C-SUPPLEMENTED SUBALGEBRAS OF LIE ALGEBRAS

DAVID A. TOWERS

Abstract

A subalgebra B of a Lie algebra L is c-supplemented in L if there is a subalgebra C of L with $L = B + C$ and $B \cap C \leq B_L$, where B_L is the core of B in L. This is analogous to the corresponding concept of a c-supplemented subgroup in a finite group. We say that L is c-supplemented if every subalgebra of L is c-supplemented in L. We give here a complete characterisation of c-supplemented Lie algebras over a general field.

Mathematics Subject Classification 2000: 17B05, 17B20, 17B30, 17B50.

Key Words and Phrases: Lie algebras, c-supplemented subalgebras, completely factorisable algebras, Frattini ideal, subalgebras of codimension one.

1 Introduction

The concept of a c-supplemented subgroup of a finite group was introduced by Ballester-Bolinches, Wang and Xiuyun in [2] and has since been studied by a number of authors. The purpose of this paper is study the corresponding idea for Lie algebras. As we shall see, stronger results can be obtained in this context.

Throughout L will denote a finite-dimensional Lie algebra over a field F. If B is a subalgebra of L we define B_L, the core (with respect to L) of B to be the largest ideal of L contained in B. We say that B is core-free in L if $B_L = 0$. A subalgebra B of L is c-supplemented in L if there is a subalgebra C of L with $L = B + C$ and $B \cap C \leq B_L$. We say that L is c-supplemented
if every subalgebra of L is c-supplemented in L. We shall give a complete
characterisation of c-supplemented Lie algebras over a general field.

Following [4] we will say that L is completely factorisable if for every
subalgebra B of L there is a subalgebra C such that $L = B + C$ and $B \cap C = 0$. It turns out that c-supplemented Lie algebras are intimately related to
the completely factorisable ones, and our results generalise some of those
obtained in [4]. Incidentally, it is claimed in [4] that if F has characteristic
zero then L is completely factorisable if and only if the Frattini subalgebra
of every subalgebra of L is trivial. We shall see that this is false.

If A and B are subalgebras of L for which $L = A + B$ and $A \cap B = 0$
we will write $L = A \dot{+} B$; if, furthermore, A, B are ideals of L we write
$L = A \oplus B$. The notation $A \leq B$ will indicate that A is a subalgebra of $B,$
and $A < B$ will mean that A is a proper subalgebra of B.

\section{Preliminary results}

First we give some basic properties of c-supplemented subalgebras

\textbf{Lemma 2.1} \hspace{2mm} (i) If B is c-supplemented in L and $B \leq K \leq L$ then B is
c-supplemented in K.

(ii) If I is an ideal of L and $I \leq B$ then B is c-supplemented in L if and
only if B/I is c-supplemented in L/I.

(iii) If X is the class of all c-supplemented Lie algebras then X is subalgebra
and factor algebra closed.

\textit{Proof.}

(i) Suppose that B is c-supplemented in L and $B \leq K \leq L$. Then there
is a subalgebra C of L with $L = B + C$ and $B \cap C \leq B_L$. It follows
that $K = (B + C) \cap K = B + C \cap K$ and $B \cap C \cap K \leq B_L \cap K \leq B_K$,
and so B is c-supplemented in K.

(ii) Suppose first that B/I is c-supplemented in L/I. Then there is a
subalgebra C/I of L/I such that $L/I = B/I + C/I$ and $(B/I) \cap
(C/I) \leq (B/I)_{L/I} = B_L/I$. It follows that $L = B + C$ and $B \cap C \leq B_L$,
whence B is c-supplemented in L.
Suppose conversely that \(I \) is an ideal of \(L \) with \(I \leq B \) such that \(B \) is \(c \)-supplemented in \(L \). Then there is a subalgebra \(C \) of \(L \) such that \(L = B + C \) and \(B \cap C \leq B_L \). Now \(L/I = B/I + (C + I)/I \) and \((B/I) \cap (C + I)/I = (B \cap (C + I))/I = (I + B \cap C)/I \leq B_L/I = (B/I)_{L/I} \), and so \(B/I \) is \(c \)-supplemented in \(L/I \).

(iii) This follows immediately from (i) and (ii).

The Frattini ideal of \(L \), \(\phi(L) \), is the largest ideal of \(L \) contained in all maximal subalgebras of \(L \). We say that \(L \) is \(\phi \)-free if \(\phi(L) = 0 \). The next result shows that subalgebras of the Frattini ideal of a \(c \)-supplemented Lie algebra \(L \) are necessarily ideals of \(L \).

Proposition 2.2 Let \(B, D \) be subalgebras of \(L \) with \(B \leq \phi(D) \). If \(B \) is \(c \)-supplemented in \(L \) then \(B \) is an ideal of \(L \) and \(B \leq \phi(L) \).

Proof. Suppose that \(L = B + C \) and \(B \cap C \leq B_L \). Then \(D = D \cap L = D \cap (B + C) = B + D \cap C = D \cap C \) since \(B \leq \phi(D) \). Hence \(B \leq D \leq C \), giving \(B = B \cap C \leq B_L \) and \(B \) is an ideal of \(L \). It then follows from [6, Lemma 4.1] that \(B \leq \phi(L) \).

The Lie algebra \(L \) is called elementary if \(\phi(B) = 0 \) for every subalgebra \(B \) of \(L \); it is an \(E \)-algebra if \(\phi(B) \leq \phi(L) \) for all subalgebras \(B \) of \(L \). Then we have the following useful corollary.

Corollary 2.3 If \(L \) is \(c \)-supplemented then \(L \) is an \(E \)-algebra.

Proof. Simply put \(B = \phi(D) \) in Proposition 2.2.

It is clear that if \(L \) is completely factorisable then it is \(c \)-supplemented. However, the converse is false. Every completely factorisable Lie algebra must be \(\phi \)-free, whereas the same is not true for \(c \)-supplemented algebras. For example, the three-dimensional Heisenberg algebra is \(c \)-supplemented, as will be clear from the next result which gives the true relationship between these two classes of algebras.

Proposition 2.4 Let \(L \) be a Lie algebra. Then the following are equivalent:
(i) L is c-supplemented.

(ii) $L/\phi(L)$ is completely factorisable and every subalgebra of $\phi(L)$ is an ideal of L.

Proof. (i) \Rightarrow (ii): Suppose first that L is ϕ-free and c-supplemented, and let B be a subalgebra of L. Then there is a subalgebra C of L such that $L = B + C$. Choose D to be a subalgebra of L minimal with respect to $L = B + D$. Then $B \cap D \leq \phi(D)$, by [6, Lemma 7.1], whence $B \cap D = 0$ since L is elementary, by Corollary 2.3. Hence L is completely factorisable, and (ii) follows from Lemma 2.1(iii) and Proposition 2.2.

(ii) \Rightarrow (i): Suppose that (ii) holds and let B be a subalgebra of L. Then there is a subalgebra $C/\phi(L)$ of $L/\phi(L)$ such that $L/\phi(L) = (B + \phi(L))/\phi(L) + (C/\phi(L))$ and $0 = ((B + \phi(L))/\phi(L)) \cap (C/\phi(L)) = (B \cap C + \phi(L))/\phi(L)$. Hence $L = B + C$ and $B \cap C \leq \phi(L)$, so $B \cap C$ is an ideal of L and $B \cap C \leq B_L$; that is, L is c-supplemented.

Note that if L is the three-dimensional Heisenberg algebra, then condition (ii) in the above result holds, since $\phi(L) = L^2$ is one dimensional and $L/\phi(L)$ is abelian. Finally we shall need the following result concerning direct sums of completely factorisable Lie algebras.

Lemma 2.5 If A and B are completely factorisable, then so is $L = A \oplus B$.

Proof. Suppose that A, B are completely factorisable and put $L = A \oplus B$. Let U be a subalgebra of L. If $A \leq U$, then $U = A \oplus (B \cap U)$. Since B is completely factorisable there is a subalgebra C of B such that $B = B \cap U + C$ and $U \cap C = B \cap U \cap C = 0$. Hence $L = U + C$.

Now $A \leq A + U$ so, by the above, there is a subalgebra C of B with $L = A + U + C$ and $(A + U) \cap C = 0$. Moreover, since A is completely factorisable, there is a subalgebra D of A such that $A = A \cap U + D$ and $U \cap D = A \cap U \cap D = 0$. It follows that $L = U + (D \oplus C)$ and $U \cap (D + C) \leq U \cap [(A + U) \cap (D + C)] = U \cap [D + (A + U) \cap C] = U \cap D = 0$. It follows that L is completely factorisable.

Note that the corresponding result for c-supplemented Lie algebras is false. For, let $L_1 = Fx + Fy + Fz$ with $[x, y] = -[y, x] = y + z$, $[x, z] = -[z, x] = z$ and all others products equal to zero. Then it is straightforward to check that $\phi(L_1) = Fz$ and that L_1 is c-supplemented. Now take L to be
a direct sum of two copies of L_1: say, $L = A \oplus B$ where $A = Fx + Fy + Fz$, $B = Fa + Fb + Fc$, $[x, y] = -[y, x] = y + z, [x, z] = -[z, x] = z, [a, b] = -[b, a] = b + c, [a, c] = -[c, a] = c$ and all others products equal to zero. Suppose that $F(z + c)$ is c-supplemented in L. Then there is a subalgebra M of L with $L = F(z + c) + M$ and $F(z + c) \cap M \leq (F(z + c))_L$. If $z + c \notin M$ then M is a maximal subalgebra of L, contradicting the fact that $z + c \in (\phi(A) \oplus \phi(B)) = \phi(L)$, by [6, Theorem 4.8]. It follows that $z + c \in M$, whence $F(z + c)$ is an ideal of L. But $[x, z + c] = z \notin F(z + c)$, a contradiction. Thus L is not c-supplemented in L.

3 The structure theorems

We can now give the main structure theorems for c-supplemented Lie algebras. First we determine the solvable ones.

Theorem 3.1 Let L be a solvable Lie algebra. Then the following are equivalent:

(i) L is c-supplemented.

(ii) L is supersolvable and every subalgebra of $\phi(L)$ is an ideal of L.

Proof. (i) \Rightarrow (ii): We have that every subalgebra of $\phi(L)$ is an ideal of L by Proposition 2.4, so we have only to show that L is supersolvable. Let L be a minimal counter-example. Then all proper subalgebras and factor algebras of L are supersolvable, by Lemma 2.1(iii). If we can show that all maximal subalgebras have codimension one in L, we shall have the desired contradiction, by [3, Theorem 7]; so let M be any maximal subalgebra of L. Since the result is clear if $M_L \neq 0$, we may assume that $M_L = 0$.

Pick a minimal ideal A of L. Then $L = A \oplus M$ and A is the unique minimal ideal of L, by [7, Lemma 1.4]. Let $a \in A$. Then Fa is c-supplemented in L, and so there is a subalgebra B of L such that $L = Fa + B$ and $Fa \cap B \leq (Fa)_L$. If $a \in B$ then Fa is an ideal of L, whence $A = Fa$ and M has codimension one in L.

So suppose that $L = Fa + B$. Since $A \not\leq B$ we have $B_L = 0$. But then $L = A + B$ by [7, Lemma 1.4] again. It follows that $\dim A = 1$ and M has codimension one in L.

5
(ii) ⇒ (i): By Proposition 2.4, it suffices to show that if \(L \) is supersolvable and \(\phi \)-free then it is completely factorisable. Let \(L \) be a minimal counterexample. Then \(L \) is elementary, by [5, Theorem 1], and so every proper subalgebra of \(L \) is completely factorisable. Also \(L = A + B \) where \(A = Fa_1 \oplus \ldots \oplus Fa_n \) is the abelian socle of \(L \) and \(B \) is abelian, by [7, Theorem 7.3]. Let \(U \) be a subalgebra of \(L \). If \(A \leq U \) it is clear that there is a subalgebra \(C \) of \(L \) such that \(L = U + C \) and \(U \cap C = 0 \). So suppose that \(a_i \notin U \) for some \(1 \leq i \leq n \); we may as well assume that \(i = 1 \). Then \(L/Fa_1 \cong (Fa_2 \oplus \ldots \oplus Fa_n) + B \), which is a proper subalgebra of \(L \) and so is completely factorisable. Hence there is a subalgebra \(C \) of \(L \) such that \(L/Fa_1 = ((U + Fa_1)/Fa_1) + (C/Fa_1) \) and \(Fa_1 = (U + Fa_1) \cap C = U \cap C + Fa_1 \). It follows that \(L = U + C \) and \(U \cap C \leq Fa_1 \). But \(a_1 \notin U \cap C \) so \(U \cap C = 0 \) and \(L \) is completely factorisable, a contradiction.

We shall need the following classification of Lie algebras with core-free subalgebras of codimension one which is given by Amayo in [1].

Theorem 3.2 ([1, Theorem 3.1]) Let \(L \) have a core-free subalgebra of codimension one. Then either (i) \(\dim L \leq 2 \), or else (ii) \(L \cong L_m(\Gamma) \) for some \(m \) and \(\Gamma \) satisfying certain conditions (see [1] for details).

We shall also need the following properties of \(L_m(\Gamma) \) which are given by Amayo in [1].

Theorem 3.3 ([1, Theorem 3.2])

(i) If \(m > 1 \) and \(m \) is odd, then \(L_m(\Gamma) \) is simple and has only one subalgebra of codimension one.

(ii) If \(m > 1 \) and \(m \) is even, then \(L_m(\Gamma) \) has a unique proper ideal of codimension one, which is simple, and precisely one other subalgebra of codimension one.

(iii) \(L_1(\Gamma) \) has a basis \(\{u_{-1}, u_0, u_1\} \) with multiplication \([u_{-1}, u_0] = u_{-1} + \gamma_0 u_1 \) (\(\gamma_0 \in F, \gamma_0 = 0 \) if \(\Gamma = \{0\} \)), \([u_{-1}, u_1] = u_0, [u_0, u_1] = u_1 \).

(iv) If \(F \) has characteristic different from two then \(L_1(\Gamma) \cong L_1(0) \cong \mathfrak{sl}_2(F) \).
(v) If F has characteristic two then $L_1(\Gamma) \cong L_1(0)$ if and only if γ_0 is a square in F.

The above properties enable us to determine which of the algebras $L_m(\Gamma)$ are c-supplemented.

Proposition 3.4 If $L \cong L_m(\Gamma)$ then L is c-supplemented if and only if $L \cong L_1(0)$ and F has characteristic different from two.

Proof. Suppose that $L \cong L_m(\Gamma)$ and L is c-supplemented, and let $x \in L$. Then there is a subalgebra M_1 of L such that $L = Fx + M_1$, and $Fx \cap M_1 \leq (Fx)_L = 0$, since $L_m(\Gamma)$ has no one-dimensional ideals. Choose $y \in M_1$. Then, similarly, there is a subalgebra M_2 of codimension one in L such that $L = Fy + M_2$ and $M_1 \neq M_2$. Since $L = M_1 + M_2$ we have that $M_1 \cap M_2 \neq 0$. Let $z \in M_1 \cap M_2$. Then there is a subalgebra M_3 of codimension one in L such that $L = Fz + M_3$, so L has at least three subalgebras of codimension one in L. It follows from Theorem 3.3 that $m = 1$.

Suppose that $L \not\cong L_1(0)$. Then F has characteristic two and γ_0 is not a square in F. Since L is completely factorisable there is a two-dimensional subalgebra M of L such that $L = Fu_1 + M$. It follows that $M = F(u_{-1} + \alpha u_1) + F(u_0 + \beta u_1)$ for some $\alpha, \beta \in F$. But then $[u_{-1} + \alpha u_1, u_0 + \beta u_1] \in M$ shows that $\gamma_0 = \beta^2$, a contradiction. A further straightforward calculation shows that if $L \cong L_1(0)$ and F has characteristic two, then Fu_1 is contained in every maximal subalgebra of L, and so has no c-supplement in L.

Conversely, suppose that $L \cong L_1(0)$ and F has characteristic different from two. Then $L \cong sl_2(F)$, by Theorem 3.3 (iv) and it is easy to check that L is c-supplemented.

We can now determine the simple and semisimple c-supplemented Lie algebras.

Corollary 3.5 If L is simple then L is c-supplemented if and only if $L \cong L_1(0)$ and F has characteristic different from two.

Proof. Let L be simple and c-supplemented. Then L has a core-free maximal subalgebra of codimension one in L and so $L \cong L_m(\Gamma)$, by Theorem 3.2. The result now follows from Proposition 3.4.
Notice, in particular, that \(\mathfrak{sl}_2(F) \) is the only simple completely factorisable Lie algebra over any field. However, this is not the only simple elementary Lie algebra, even over a field of characteristic zero: over the real field every compact simple Lie algebra, and \(\mathfrak{so}(n, 1) \) for \(n > 3 \), for example, are elementary, as is shown in [8, Theorem 5.1]. This justifies the assertion made at the end of the third paragraph of the introduction.

Proposition 3.6 Let \(L \) be a semisimple Lie algebra over a field \(F \). Then the following are equivalent:

(i) \(L \) is c-supplemented.

(ii) \(L = S_1 \oplus \ldots \oplus S_n \) where \(S_i \cong \mathfrak{sl}_2(F) \) for \(1 \leq i \leq n \) and \(F \) has characteristic different from two.

Proof. (i) \(\Rightarrow \) (ii): Let \(L \) be semisimple and c-supplemented and suppose the result holds for all such algebras of dimension less than \(\dim L \). Then \(\phi(L) = 0 \), since \(\phi(L) \) is nilpotent, and so \(L \) is completely factorisable. Let \(A \) be a minimal ideal of \(L \) and pick \(a \in A \). Let \(M \) be a subalgebra of \(L \) such that \(L = Fa + M \) and put \(B = A + M_L \). Then \(M_L < B \) and \(A \cap M_L = 0 \), since \(a \notin M_L \). If \(\dim L/M_L \leq 2 \) then \(A \) is abelian, contradicting the fact that \(L \) is semisimple. It follows from Theorem 3.2 and Proposition 3.4 that \(L/M_L \cong L_1(0) \), whence \(B = L \) and \(L = A \oplus M_L \). Since \(A, M_L \) are semisimple and c-supplemented the result follows.

(ii) \(\Rightarrow \) (i): The converse follows from Corollary 3.5 and Lemma 2.5.

Finally we have the main classification theorem.

Theorem 3.7 Let \(L \) be Lie algebra. Then the following are equivalent:

(i) \(L \) is c-supplemented.

(ii) \(L/\phi(L) = R \oplus S \) where \(R \) is supersolvable and \(\phi \)-free, \(S \) is given by Proposition 3.6, and every subalgebra of \(\phi(L) \) is an ideal of \(L \).

Proof. (i) \(\Rightarrow \) (ii): Factor out \(\phi(L) \) so that \(L \) is \(\phi \)-free and c-supplemented and hence completely factorisable, by Proposition 2.4. Then \(L = R \oplus S \) where \(R \) is the radical of \(L \) and \(S \) is semisimple. It suffices to show that \(SR = 0 \); the rest follows from Lemma 2.1, Corollary 2.3, Proposition 2.4, Theorem
3.1 and Proposition 3.6. Suppose there is $0 \neq x \in L^{(3)} \cap R$. Then there is a subalgebra M of L such that $L = Fx + M$ and L/M_L is given by Theorem 3.2. If $L/M_L \cong L_m(\Gamma)$ then L/M_L is simple, by Proposition 3.4, and $M_L < R + M_L$. But then L/M_L is solvable, a contradiction. It follows that $\dim L/M_L \leq 2$, whence $x \in L^{(3)} \cap R \leq L^{(3)} \leq M_L \leq M$, a contradiction. Hence $L^{(3)} \cap R = 0$. But $SR = S^2R \leq S(SR) = S^2(SR) \leq L^{(3)} \cap R = 0$, as required.

(ii) \Rightarrow (i): This follows from Proposition 2.4, Lemma 2.5, Theorem 3.1 and Proposition 3.6.

References

