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Abstract

Loiasis is a neglected tropical disease (NTD) caused by the parasitic roundworm Loa
loa. A challenge faced by current multi-national programmes to control two other dis-
eases, Lymphatic filariases and Onchocerciasis, by mass administration of prophylactic
medication to at-risk communities is that individuals highly co-infected with Loa loa
are at risk of developing serious adverse reactions to the medication. For this reason,
understanding the geographical distribution of Loa loa prevalence and the distribution of
microfilarial loads in communities have become of crucial importance. In this paper we
extend the methodology developed by Schlüter et al. (2016) to analyse data on microfi-
lariae counts per millilitre of blood. One feature of the data is the excess of zero counts
which makes the use of standard geostatistical methods for prevalance data inappropri-
ate. This phenomenon, also known as zero-inflation, is typical of count data from NTDs,
whose endemic boundaries are often unknown, thus leading to the inclusion of disease-
free communities in the sampling frame. We introduce a bivariate geostatistical model
in order to study the relationship between the distributions of prevalence and intensity
of Loa loa infections at community level. We show through a simulation study that the
spatial model leads to more precise spatial predictions than the non-spatial approach
used by Schlüter et al. (2016), and accordingly provide a geostatistical re-analysis of the
Loa loa data.

Keywords: disease mapping; geostatistics; Loa loa; neglected tropical diseases; spatial cor-
relation; zero-inflation.

1 Introduction

Loiasis, also known as the African eye worm, is a parasitic helminth disease caused by the
nematode Loa loa. Although endemic in several countries across central and western Africa,

1



most individuals infected with Loa loa present at most mild symptoms such as itchy Cal-
abar swellings and the movement of adult worms across the eye (CDC, 2015). Other filarial
diseases that are endemic in the same regions, however, constitute serious public health prob-
lems, namely Lymphatic Filariasis (LF) and Onchocerciasis. LF adversely affects the immune
system and can lead to lymphoendema and thickening and hardening of the skin due to an
increase in bacterial infections, a condition called elephantiasis (WHO, 2016a). Onchocerci-
asis, commonly known as River Blindness, includes symptoms of disfiguring skin conditions
and eye lesions leading to visual impairment or even permanent blindness (WHO, 2016b).

Over 120 million people in Africa, South America and Asia are affected by LF and more
than 123 million are at risk of being infected with Onchocerciasis (CDC, 2013a,b). The World
Health Organisation (WHO) has targeted both diseases for elimination and has launched mass
drug administration (MDA) programs to interrupt transmission (Taylor et al., 2010; Keating
et al., 20014). The LF elimination program is based on annual mass administration of a single
dose of diethylcarbamazine or ivermectin combined with albendazole, while the onchocerciasis
elimination program is based on mass administration of ivermectin only (Taylor et al., 2010).
Although these drugs are generally considered safe, it is now known that individuals who are
highly co-infected with Loa loa parasites are at risk of developing seriours adverse events, such
as encephalopathy, which can lead to permanent brain damage or even death (Carme et al.,
1991; Gardon et al., 1997; Boussinesq et al., 1999, 2001). Therefore, the MDA programme
has been inhibited in regions where Loa loa is endemic (Mackenzie et al., 2012; Geary, 2012).
Highly infected individuals are most likely to be found in communities with high Loa loa
prevalence. Thus, efforts to date have focussed on mapping Loa loa prevalence to distinguish
areas in which LF and Onchocerciasis can be safely treated from those in which caution is
needed (Thomson et al., 2004; Diggle et al., 2007; WHO, 2012). Work has also been done to
understand the distribution of Loa loa microfilarial loads in communities (Pion et al., 2006;
Schlüter et al., 2016).

In this paper we focus on the work reported in Schlüter et al. (2016), who analysed data
on microfilarial loads of individuals in villages across Cameroon, the Democratic Republic of
Congo and the Republic of the Congo to investigate the relationship between community-
level prevalence and the proportion of highly infected individuals. The data in Schlüter
et al. (2016) were collected in two field studies conducted in the West and East provinces
of Cameroon (Takougang et al., 2002), and in the Republic of the Congo and the Bas-Congo
and Orientale regions of the Democratic Republic of Congo (Wanji et al., 2012), respectively.
In their analysis, the authors modelled the microfilariae (MF) counts per millilitre (ml) of
blood from 19,128 individuals sampled across 222 villages. One of their objectives was to
develop a statistical model to be used as an operational tool by public health workers, in
order to predict the proportion of people in a village with an MF load exceeding a policy-
relevant threshold of counts per ml of blood. An important feature of the data was the excess
of zero counts, which invalidate the use of standard statistical models for count data.

This phenomenon, also known as zero-inflation, is a common feature of count data on ne-
glected tropical diseases (NTDs). See, for example, Oluwole et al. (2015) for a case-study
on soil-transmitted helminths. Since the natural boundaries of NTDs are usually unknown,
zero-inflation can arise from the sampling of disease-free communities. This issue has been
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addressed by Diggle & Giorgi (2016), who introduce a geostatistical framework in order to
distinguish between zero cases as a result of this phenomenon from those that are a chance
finding in endemic areas.

In the analysis by Schlüter et al. (2016), zero-inflation was taken into account by using a
non-spatial, mixed effects Weibull-mixture model, with two distinct linear predictors for MF
prevalence and intensity. Schlüter et al. (2016) assumed independent and identically dis-
tributed village-level random effects whilst allowing for cross-correlation between intensity
and prevalence. They found a positive correlation between prevalence and intensity of infec-
tion which they then exploited to predict the proportion of individuals with infection levels
above policy-relevant thresholds.

Our objective in this study is to extend the approach developed by Schlüter et al. (2016)
within a geostatistical framework so as to model the relationship between prevalence and
intensity. We use a simulation study to compare the predictive performance of the spatial and
non-spatial models, and re-analyse the Loa loa data from Schlüter et al. (2016). In summary,
our results strongly suggest that the use of this novel geostatistical approach leads to more
precise prediction of community-level distributions of Loa loa infection.

The structure of the paper is the following. In Section 2, we review available methods and
recent advances in the modelling of count data that exhibit zero-inflation. In Section 3, we
introduce a bivariate geostatistical model to study the relationship between prevalence and
intensity of Loa loa infections. In Section 4, we outline a Monte Carlo maximum likelihood
procedure for likelihood-based inference. In Section 5, we illustrate an application of the
model to the re-analysis of the Loa loa data. We then carry out a simulation study in Section
6 in order to validate the inferential properties of the model and to quantify the effects on
spatial prediction that result from ignoring the residual spatial correlation in the data. Section
7 is a concluding discussion, where we also outline the wider applicability of the developed
methodology.

2 Statistical models for zero-inflation

The problem known as zero-inflation arises whenever the distribution of a variable of interest,
say Y , includes an additional probability mass at zero, hence P(Y ≤ y) = (1 − π) + πG(y),
where G(·) is a distribution function with support confined to IR+ or a sub-set thereof, for
example the set of non-negative integers. In this paper, we use the equivalent specification of
zero-inflation as

Y = Y1Y2, (1)

where Y1 is binary variable such that P (Y1 = 1) = π and Y2 is a random variable with
probability function, if discrete, or density function, if continuous, g(·), and assume that Y1
and Y2 are independent. The resulting distribution of Y is a mixture given by

f(y) = 1(y = 0)(1− π) + 1(y > 0)πg(y), (2)

where 1(·) is the indicator function. A common modelling choice for non-negative integer-
valued Y2 is a Binomial distribution if the counts are finite, or Poisson if open-ended (Lambert,
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1992). In cases where it is desirable to model the zero observations separately from the positive
counts, “hurdle” models (Mullahy, 1986) then define the distribution of Y2 as a truncated
model that modifies an ordinary distribution by conditioning on a positive outcome.

In disease mapping applications, Y typically corresponds to the number of diagnosed positive
cases for a disease under investigation, in a community living at a geographical location x.
Zero-inflation might then arise through the inclusion in the sampling frame of areas where
environmental conditions do not allow disease transmission.

To emphasize the spatial context of the current paper, we write Y (x) = Y1(x)Y2(x). We also
assume that Y2(x) has expectation

E[Y2(x)] = mµ(x),m > 0,

where m is an off-set. Let h1{·} and h2{·} denote two link functions such that h1{π(x)} and
h2{µ(x)} can each take any real value. Models for Y (x) that do not take account of spatial
correlation use spatially referenced, explanatory variables, say d(x), as terms in the linear
predictors for π(x) and µ(x), hence

h1{π(x)} = d(x)>β1 (3)

and
h2{µ(x)} = d(x)>β2, (4)

where β1 and β2 are vectors of regression coefficients.

However, the data might also exhibit over-dispersion as a result of residual correlation in-
duced by unmeasured explanatory variables. For example, Min & Agresti (2005) study the
phenomenon of zero-inflation in the case of longitudinal data and propose zero-inlflated models
with random effects so as to account for within subject-correlation.

In Schlüter et al. (2016), the outcome of interest Y (x) represents the MF density of an indi-
vidual living at a village location x. They assume that Y (x) is dependent on a latent bivariate
zero-mean Gaussian random variable Z(x) = (Z1(x), Z2(x)), and that the Z(x) at different
locations are stochastically independent. They then assume that conditionally on Z1(x) and
Z2(x), Y1(x) is a Bernoulli variable with probability of success π(x), such that

h1{π(x)} = d(x)>β1 + Z1(x), (5)

and Y2(x) has a Weibull distribution with shape parameter κ and expectation E[Y2(x)] =
Γ(1 + 1/κ)µ(x), where µ(x) is modelled as

h2{µ(x)} = d(x)>β2 + Z2(x). (6)

Geostatistical zero-inflated models have previously been used in ecology (Agarwal et al., 2002)
and in epidemiology (Amek et al., 2011; Giardina et al., 2012). All of these authors assume
that Y2(x) is either Binomial or Poisson, conditionally on spatially structured random effects,
S(x), and unstructured random effects, Z(x). The linear predictor for µ(x) is then defined as

h2{µ(x)} = d(x)>β2 + S(x) + Z(x).
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In contast, they assume that π(x) depends on a limited set of explanatory variables, as defined
by (3). They then model the spatial process S(x) as a stationary Gaussian process, and the
unstructured component Z(x) as Gaussian white noise. If the conditional distribution of Y2(x)
is Poisson, an alternative choice is to assume exp{Z(x)} to be Gamma noise, in which case
integrating out Z(x) leads to a negative-binomial distribution for Y2(x), conditionally on S(x).
However the differences between these two approaches are, in general, negligible (Firth, 1988).

Diggle & Giorgi (2016) introduce a more general framework by incorporating spatial random
effects into both µ(x) and π(x). They then model the resulting linear predictors h1{·} and
h2{·} using a tri-variate spatial process (S1(x), S2(x), T (x)) to give

h1{π(x)} = d(x)>β1 + S1(x) + T (x)

and
h2{µ(x)} = d(x)>β2 + S2(x) + T (x).

where T (x) is used to model residual spatial variation that jointly affects π(x) and µ(x).
However, recovering S1(x), S2(x) and T (x) from the data is a challenge, that requires a
pragmatic response owing to the limited identifiability of the model parameters of all three
latent processes. For this reason, in their application to river blindness mapping Diggle &
Giorgi (2016) then set T (x) = 0 for all x. In the next Section, we adapt this framework to
develop a parsimonious model for relationship between Loa loa prevalence and intensity while
retaining all three of the latent spatial components.

3 A geostatistical zero-inflated Weibull-mixture model

Let Yj(xi) denote MF density, measured as the number of MF per ml in a blood sample,
for the j-th sampled individual at the village location xi. Let Sh = {S(x) : x ∈ A}, for
h = 1, 2, and T = {T (x) : x ∈ A} denote a set of three independent stationary zero-
mean Gaussian processes with unit variance. For each spatial process, we assume isotropic
exponential covariance functions, hence

corr{Sh(x), Sh(x
′)} = exp{−u/φSh

}, h = 1, 2,

and
corr{T (x), T (x′)} = exp{−u/φT},

where u is the Euclidean distance between x and x′.

We then assume that conditionally on S1, S2 and T , the cumulative distribution function
(cdf) of MF density Y (x) at a village location x is given by

F{y(x)} = 1− π(x) + π(x)G{y(x);κ}, if y(x) > 0, (7)

where G{·;κ} is a continuous cdf indexed by the parameter κ, and π(x) = 1 − F (0) is the
disease prevalence, at location x. We model G{·;κ} as a Weibull distribution with cdf

G{y(x);κ} = 1− exp

{
−
[
y(x)

µ(x)

]κ}
,
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where µ(x) is a spatially varying scale parameter and κ is a shape parameter, assumed to be
common to all locations. Finally, we model the spatial variation in π(x) and µ(x) as

log

{
π(x)

1− π(x)

}
= µ1 + σ1[S1(x) + T (x)]

and
log{µ(x)} = µ2 + σ2[S2(x) + T (x)],

where σ2
1 and σ2

2 are the variances of the linear predictors for prevalence and intensity, re-
spectively. This constrains the component spatial processes to have the same variance whilst
allowing the two linear predictors to have different variances. In this formulation, T (x) con-
tributes to the spatial variation of both prevalence and intensity whereas S1(x) and S2(x)
account for independent residual spatial variation in prevalence and intensity, respectively.

The resulting standardized variogram for the linear predictors of prevalence and intensity is

γh(u) = 1− 1

2
(exp{−u/φSh

}+ exp{−u/φT}) , for h = 1, 2. (8)

Finally, using the definition of Cressie (1993, page 66, equation 2.3.19), the standardized
cross-variogram between the two linear predictors is

γ12(u) =
1

2
E[(S1(x) + T (x)− S2(x

′)− T (x′))2]

= 1− exp{−u/φT}. (9)

4 Inference

Let y> = (yij, i = 1, . . . , n, j = 1, . . . ,mi) denote the vector of the observed MF densities
yij, for the j-th person at the i-th village. Also, let W> = (W>

1 , . . . ,W
>
n ), where W>

i =
(S1(xi)+T (xi), S2(xi)+T (xi)) is the bivariate vector of random effects associated with location
xi for i = 1, . . . , n.

The marginal distribution of W is multivariate Gaussian with mean zero and covariance matrix

Σ =

(
σ2
1 [ΣS1 + ΣT ] σ1σ2ΣT

σ1σ2ΣT σ2
2 [ΣS2 + ΣT ]

)
,

where ΣSh
and ΣT are spatial covariance matrices associated with the processes Sh, for h = 1, 2,

and T , respectively. Using f(a) as a shorthand notation for “the density function f , of a
random variable A,” the likelihood function for the vector parameter θ is

L(θ) =

∫
R2n

f(w)f(y|w) dw (10)

where

f(y|w) =
n∏
i=1

mi∏
j=1

f(yij|wi)
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and f(y|w) is the density function corresponding to the cdf given by (7). We now rewrite the
intractable integral in (10) as

L(θ) =

∫
R2n

f(w)f(y|w)

f0(w)f0(y|w)
f0(y, w) dw

∝
∫
R2n

f(w)f(y|w)

f0(w)f0(y|w)
f0(w|y) dw

= Ef0(w|y)

[
f(w)f(y|w)

f0(w)f0(y|w)

]
, (11)

where f0(w) and f0(y|w) have the same distributions of f(w) and f(y|w) but with parameter
vector θ0 chosen as a “best guess” of the true value of θ. We then simulate B samples, say
w(k), from f0(w|y) and approximate (11) as

L(θ) ≈ LB(θ) =
1

B

B∑
k=1

f(w(k))f(y|w(k))

f0(w(k))f0(y|w(k))
. (12)

We then maximize (12), using numerical procedures, to obtain the MCML estimate θ̂B of θ.
To improve the approximation of the likelihood function, we then repeat this procedure by
setting θ0 = θ̂B and re-iterate until convergence.

To simulate from the distribution of f0(w|y), we adapt the MCMC algorithm proposed in
Diggle & Giorgi (2016). Specifically, we use a Metropolis-adjusted Langevin MCMC algorithm
to update the standardized vector of random effects W̃ = Σ̂−1/2(W − ŵ), where ŵ and Σ̂ are
the mode and the the inverse of the negative Hessian of f0(w|y) at ŵ, respectively.

Our predictive target, R(x), is the probability that a randomly sampled individual at location
x has an MF density above a predefined threshold c, hence

R(xi) = P {Y (xi) > c|Wi} = π(xi) exp

{
−
[

c

λ(xi)

]κ}
, for i = 1, . . . , n. (13)

5 Re-analysis of the Loa loa data

Table 1 reports MCML estimates for the model parameters. These were obtained by repeating
the MCML algorithm five times and, each time, using 10,000 samples by retaining every tenth
sample in 100,000 iterations after a burn-in of 10,000 iterations. The retained samples showed
very good mixing and small autocorrelation up to lag five.

We also set φS1 = φS2 = φS, as a pragmatic strategy to circumvent a rather flat likelihood
surface for these parameters. A Wald test of the null hypothesis that log{φS1/φS2} = 0 give
a non-significant result (p > 0.05).

The estimates of µ1, µ2, σ
2
1, σ2

2 and κ are comparable with those reported by Schlüter et al.
(2016). Additionally, the processes S1 and S2 account for spatial variation in MF density up to
about 35 km, beyond which their correlation function falls below 0.05, whilst the corresponding
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spatial range of the T process is about 300 km. This spatial structure is clearly visible from
the map of point predictions (conditional expectations) of R(x) shown in Figure 1.

Figure 2 shows the standardized empirical variograms and cross-covariograms based on the
point predictions of Z1(x) and Z2(x) delivered by the non-spatial model of Schlüter et al.
(2016), as defined in equations (5) and (6). Each panel suggests the presence of residual
spatial correlation, and does not show strong evidence against the fitted correlation structure.

The two panels of Figure 3 compare the point predictions and lengths of the 95% predictive
intervals for the fraction of individuals with more than 8000 MF per ml of blood, from the
fitted spatial and non-spatial models. Whilst the point estimates are in good agreement, the
spatial model provides more accurate predictions, with lengths for the 95% predictive intervals
almost always shorter than those from the non-spatial model. An intuitive explanation for
this is that the spatial model can gain precision by borrowing strength of information from
neighbouring villages.

Table 1: Monte Carlo maximum likelihood estimates and their 95% confidence intervals (CI)
for the model of Section 3.

Estimate 95% CI
µ1 -2.187 (-2.230, -2.144)
µ2 8.258 (8.190, 8.327)
σ2
1 0.874 (0.663, 1.152)
σ2
2 0.146 (0.111, 0.193)

φS 17.982 (13.012, 24.850)
φT 154.520 (72.402, 329.774)
κ 0.552 (0.537, 0.568)

6 Simulation study

The objectives of this simulation study were (1) to validate the properties of the predictive
inferences from the spatial model of Section 3, and (2) to quantify the effects of residual spatial
correlation on the predictive performance of the non-spatial model by Schlüter et al. (2016).

We generated 10,000 data-sets under the fitted spatial model in Section 5 by simulating, at
each of the observed village location, the latent variables S1(x), S2(x) and T (x), and the
corresponding MF counts for each of the 19,128 sampled individuals. The model parameters
were fixed at the MCML estimates shown in Table 1. For each of the simulated data-sets
and each of the two models, we first estimated the model parameters, then computed plug-in
point predictions of R(x) at each of the village locations. Finally, we summarised the results at
each village location by calculating the empirical root-mean-square-error (RMSE), predictive
interval length (PIL) and coverage probability (CP) at nominal levels of 90%, 95% and 99%
coverage.

Table 2 reports the values of each of these summary measures averaged over all sampled
villages. Both the spatial and non-spatial models give predictive intervals with CP consistent
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Figure 1: Expected fraction of individuals with more than 8000 MF counts per ml of blood,
in each of the sampled viallges in the study sites in Cameroon (upper panel), the Republic of
Congo (central panel) and the Democratic Republic of Congo (lower panel).
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Figure 2: Empirical standardized variograms based on the predictive mean of the random
effects associated with prevalence (a) and intensity (b), and their standardized cross-variogram
(c), from the non-spatial model of Schlüter et al. (2016). The dashed lines represent the
theoretical standardized variograms and cross-variogram from fitted model of Section 3, given
by (8) and (9), respectively.

10



0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

(a)

Non−spatial model

S
pa

tia
l m

od
el

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

(b)

Non−spatial model

S
pa

tia
l m

od
el

Figure 3: Scatter plot of the point estimates (a) and length of the 95% predictive intervals
(b) for the prediction target, defined in (13) with c = 8000, from the non-spatial model of
Schlüter et al. (2016) and the spatial model of Section 3.
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with their nominal levels, but the spatial model shows a better predictive performance overall,
as it gives accurate coverage alongside smaller average values of RMSE and PIL

Table 2: Simulation study summaries: root-mean-square-error (RMSE), length of the predic-
tive interval with coverage with coverage (PIL100×α) and their coverage probability (CP100×α),
with nominal level α = 0.90, 0.95, 0.99, for the predictor of (13) from the spatial and non-
spatial model, averaged across all the sampled villages.

Model RMSE PIL90 PIL95 PIL99 CP90 CP95 CP99

Spatial 0.013 0.033 0.040 0.053 0.895 0.947 0.989
Non-spatial 0.015 0.041 0.049 0.066 0.901 0.949 0.988

7 Discussion

We have developed a geostatistical zero-inflated Weibull-mixture model in order to study the
relationship between prevalence and intensity of Loa loa infections. By re-analysing extensive
Loa loa data previously used by Schlüter et al. (2016) and conducting a simulation study,
we have shown that both the non-spatial model used in Schlüter et al. (2016) and our pro-
posed spatial model deliver predictions of the proportion of highly infected individuals in a
community that have the correct coverage properties, but the spatial model leads to shorter
predictive intervals. These results support the notion, often implicitly assumed, that spatial
correlation should be exploited whenever it is present, so as to make the best possible use of
the information in the data.

The main advantages of the non-spatial model over the spatial model concern its practical
utility in low resource settings. Once model parameters have been estimated with sufficient
precision that parameter uncertainty is an order of magnitude smaller than prediction uncer-
tainty, the non-spatial model can be applied to data from a newly sampled community with
minimal computational and data-storage requirements; at the time of writing, the non-spatial
model is being field-tested in rural west African communities. From this perspective, it is
important that in the presence of spatial autocorrelation the non-spatial model leads to pre-
dictive intervals with approximately correct coverage properties, at the cost of some loss of
precision.

Another issue inherent to the additional complexity of the spatial model is that it requires
large amounts of data in order to estimate all model parameters with high precision. Our
strategy for dealing with a flat likelihood surface was to reduce the number of parameters
that determine the spatial covariance structure of the data. An alternative, if informative
piors can be justified, would be to use Bayesian methods of inference.

The methods presented in this paper can be applied more widely to problems that involve
spatially structured zero-inflation. The authors are currently applying these methods to the
mapping of other NTDs, such as Onchocerciasis, soil-transmitted helminths and Lymphatic
Filariasis. Another area of application is to the modelling of zero-inflated longitudinal data;
see, for example, Olsen & Schafer (2001) on healthcare utilization, Rose et al. (2006) on
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adverse events post-vaccination, Buu et al. (2012) on substance abuse and Min & Agresti
(2005) on treatment comparison.
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