve sequences can serve as the target series for points beyond the Con-

necticut series and the first Massachussets sequence. In general, many checks need to be

made, alternating the specification of the master or target series to check for the possibility

of negative lags.

For the local least-squares criterion, we will show consistency for the estimator ĵ(k) and

asymptotic normality for β̂ under the assumption that Xt and Yt are stationary ergodic series

differing by white noise.

3. ON THE ASYMPTOTICS OF LAG ESTIMATION

In (1), regressing {Yt; 1 ≤ t ≤ n} on {Xt+j; 1 ≤ t ≤ n}, first we obtain the jth least-

squares estimator of β, for 0 ≤ j ≤ nX − n, as

β̂j = argmin {
n∑

t=1

(Yt −Xt+j − u)2; u ∈ IR} = Ȳ − X̄j, (2)

where Ȳ =
∑n

t=1 Yt/n and X̄j =
∑n

t=1 Xt+j/n. Next we estimate the lag J by minimising the

residual sum of squares. Therefore, Ĵ is defined as

Ĵ = argmin [
n∑

t=1

{Yt −Xt+j − (Ȳ − X̄j)}2; 0 ≤ j ≤ nX − n]. (3)

Finally, we use β̂Ĵ = Ȳ − X̄Ĵ to estimate β.

We make the following assumptions about the covariance structure of the increment of

the stationary process {Xt; 1 ≤ t ≤ n}. Define dt,j = Xt+J − Xt+j, Dt,j = (Xt+J − Xt+j)
2

and Xt,j = Xt+J −Xt+j − (X̄J − X̄j), 0 ≤ t ≤ n, 0 ≤ j ≤ nX − n.
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Condition 1. For some δ1 and δ2 such that δ1 > δ2 > 0, E(XJ −Xj)
2 ≥ δ1 for all j 6= J

and |E(ds,jdt,j)| ≤ δ2 for all s 6= t.

Condition 2a. We assume that n−1 ∑nX−n
j=0,6=J E(XJ −Xj)

2 = o(1).

Condition 2b. We assume that n−1 ∑nX−n
j=0,6=J E(XJ −Xj)

4 = o(1).

Condition 3. We assume that
∑nX−n

j=0,6=J gnj = o(n2), where gnj =
∑

1≤s<t≤n cov(Dsj, Dtj).

Condition 4. We assume that nX − n = o(n).

Conditions 2a, 2b and 3 are the moment conditions in the overlapping zone of the two

series. Condition 4 states that the ratio of the numbers of observations in the master series

and the matching series should be close to one. Note that, in Conditions 2a, 2b and 3, the

sum can also include j = J since the corresponding summands are zero. However, to keep

conformity with Condition 1, we prefer to exclude j = J in writing the sum.

Remark 1. Conditions 1-3 are satisfied when, for example, {Xt; 1 ≤ t ≤ nX} are independent

and identically distributed with zero mean and finite fourth moment. Also, under a finite

fourth moment assumption on X1, Condition 4 implies Conditions 2a and 2b.

Remark 2. Conditions 1-3 are satisfied when {Xt; t ≥ 1} is a stationary linear process

represented by

Xt =
∞∑

i=−∞
ψiZt−i,

where {Zt; t ∈ Z} is a white noise process with finite fourth moment and the sum with respect

to i is over the set of integers Z with
∑

i |ψi| < ∞. We assume that E(Zt) = 0, var(Zt) = σ2
Z

and E(Z4
t ) = ησ4

Z with 0 < η < ∞. Thus, in particular, our results are applicable to stable

autoregressive moving average processes. We verify this remark in the Appendix.

The first theorem states the consistency of the lag estimator.

THEOREM 1. Consider model (1) and suppose that Conditions 1-4 hold. Then, for all ε > 0,

lim
n→∞ pr(|Ĵ − J | ≤ ε) = 1.
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The next result gives the asymptotic normality of β̂Ĵ .

THEOREM 2. Consider model (1) and suppose that Conditions 1-4 hold. Then

n1/2(β̂Ĵ − β) → N(0, σ2),

in distribution, as n →∞.

4. SMALL SAMPLE PERFORMANCE

In this section we report some simulations that indicate that Theorem 1 may be true even for

more general combinations of master series and fragment lengths, nX and n, than would be

implied by Condition 4. The varve-matching application involves series lengths that depart

substantially from this assumption and so such simulations give more insight into this matter.

To examine the performance of the matching procedure for other combinations, we fitted a

first-order moving average to the first differences of the logarithms of several of the varve

series,

xt − xt−1 = wt − θwt−1

say, where the wt were taken as independent and identically distributed normal random

variables with variance σ2
w. In general, we obtained θ = 0.8 and we used this to generate a

series for Xt for use in model (1). Note that the first-order moving average model results from

taking the first difference ytj − yt−1,j in our final merging model. In simulating the values of

{Yt} in (1), we took σ2 = 0.25 and β = 4. The variance of the first-order moving average

was taken as 0.25 so that the equivalent signal-to-noise ratio in the data generated from the

model (1) was unity. Table 1 shows the results from 500 repetitions for each combination

of nX and n. For convenience in the simulations, the true match between the fragment and

the master series used a value of J such that the midpoint n/2 of the fragment matched the

midpoint of the master series nX/2; alternative placements did not change the results.
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INSERT TABLE 1 HERE

The results show that, with the window-width n = 30 in the applications, Ĵ is expected to

perform very well for most values of nX that are in the range of the master series used in this

study. The simulations also show a gradual reduction of the success probability pr(Ĵ = J)

as the length of the master series increases. One can object to the optimistic nature of the

assumptions, which take the signal as a first-order moving average and draw the noise values

from a normal distribution, but these are sensible for the problem under consideration.

5. DISCUSSION

The primary purpose of aligning the fragments is to reconstruct a long varve record in order

to obtain a potential surrogate for paleoclimatic temperature. A sensible model that results

from the above matching exercise might be

Yjt = βj + Xt + εjt,

where Yjt denotes the logarithm of the varve thickness of the jth fragment and the merged

logarithm of the varve signal Xt is a random walk. The observed series Yjt is assumed to start

at the correct time delay. Estimation of the scale factors and unknown variances σ2
j = var εjt,

as well as the additional variance of the random walk, can be done using the EM algorithm,

as developed for the missing data case by Shumway & Stoffer (1982). This leads to the

merged varve signal in Fig. 3 based on 50 varve fragment series. In the present case, over

90% of the varve observations are missing.

INSERT Fig. 3 HERE

Here we remark that maximising the likelihood of the above model with respect to the

time delays as well as the variance parameters and the scale factors would be an alternative

option to the sequential two-by-two least-squares approach considered in this paper. The
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number of additional parameters, 500 times the number of possible delays in this case, made

the ‘two-by-two’ procedure an easier route. It is also probable that the likelihood function

will not be identifiable in this highly parameterised approach.
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APPENDIX

Technical details

This section contains sketches of proofs of the theoretical results; for detail proofs, see a

University of Liverpool technical report by K. Mukherjee and R. H. Shumway.

Verification of Remark 2. In this section, we verify that Conditions 1-3 are satisfied when

{Xt; t ≥ 1} is a stationary linear process represented by

Xt =
∞∑

i=−∞
ψiZt−i,

where {Zt; t ∈ Z} is a white noise process with finite fourth moment and the sum with respect

to i is over the set of integers Z with
∑

i |ψi| < ∞. We assume that E(Zt) = 0, var(Zt) = σ2

and E(Z4
t ) = ησ4. Under these conditions, it can be shown that, with γ(k) = E(X0Xk),

E(XuXu+pXvXv+q)

= γ(p)γ(q) + γ(v − u)γ(v − u + q − p) + γ(v − u + q)γ(v − u− p)

+(η − 3)σ4
∑

i

ψiψi+pψi+v−uψi+v−u+q; (A1)
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see for example Shumway & Stoffer (2000, Eq. 1.142). Clearly, for every k ≥ 0, α(k) :=

∑
j |ψjψj+k| < ∞. However, we also need to assume that

∑
k α(k) < ∞. This is satisfied for

ARMA(p, q) processes.

To verify Condition 3, we use the stationarity of {Xt} in the second and third equality

and (A1) with p = 0, p = 0 = q and u = v at the fourth equality below to obtain that, for

s ≤ t,

cov(Ds,j, Dt,j) = E(Ds,jDt,j)− {E(XJ −Xj)
2}2

= E(Ds,jDt,j)− [2{γ(0)− γ(|J − j|)}]2

= E(X2
s X2

t ) + E(X2
t X2

s ) + E(X2
s+JX2

t+j) + E(X2
s+jX

2
t+J)

−2
{
E(X2

s+JXt+JXt+j) + E(X2
s+jXt+JXt+j) + E(X2

t+JXs+JXs+j) + E(X2
t+JXs+JXs+j)

}

+4E(Xs+jXs+JXt+jXt+J)−
{
4γ2(0) + 4γ2(|J − j|)− 8γ(0)γ(|J − j|)

}

= 2γ2(0) + 4γ2(t− s) + 2(η − 3)σ4
∑

i

ψ2
i ψ

2
i+t−s

+γ2(0) + 2γ2(|t− s + j − J |) + (η − 3)σ4
∑

i

ψ2
i ψ

2
i+|t−s+j−J |

+γ2(0) + 2γ2(|t− s + J − j|) + (η − 3)σ4
∑

i

ψ2
i ψ

2
i+|t−s+J−j|

−2{γ(0)γ(|J − j|) + T1) + γ(0)γ(|J − j|) + T2)

+γ(0)γ(|J − j|) + T3) + γ(0)γ(|J − j|) + T4)}

+4{γ2(|j − J |) + γ2(t− s) + γ(|t− s + J − j|)γ(|t− s + j − J |)

+(η − 3)σ4
∑

i

ψiψi+|t−s+J−j|ψi+t−sψi+|t−s+j−J |}

−4γ2(0)− 4γ2(|J − j|) + 8γ(0)γ(|J − j|),

where, for example, T1 is defined by

γ(0)γ(|J − j|) + T1 = E(X2
s+JXt+JXt+j)

= γ(0)γ(|J − j|) + 2γ(t− s)γ(|t− s + J − j|) + (η − 3)σ4
∑

i

ψ2
i ψi+t−sψi+|t−s+j−J |.
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Hence, cancelling the terms involving γ2(0) and γ2(|J − j|) and γ(0)γ(|J − j|), we obtain

cov(Ds,j, Dt,j)

= 4γ2(t− s) + 2(η − 3)σ4
∑

i

ψ2
i ψ

2
i+t−s

+2γ2(|t− s + j − J |) + (η − 3)σ4
∑

i

ψ2
i ψ

2
i+|t−s+j−J |

+2γ2(|t− s + J − j|) + (η − 3)σ4
∑

i

ψ2
i ψ

2
i+|t−s+J−j|

−2(T1 + T2 + T3 + T4)

+4{γ2(t− s) + γ(|t− s + J − j|)γ(|t− s + j − J |)

+(η − 3)σ4
∑

j

ψiψi+|t−s+J−j|ψi+t−sψi+|t−s+j−J |}.

The above involves terms of the form γ2(t− s), γ2(|t− s + j − J |), γ(|t− s + J − j|)γ(|t−

s + j − J |), γ(t− s)γ(|t− s + J − j|), ∑
i ψ

2
i ψ

2
i+t−s,

∑
i ψ

2
i ψ

2
i+|t−s+j−J |

∑
i ψ

2
i ψi+t−sψi+|t−s+j−J |

and
∑

i ψiψi+|t−s+J−j|ψi+t−sψi+|t−s+j−J |. We next show that sum of the above terms over

0 ≤ j ≤ nX − n, 1 ≤ s ≤ t ≤ n is o(n2). As representative proofs, we only show that

nX−n∑

j=0

∑

1≤s≤t≤n

γ2(t− s) = o(n2), (A2)

nX−n∑

j=0

∑

1≤s≤t≤n

∑

i

ψiψi+|t−s+J−j|ψi+t−sψi+|t−s+j−J | = o(n2). (A3)

Equation (A2) follows if we note that |γ(k)| ≤ C1, so that

∑

1≤s≤t≤n

γ2(t− s) ≤ C1

∑

k

|γ(k)| < ∞.

Similarly (A3) follows if we note that
∑

i |ψiψi+|t−s+J−j|ψi+t−sψi+|t−s+j−J || ≤ Cα(t−s). Hence

|
nX−n∑

j=0

∑

1≤s≤t≤n

∑

i

ψiψi+|t−s+J−j|ψi+t−sψi+|t−s+j−J ||

≤ C
nX−n∑

j=0

∑

1≤s≤t≤n

α(t− s) ≤ ∑

k

α(k)(nX − n) = o(n2).

Note that Conditions 2a and 2b are satisfied by the finiteness of the fourth moment. Also,

since {Xt; 1 ≤ t ≤ n} is stationary with autocorrelation function {γ(k)}, Condition 1 implies
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that, for all s 6= t, j 6= J ,

2γ(|t− s|)− γ(|t− s + j − J |)− γ(|t− s + J − j|) ≤ δ2 < δ1 ≤ 2{γ(0)− γ(|j − J |)}.

This is equivalent to saying that, for all u, v 6= 0,

2γ(|v|)− γ(|v + u|)− γ(|v − u|) ≤ δ2 < δ1 ≤ 2{γ(0)− γ(|u|)}.

For proving Theorem 1, we first summarise several implications of Conditions 1-4 in the

form of the following Lemma. For its proof, see the technical report by K. Mukherjee and R.

H. Shumway.

LEMMA A1. In the model (1) suppose that Conditions 1-4 hold. Then,

for all j 6= J, E{n−1
n∑

t=1

X2
t,j} ≥ (1− 1/n)(δ1 − δ2) = δ3n say, (A4)

nX−n∑

j=0,j 6=J

E{n−2
n∑

t=1

X2
t,j} = o(1), (A5)

nX−n∑

j=0,j 6=J

E(X̄J − X̄j)
2 = o(1), (A6)

nX−n∑

j=0,j 6=J

var(D̄j) = o(1), where D̄j = n−1
n∑

t=1

Dt,j. (A7)

Note that, in (A5)-(A7), the sum can also include j = J since the corresponding summands

are zero. However, to keep conformity with (A4), we exclude j = J from writing the sum.

Proof of Theorem 1. Since Ĵ and J are integer-valued random variables, it is equivalent

to proving that

lim pr(Ĵ = J) = 1. (A8)

Note that

pr(Ĵ = J) = pr[
nX−n⋂

j=0,j 6=J

{
n∑

t=1

(Yt −Xt+j − Ȳ + X̄j)
2 ≥

n∑

t=1

(Yt −Xt+J − Ȳ + X̄J)2}]. (A9)

From (1) and (2), Ȳ − X̄J = β + ε̄, where ε̄ =
∑n

t=1 εt/n. Hence Yt−Xt+J − Ȳ + X̄J = εt− ε̄.

Also, Yt − Xt+j − Ȳ + X̄j = εt − ε̄ + Xt,j. Therefore, using
∑n

t=1 Xt,j = 0, we obtain from
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(A9) that pr(Ĵ = J) = 1− pr[
⋃nX−n

j=0,j 6=J{
∑n

t=1 X2
t,j + 2

∑n
t=1 εtXt,j < 0}] and so, for (A8), it is

enough to show that

lim
nX−n∑

j=0,6=J

pr(n−1
n∑

t=1

X2
t,j + 2n−1

n∑

t=1

εtXt,j < 0) = 0. (A10)

Choose c such that (δ1 − δ2)/2 > c > 0. Fix any j 6= J . Then, with δ3n = (1− 1/n)(δ1 − δ2)

as defined in (A4),

pr(n−1
n∑

t=1

X2
t,j + 2n−1

n∑

t=1

εtXt,j < 0)

≤ pr(|n−1
n∑

t=1

εtXt,j| > c/2) + pr(n−1
n∑

t=1

{X2
t,j − EX2

t,j} < c− δ3n). (A11)

This follows because (A11) can be written, with the obvious identifications, as

pr(X + 2Y < 0) ≤ pr(Y < −c/2) + pr(X < c)

≤ pr(|Y | > c/2) + pr{X − E(X) < c− E(X)}

≤ pr(|Y | > c/2) + pr(X − E(X) < c− δ3n),

and δ3n < E(X) from (A4).

We bound the first probability in (A11) by applying Rosenthal’s inequality to the tail

probability of the sum of martingale differences; see Corollary 2.1 and Theorem 2.12 of

Hall & Heyde (1980). Rosenthal’s inequality states that, if {Dt; 1 ≤ t ≤ n} is a sequence of

martingale differences with respect to an increasing filtration {Dt; 1 ≤ t ≤ n}, Mk :=
∑k

t=1 Dt

and p ≥ 2, then there exists a constant C = C(p), such that, for any ε > 0,

pr(|Mn| > ε) ≤ pr
(

max
1≤k≤n

|Mk| > ε
)

≤ Cε−p




n∑

t=1

E|Dt|p + E

{
n∑

t=1

E(D2
t |Dt−1)

}p/2

 .

Fix j 6= J throughout. Note that, by independence between the X’s and the ε’s, Dt :=

n−1εtXt,j, 1 ≤ t ≤ n, is a sequence of martingale differences with respect to the sigma-field
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Dt := σ{Xl,j, εk; 1 ≤ l ≤ t, 1 ≤ k ≤ t−1}, 1 ≤ t ≤ n. Therefore, using Rosenthal’s inequality

with p = 2, we obtain

pr(|n−1
n∑

t=1

εtXt,j| ≥ c/2) ≤ C1(c)n
−2{

n∑

t=1

(Eε2
t EX2

t,j) + E(σ2
n∑

t=1

X2
t,j)}. (A12)

To bound the second probability in (A11), note that

n−1
n∑

t=1

(X2
t,j − EX2

t,j)

= n−1
n∑

t=1

[{(Xt+J −Xt+j)
2 − E(X̄J − X̄j)

2}]− {(X̄J − X̄j)
2 − E(X̄J − X̄j)

2}

= n−1
n∑

t=1

(Dt,j − EDt,j)− {(X̄J − X̄j)
2 − E(X̄J − X̄j)

2}.

Hence,

pr{n−1
n∑

t=1

(X2
t,j − EX2

t,j) < c− δ3n}

≤ pr{n−1
n∑

t=1

(Dt,j − EDt,j) < (c− δ3n)/2}+ pr{(X̄J − X̄j)
2 − E(X̄J − X̄j)

2 < (c− δ3n)/2}.

Note that, for all large n, there are some c1 and c2, such that 0 < c1 < δ3n − c < c2. Hence

the above probabilities are eventually bounded by

pr{|n−1
n∑

t=1

(Dt,j − EDt,j)| > (δ3n − c)/2}+ pr{|(X̄J − X̄j)
2 − E(X̄J − X̄j)

2| > (δ3n − c)/2}.

If now we apply Chebychev’s inequality and Markov’s inequality respectively, the sum of the

above two probabilities is bounded above by

C2var(D̄j) + C3E(X̄J − X̄j)
2, (A13)

for some constants C2 and C3. Combining (A12) and (A13), we obtain that (A11) is bounded

by a constant times

n−2
n∑

t=1

E(X2
t,j) + var(D̄j) + E(X̄J − X̄j)

2.

If we sum this over j 6= J , (A10) now follows from (A5), (A6) and (A7).

14



Proof of Theorem 2. For any x ∈ R,

pr{n1/2(β̂Ĵ − β) ≤ x} ≤ pr(Ĵ 6= J) + pr{n1/2(β̂J − β) ≤ x, Ĵ = J}.

By Theorem 1, the first probability is o(1). Using (1) and (2), we can easily see that n1/2(β̂J−

β) = n1/2ε̄ and so, by the ordinary central limit theorem, pr{n1/2(β̂J − β) ≤ x} → Φ(x/σ).
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Figure 1: (a) Logarithms of yearly varve thicknesses series from several locations, beginning

at 15,600 years before present. Series have been aligned by minimising squared error over pos-

sible lags. (b) The best alignment of the Massachussets fragment and the master Connecticut

sequence with a starting point beginning at 450 points into the Connecticut series.
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Figure 2: Local least-squares matching of varve segments to the master Connecticut seg-

ment with window-width n = 30. Best match ĵ(k) is on the ordinate. (a) Connecticut-

Massachussets1 plot shows uniform agreement with a starting point at 450. (b) Connecticut-

Massachussets2 plot shows matching at the end only, year 767, of the Connecticut series. (c)

Connecticut-Broadbrook plot shows varying start points ranging from 152-154, indicating

missing and extra varves. (d) Connecticut-Will Mansett plot shows matches at points 309

and 308 with a missing varve.
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Figure 3: Reconstructed 3000-year varve signal beginning 15,600 years before present. (a)

Initial and final means based on 50 estimated varve fragment series. (b) Merged signal along

with 95% probability limits.
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Table 1: Estimation of J based on simulated observations with various master series of

lengths nX and fragment lengths n. Values shown are pr(Ĵ = J) based on 500 repetitions at

a signal-to-noise ratio of unity, with a first-order moving average used for the signal.

Master series length
Fragment nX = 50 nX = 100 nX = 500

n = 10 0.802 0.712 0.394
n = 20 0.992 0.974 0.886
n = 30 1.000 0.994 0.988
n = 40 1.000 1.000 1.000
n = 50 1.000 1.000 1.000
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