
Adaptive Optimization for OpenCL Programs
on Embedded Heterogeneous Systems

Ben Taylor, Vicent Sanz Marco, Zheng Wang ∗

School of Computing and Communications, Lancaster University, UK
{b.d.taylor, v.sanzmarco, z.wang}@lancaster.ac.uk

Abstract
Heterogeneous multi-core architectures consisting of CPUs and
GPUs are commonplace in today’s embedded systems. These
architectures offer potential for energy efficient computing if the
application task is mapped to the right core. Realizing such potential
is challenging due to the complex and evolving nature of hardware
and applications. This paper presents an automatic approach to
map OPENCL kernels onto heterogeneous multi-cores for a given
optimization criterion – whether it is faster runtime, lower energy
consumption or a trade-off between them. This is achieved by
developing a machine learning based approach to predict which
processor to use to run the OPENCL kernel and the host program,
and at what frequency the processor should operate. Instead of
hand-tuning a model for each optimization metric, we use machine
learning to develop a unified framework that first automatically
learns the optimization heuristic for each metric off-line, then uses
the learned knowledge to schedule OPENCL kernels at runtime
based on code and runtime information of the program. We apply
our approach to a set of representative OPENCL benchmarks and
evaluate it on an ARM big.LITTLE mobile platform. Our approach
achieves over 93% of the performance delivered by a perfect
predictor. We obtain, on average, 1.2x, 1.6x, and 1.8x improvement
respectively for runtime, energy consumption and the energy delay
product when compared to a comparative heterogeneous-aware
OPENCL task mapping scheme.

Keywords Heterogeneous Multi-cores, Predictive Modeling, En-
ergy Efficiency, OpenCL

1. Introduction
Embedded systems with heterogeneous multi-cores are common-
place. These systems offer the potential of energy efficient comput-
ing via diverse processing units specially tuned for a certain class
of workloads and for power or performance. While promising, to
unlock the potential of such systems, software must adapt to the
variety of processors, knowing what type of processors to use and at
what frequency the processor should operate.

∗ Corresponding author: Zheng Wang (z.wang@lancaster.ac.uk).

OPENCL has emerged as a standard programming model for
heterogeneous systems. It allows the same code to be executed
across a variety of processors including CPUs, GPUs and DSPs.
While OPENCL provides functional portability, its performance
often varies across different processing units [13, 19, 26]. Therefore,
there is a need to determine where and how to map a OPENCL task
to best utilize the underlying heterogeneous hardware resources.

In this paper, we tackle the issue of OPENCL task mapping
across heterogeneous CPUs and GPUs for multiple optimization
criteria. Although task scheduling is a heavily studied area [3, 11,
34, 35], heterogeneous task mapping is made more complex by the
different runtime and energy characteristics an OPENCL kernel will
experience on different processing units [9, 28, 30]. While manually
task mapping may be possible in certain domains [2, 4], it is not
the general case as the decision will depend on: the application
itself, the program input, underlying hardware, and optimization
criteria. Given that embedded systems are becoming increasingly
diverse with ever-changing hardware and software, finding the right
mapping for a single application may have to be repeated many
times throughout its lifetime, hence, making automatic approaches
attractive.

This paper presents a novel compiler-based approach to map and
schedule OPENCL tasks across embedded heterogeneous computing
units. We do so by employing machine learning techniques to
automatically construct predictors to determine at runtime the
optimal processor configuration – which processing units and clock
frequencies to use to run the given OPENCL driver program and
kernel function, taking into consideration the optimization criterion
– whether it is faster response time, lower energy consumption or
a trade-off between them. Our predictors are first trained off-line.
Then, using code and data features extracted from the compiler
intermediate representations (IR), the models predict the optimal
processor configuration for a new, unseen program, depending on
what we want to optimize for. We show that our unified machine
learning based framework can automatically derive high-quality
optimization heuristics across different optimization metrics, despite
the optimal configurations changing from one metric to the other.
Our approach avoids the pitfalls of using a hard-wired heuristics that
require human modification every time the optimization criterion or
hardware changes.

We apply our approach to 15 OPENCL benchmarks and evaluate
them on a representative big.LITTLE mobile platform, using three
metrics: runtime, energy consumption and the energy delay product.
We compare it to a comparative machine learning based mapping
scheme [13]. We show that our approach delivers, on average, over
1.2x improvement across all benchmarks.

This paper makes the following two main contributions:
• We develop a unified machine learning based framework for

mapping OPENCL tasks on embedded heterogeneous multi-core
platforms across optimization criteria;

• We show that our automatic approach constantly outperforms
comparative work across all evaluation metrics.

2. Related Work
Our work lies at the intersection of numerous areas: GPU perfor-
mance optimization, GPU task scheduling, predictive modeling and
energy optimization.
GPU Performance Optimization There is an extensive body of
work looking at GPU performance optimization through the use of
compilation and runtime techniques [22, 31, 38]. Most prior work in
the field uses analytical models to determine optimization strategies.
contrast, our work employs machine learning to automatically
construct models for different optimization goals. Prior studies
show that portable mapping techniques are important, program
performance depends on the underlying hardware [19, 26]. Our
work is among attempts to create portable mapping techniques.

GPU Task Scheduling Numerous approaches have been proposed
to map OPENCL or CUDA kernels on heterogeneous computing
devices. Some of the prior work uses profile runs to partition work
across the CPU and the GPU [1, 13, 20, 23]. In contrast to these
works, our approach does not rely on profiling information, therefore,
has less runtime overhead. Other work considers code and data
transformations for CPU/GPU architectures [21, 27], GPU task pre-
emption [6], and multi-task scheduling [10, 14–16, 22, 43]. These
prior works primarily target performance optimization, while this
work aims to build a portable approach for arbitrary optimization
goals. Moreover, existing approaches on multi-task scheduling are
orthogonal to our work.

Predictive Modeling Machine learning based predictive modeling
is emerging as a powerful technique for optimizing parallel pro-
grams [28, 29, 33, 37, 39–41]. Its great advantage is its ability to
adapt to changing platforms as it has no a prior assumptions about
their behavior. The work presented by Grewe et al. is the nearest
work [13, 42], which builds a decision tree model to predict where
(CPU or GPU) to run a given OPENCL kernel. Our approach differs
from this work in two aspects. Firstly, our approach can adapt to dif-
ferent optimization goals while [13] only targets runtime. Secondly,
our approach considers the clock frequency of the processors while
[13] does not.

Energy Optimization How to effectively exploit heterogeneous
architectures for energy efficient computing is a heavily studied area.
Some of the recent examples in the area include: how to distribute
workloads across CPUs and GPUs [25] and MPSoCs [4], power
modeling for GPGPUs [24], and energy aware iterative compila-
tion [7, 12] etc. Unlike these approaches which all use analytic
models or hard-wired heuristics to perform optimization for a spe-
cific goal, we develop a portable method that can automatically
re-target for any optimization metric. Our approach shares the same
spirit as the work presented by Ren et al. [32], we both use machine
learning to build predictive models for energy optimization. How-
ever, we target optimizing OPENCL programs on heterogeneous
systems, while [32] focuses on scheduling mobile web browsing
processes on CPUs.

3. Background
3.1 Problem Definition
Scope This work aims to develop a runtime system that can adapt
to arbitrary optimization goals for OPENCL kernel mapping. An
OPENCL program typically consists of two parts, a kernel program
(which might contain several OPENCL kernel functions) to run
on an OPENCL-compatible device (in our case a CPU or GPU),
and a driver (or host) program to run on the general purpose CPU

to offload the kernel computation. OPENCL kernel functions are
compiled at runtime on the host CPU and sent to execute on the
compatible device. This work is concerned with determining the
best processor configuration – that is – which processor to run the
driver program and the kernel, and at what clock frequency the
processing units should operate.

Notation Our configuration notation is HostDev.b/L,freq −
KernelDev.b/L, where b and L stands for big and little CPU/GPU
respectively. For example, notation, CPUL,800Mhz−GPUb, means
running the host program on the little CPU at 800Mhz and the kernel
on the big GPU. It is to note that we found that using the default
frequency to run the OPENCL kernel gives the best performance, so
we do not configure the clock frequency for running the kernel.

Optimization Metrics Unlike prior work [13], we do not just
develop a method to optimize runtime. Instead, we want to develop
a methodology that can be used for any optimization goal. For
the purpose of evaluation, we target three lower is better metrics:
(a) runtime, which aims to execute the kernel function as fast as
possible; (b) energy consumption, which aims to use as little energy
as possible; and (c) energy delay product (EDP), calculated as
energy × runtime, which aims to find a balance between both energy
consumption and performance.

Hardware platform Our work targets the ARM big.LITTLE archi-
tecture. These platforms couple a energy-tuned processor (LITTLE)
with a faster and more power-hungry processor (big), some also
come with a GPU which can be used for general purpose comput-
ing. The uniqueness of each processing unit allows for much more
energy efficient computing when utilized to its full potential. Our
work is evaluated on an Odroid-Xu3 embedded development board.
We chose this platform as it is: representative of ARM big.LITTLE
mobile architectures, provides us with an OPENCL implementation
for both the CPU and GPU, and allows us to extract real-time energy
readings using the on-board energy sensors. The architecture used
in the Odroid system is used in multiple mobile devices such as the
Samsung Galaxy S5.

3.2 Motivating Example
Consider scheduling four OPENCL kernels from the Rodinia bench-
mark suite on an ARM big.LITTLE platform with heterogeneous
processing units. These kernels can be run on either of the heteroge-
neous CPU clusters, a Cortex-A15 processor (big) and a Cortex-A7
processor (little), or the Mali-T628 GPU. The OPENCL libraries
recognise the Mali-T628 as two separate GPUs, one containing 4
cores (big), the other containing two (little).

Table 1 lists the best processor configurations for each of the
three metrics considered in this work. To obtain the optimum
processor configurations we performed an exhaustive search across
all configurations, and monitored the energy consumption and
runtime of each. We then calculated the processor configuration
which produced the minimum value (as each metric is lower-is-
better) for each metric and kernel combination.

Figure 1 compares the potential improvement of each kernel
and metric over a baseline that runs all kernels on the big GPU,
CPUB,2.0Ghz−GPUb. For runtime, the baseline performs well for
BFS_1 and Nearest Neighbor, but a speed-up of 51% and 80%
can be achieved for find_index and lud_diagonal respectively
when the optimum configuration is used. Using the big GPU
leads to significant energy consumption. For this metric, the best
configuration gives over 49% (up to 95%) reduction for each of
the four benchmarks. Finally, for EDP, the best configuration gives
over 46% (up to 98%) reduction for those kernels. Clearly, there is
significant room for improvement over simply running the kernel on
the GPU, and the best processor configuration could change from
one optimizing metric to another.

Table 1: The best configuration which optimizes for each of the metrics: Energy Consumption, Runtime, and EDP.

Kernel Energy Consumption Runtime EDP

BFS_1 CPUL,800Mhz − GPUb CPUL,1.4Ghz − GPUb CPUL,1.2Ghz − GPUb

find_index CPUL,800Mhz − CPUl CPUB,2.0Ghz − CPUb CPUB,1.6Ghz − CPUb

Nearest Neighbor CPUL,1.0Ghz − GPUl CPUB,2.0Ghz − GPUb CPUL,1.4Ghz − GPUl

lud_diagonal CPUL,800Mhz − CPUl CPUB,2.0Ghz − CPUb CPUL,1.2Ghz − CPUl

B F S _ 1 N e a r e s t N e i g h b o r f i n d _ i n d e x l u d _ d i a g o n a l0

2 0

4 0

6 0

8 0

1 0 0

Im
pro

ve
me

nt
ov

er
big

-G
PU

 on
ly (

%) R u n t i m e
 E n e r g y C o n s u m p t i o n
 E D P

Figure 1: The percentage decrease (higher is better) of different
metrics achieved when choosing the optimum configuration. The
baseline is offloading each kernel to the big GPU, CPUB,2.0Ghz −
GPUb.

B F S _ 1 N e a r e s t N e i g h b o r f i n d _ i n d e x _ k e r n e l l u d _ d i a g o n a l0

2 0

4 0

6 0

8 0

1 0 0

Im
pro

ve
me

nt
ov

er
BF

S_
1-E

DP
 op

tim
um

 (%
)

 R u n t i m e
 E n e r g y C o n s u m p t i o n
 E D P

Figure 2: Available room for improvement when using the opti-
mum configuration found for BFS_1 when optimizing for EDP,
CPUL,1.2Ghz −GPUb. This diagram shows that the best configu-
ration varies across metrics and programs.

Figure 2 normalizes the best available performance of each met-
ric for find_index, lud_diagonal, and Nearest Neighbor to
the performance achieved by using the best configuration found for
BFS_1, when optimizing for EDP (BFS_1-EDP). It shows that the
best configuration also changes from one kernel to another; in other
words no one configuration can be used to optimize for all kernels
and all metrics. Overall, the best configuration for BFS_1-EDP pro-
vides a near optimal choice across all metrics for BFS_1. Nearest
Neighbor also achieves near optimum results across all metrics
for this configuration; although, a improvement of 13%, 7%, and
9% can still be achieved for runtime, energy consumption and EDP
respectively. Kernels find_index and lud_diagonal achieve far
from optimal results under this configuration. The best configuration
is able to give an improvement between 51% and 92% (average of
71%) for all metrics. Therefore, finding an optimal configuration for
one kernel and applying it to all others is likely to miss significant op-
timization opportunities. This example demonstrates that choosing
the right processor setting has a significant impact on the resultant
performance and energy consumption, and the optimal configuration
must be determined on a per-kernel and per-optimization-goal basis.

Attempting to find the optimum configuration through means of
an exhaustive search would be ineffective, the overhead involved
would be far bigger then the potential benefits. Classical hand-

Feature
Extraction

feature values

Predictor

processor config.

Scheduling

kernels
Figure 3: Overview of our approach.

written heuristics are not ideal either, as they are not only complex
to develop, but are likely to fail due to the variety of programs
and evolving OPENCL devices. An alternate approach, and the one
we chose to use, is to use machine learning to automatically con-
struct predictive models for determining processor configurations,
providing minimal runtime and development overhead.

4. Overall Methodology
Our approach takes a new, unseen OPENCL kernel function and is
able to predict the optimum, or near optimum, processor configura-
tion. An overview of our approach can be seen in Figure 3, and is
described in more detail in Section 5.1.

When an OPENCL kernel is launched, our approach will collect
a set of information or features to capture the characteristics of
the kernel. As OPENCL is just-in-time compiled, the set of feature
values collected by our approach can reflect the program input that is
available at runtime. Feature extraction is performed on the LLVM
intermediate represenations (IR); we only use code features and
do not profile the program. Table 2 presents a full list of all our
considered features. After collecting the feature values, a machine
learning based predictor (that is trained offline) takes in the feature
values and predicts which processor configuration should be used to
execute the OPENCL kernel. This prediction includes the choice of
host processor and its configuration in conjunction with the choice
of accelerator. Finally, when the OPENCL kernel is ready to be
offloaded to an accelerator we configure the host processor and
offload the kernel to the predicted processor.

5. Predictive Modelling
Our model for predicting the best processor configuration is com-
prised of a set of Support Vector Machines (SVMs) arranged a hi-
erarchically, show in Figure 4. Varying degrees of the polynomial
kernel is used for each of our SVMs. We have evaluated a number of
alternate modelling techniques, including regression, Naive Bayes,
K-Nearest neighbour, decision trees, and artificial neural networks
(see also Section 8.2). We chose SVM because it gives the best per-
formance and can model both linear and non-linear problems. The
input to our model is a set of features extracted from the target
OPENCL kernel function. The output of our model is a label that in-
dicates the optimal processor configuration to the host program and
the OPENCL kernel, including the frequency of the host processing
unit.

Building and using such a model follows the 3-step process for
supervised machine learning: (i) generate training data (ii) train a
predictive model (iii) use the predictor, described as follows.

5.1 Model Description
Figure 4 gives an overview of our predictive model. We chose a
hierarchical layout as it yields the best results for our training data.
In total we use 4 SVMs in our predictive model, and each has been
given a name to allow for clear references. Below we will give a
brief description of each SVM in our model.

Table 2: Raw features we considered using in this work.

Property Feature Description

avg_BB_preds Average # of predecessors to a basic block
avg_BB_succ Average # of successors to a basic blocks
num_edges # of edges in the Control Flow Graph (CFG)
num_BB # of basic blocks
avg_phi_args Average # arguments to a phi nodes
BB_with_0_phi # basic blocks with 0 phi nodes
num_instr # instructions
num_cond_br # conditional branch instructions
num_uncond_br # unconditional branch instructions

program structure

num_br # branch instructions
num_int_bin_ops # binary operations with ints
num_bin_ops # binary operationstypes of computation
num_unary_instr # unary instructions

amount of computation num_comp # compute operations
num_mem # accesses to global memorytypes of memory access num_localmem # accesses to local memory
num_load # load instructionsamount of memory accesses num_store # store instructions

layout of memory accesses num_coalesced # coalesced memory accesses
avg_work_size Average work size of kernels in a benchmarkdata layout transfer_size # bytes transferred to the accelerator

data types used num_float_inst # instructions which use floats

Table 3: Combined features used in this work.

Property Feature Calculated

Ratio of memory access per work size mem_by_work (num_localmem + num_mem) * avg_work_size
Ratio of computation to memory transfer comm-comp_ratio transfer_size / (num_mem + num_comp)
Ratio of memory access to computation comp-mem_ratio num_comp / num_mem
Percentage of coalesced memory access perc_coal_mem_acc num_coalesced / num_mem
Percentage or memory accesses per instruction mem_acc_per_instr (num_load + num_store) / num_instr
Ratio of transfer size to work size transfer-work_ratio transfer_size / avg_work_size

Initial Kernel on
Host

Kernel on
Accelerator

Accelerator and
host config.

System
config.

Accelerator config. Host config. System
config.

Figure 4: Our model, comprised of 4 SVMs. The first (Initial) predicts
which type of device to run a kernel. The result then defines which
branch we take through our model. Each branch predicts the system
configuration for the given kernel. See Section 5.1.

content
Style Rules

Training
kernels

Profiling
runs

Feature
extraction

optimal proc. config.

feature values

L
earning

A
lgorithm

Predictive Model

Figure 5: The training process. Our unified machine learning frame-
work uses the same procedure to train a hierarchical predictive
model for each optimization goal.

Initial The first SVM in our model, all data which enters our model
passes this SVM first. Initial is used to place each kernel into one
of two groups: accelerate-on-host and accelerate-off-host, which
will be passed to the Accelerator and Host Config and Accelerator
Config SVMs respectively. Each group requires a different approach
to predict the optimum processor configuration for a kernel, hence
our use of multiple branches.

Accelerator and Host Config The OPENCL API for our system
recognises both CPUs as one processor, this resulted in us being
unable to separate the host and kernel processes. As a result, when
a kernel runs on the host it must adopt the same processor set-up

as its host process. Accelerator and Host Config is able to predict
the optimum processor configuration while taking the previously
mentioned restriction into account. This is the only SVM in this
branch of our predictive model, producing the final System Config
output for this branch.

Accelerator Config Another branch of our predictive model starts
here. Contrary to the previous branch, Accelerator Config predicts
the optimum accelerator configuration only, the optimum host
configuration will be predicted by Host Config, which is the next
SVM in this branch.

Host Config As the final SVM in this branch, Host Config predicts
the best host configuration. The output of this SVM and Accelerator
Config is then combined to produce the final System Config output
for this branch of the model.

5.2 Training the Predictor
Our method for training the predictive models is shown in Figure 5.
To train a new predictor we first need to find the best processor
configuration for each of our training OPENCL kernels, and extract
features. We then use this set of data and classification labels to train
our predictor model.

Generating Training Data We use leave-one-out-cross validation
for training. This standard machine learning technique works by
selecting one benchmark for testing and using the remaining ones
for training. To generate the training data for our model we used
two benchmark suites: Rodinia [5] and Parboil [36]. In total, we
used 32 OPENCL kernels from 15 benchmarks. These benchmarks
cover a wide variety of domains including: image processing, data
mining, pattern recognition, physics simulations, and linear algebra.
We execute each kernel and benchmark a number of times until

the gap of the upper and lower confidence bounds is smaller than
5% under a 95% confidence interval setting. To reduce noise in
our performance and energy consumption readings we generate our
training data on a unloaded machine, this should not be a problem
as we expect model training to be a one-off cost which is carried
out at the factory, that is, before a process architecture is released
for sale. However, if the hardware configuration changes, i.e. one
or more processors are added or removed, new training data will
need to generated and the model re-trained. The set of frequencies
to be used for generating the training data is decided beforehand.
For our hardware platform we chose to use steps of 200Mhz for
each processor configuration, e.g. 200Mhz, 400Mhz, up to 2.0Ghz.
We exhaustively execute each OPENCL kernel across all of our
considered processor configurations, and record the performance and
energy consumption of each. Next, we record the best performing
processor configuration for each OPENCL kernel and optimization
metric, keeping a label of each. Finally, we extract the values of our
selected set of features from each OPENCL kernel; our choice of
features is described in more detail in Section 5.3.

Building The Model The processor configuration labels, along
with their corresponding feature set, are passed to our supervised
learning algorithm. The learning algorithm tries to find a correlation
between the feature values and optimal processor configuration
labels. The output of our learning algorithm is a version of our SVM
based model. Because we target three optimization metrics in this
paper, we have constructed three predictive models - one for each of
our optimization metrics. In our case, the overall training process
(which is dominated by training data generation) takes less than a
week on a single machine.

Total Training Time The total training time of our model is
comprised of two parts: gathering the training data, and then building
the model. Gathering the training data consumes most of the total
training time, in this paper it took around 3 days. In comparison
actually building the model took a negligible amount of time, less
than 1 minute.

5.3 Features
Our predictive models are based exclusively on code features of
the target OPENCL kernel. The features are extracted using a pass
working on the LLVM IR. Since our goal is to develop a portable,
architecture-independent approach, we do not use any hardware-
specific features.

We considered a total of 22 candidate raw features (Table 2)
in this work. Some features were chosen from our intuition based
on factors that can affect kernel mapping e.g. transfer_size and
num_float_inst, other features were chosen based on previous
work [13, 26]. Altogether, our candidate features should be able
to represent the intrinsic parts of each OPENCL kernel.

Feature Selection In order to build an accurate predictive model
through supervised learning the training sample size typically needs
to be at least one order of magnitude greater than the number of
features. We currently have 32 OPENCL kernels and 22 features,
so we would like to reduce the number of features in use. Our
process for feature selection is fully automatic, described as follows.
Initially, we reduced our feature count by combining several features
to form a set of combined normalized features, shown in Table 3,
which are able to carry more information than their parts. Next, we
removed any features which carried very similar information as our
combined features or their parts, making them redundant. To find
which features are closely correlated we constructed a correlation
coefficient matrix, which is able to quantify the correlation between
any two features. We used Pearson product-moment correlation
coefficient. As input, two features are given, a value between +1 and
-1 is returned. The closer a coefficient is to +/-1, the stronger the

Table 4: Correlations of removed features to the kept features. All
correlation values are absolute values.

Kept Feature Removed Feature Correlation

num_BB 0.99
num_br 0.99
BB_with_0_phi 0.98
num_cond_br 0.95
num_uncond_br 0.94

num_edges

avg_phi_args 0.78
avg_BB_preds avg_BB_succ 1.00
num_instr num_unary_inst 0.93
num_store num_int_bin_ops 0.85
num_comp num_float_inst 0.74

Table 5: Features which remained after feature selection.

mem_by_work comm-comp_ratio mem_acc_per_instr
comp-mem_ratio perc_coal_mem_acc avg_BB_preds
transfer-work_ratio num_edges transfer_size

correlation between the two input features. We removed any feature
which had a correlation coefficient (taking the absolute value) greater
than 0.75. Table 4 shows all the features which were removed due
to a high correlation value with another feature. For example, we
can see that num_BB is highly correlated to num_edges, in this
case we chose to remove num_BB from our feature collection. Our
feature selection process results in just 9 features remaining for use,
these are listed in Table 5. It is to note that our approach for feature
selection is automatic. This means the approach can be applied to
other sets of candidate features.

Feature Scaling Before the chosen features can be given to our
predictive model for training they need to be scaled to a common
range. We scaled each of our features between the range of 0 and
1. To scale features extracted from a new kernel during runtime
deployment we record the maximum and minimum value of each
feature before scaling.

5.4 Runtime Deployment
Once we have built and trained our predicted models as described
above, we can use them to quickly and efficiently predict the best
processor configuration for any new, unseen OPENCL kernel.

We implemented our approach as an OpenCL library extension,
building on standard OPENCL APIs. The kernel code will be trans-
lated into LLVM IR when the OPENCL API clBuildProgram is
invoked by the host code. Once the kernel function is launched
through clEnqueueNDRangeKernel, our extension extracts and
scales all features needed for the predictive model. Given an opti-
mization goal our extension will choose the correct predictive model
to predict the optimal processor configuration. This prediction is
then passed to the runtime library to configure the hardware. It is to
note that we use the proprietary OPENCL compiler to compile the
kernel for the target hardware. The overhead of extracting features,
making predictions, and processor configuration is small, which is
included in our experimental results.

6. Experimental Setup
6.1 Platform and Benchmarks
Hardware Our hardware evaluation platform is an Odroid XU3
big.LITTLE embedded development board. The board has 2 GB
LPDDR3 RAM and 64 GB eMMC storage. Table 6 gives detailed
information of the hardware platform. We chose this hardware
platform as it is representative of the big.LITTLE architecture,
provides us with OPENCL implementations for the CPU and GPU,
and allows us to extract real-time energy readings. Our reasons for
choosing this platform are given in Section 3.

Table 6: Hardware platform

big CPU LITTLE CPU GPU

Model Cortex-A15 Cortex-A7 Mali-T628
Core Clock 2.0 GHz 1.4 GHz 533 MHz
Core Count 4 4 6

Systems Software Our platform runs Ubuntu 14.04 Linux with a
Heterogeneous Multi-Processing (HMP) scheduler. The scheduler
allows us to use the heterogeneous cores at the same time. Our host
compiler is gcc v5.4.0, with “-O3" as the compiler option. To use
OPENCL on the GPU we use the ARM Mali OPENCL SDK. To
use OPENCL on the CPU we use PoCL [18], an OPENCL imple-
mentation for CPUs that is based on LLVM. The PoCL compiler
automatically applies a set of LLVM-based code transformations
to optimize the GPU-tuned OPENCL kernel function for the host
CPU.

Benchmarks We used a total of 32 OPENCL kernels from 15
benchmarks. From the Rodinia benchmark suite v2.0.1, we used
22 kernels from 9 benchmarks, and from the Parboil OPENCL
benchmark suite, we used 10 kernels from 6 benchmarks. Some
benchmarks had to be left out as they were either not compatible
with our hardware, or not compatible with our OPENCL compilers.

6.2 Evaluation Methodology
Model Evaluation We use leave-one-out cross-validation to eval-
uate our machine learning model. This means we train our model on
14 benchmarks and apply it to the testing program. We repeat this
process 15 times, one for each of the 15 benchmarks. It is a standard
evaluation methodology, providing an estimate of the generalization
ability of a machine-learning model in predicting unseen data.

Comparisons We compare our approach to another machine learn-
ing based approach which provides a portable mapping of OPENCL
kernels for heterogeneous systems [13], referred to as PKM hereafter.
It is currently the closest work to our own. PKM uses a decision tree
to predict whether a given OPENCL program should run on the
GPU or the CPU host to achieve the best performance speed-up.
We also compare our work to a perfect predictor, referred to as
an Oracle hereafter. The Oracle predictor, named after its ability
to make prophetic predictions, is able to predict the best possible
configuration for all kernels and optimization targets.

Performance Report We profiled each kernel under a processor
configuration multiple times and report the geometric mean of each
metric. To determine how many runs are needed, we calculated
the confidence range using a 95% confidence interval and make
sure that the difference between the upper and lower confidence
bounds is smaller than 5%. To eliminate the impact of outliers, we
also report harmonic means and median values across kernels and
benchmarks. We used the on board energy sensors to measure the
entire system. These sensors have been checked against external
power measurement instruments and proven to be accurate [17]. To
measure the energy consumption, we have developed a lightweight
runtime to take readings from the on-board energy sensors at
a frequency of 10 samples per second. We then matched the
readings against the timestamps of the kernel to calculate the energy
consumption.

7. Experimental Results
In this section, we compare our work against PKM, showing how our
work compares to comparative work. Next, we evaluate our approach
against an ideal predictor, an Oracle, showing that our approach
can deliver over 93% of the Oracle’s optimizing capability. Finally,
we investigate the impact of different input sizes on our model.

7.1 Overall Performance
We compare our approach against PKM on runtime (Figure 6), energy
consumption (Figure 7), and EDP (Figure 8). The baseline is to
offload all kernels on to the big GPU, CPUB,2.0Ghz − GPUb.
First, we deeply analyse our results on a per-kernel basis, then we
summarize these results on a per-benchmark basis.

Runtime Figure 6 shows the performance achieved by each
method when optimizing for runtime, i.e. when a fast response
time is the priority. For this metric, the default method of offloading
all kernels on to the big GPU already provides near optimum results
for most kernels. This is not a surprising result as the OPENCL
benchmarks have been heavily tuned for runtime on GPUs. For this
metric, PKM is able to select the correct configuration for most of the
kernels, but can lead to significant slowdowns for some. For exam-
ple, it gives 1.6x and 5x slowdown for srad.k1 and hotspot.k1
respectively, by predicting the wrong processor to use. Our approach,
by contrast, never gives any slow-down in execution time. In fact,
by predicting to use the CPU, our approach is able to deliver over
15% (up to 80%) speed-up for some of the kernels which do not
benefit from the GPU execution. Overall, our approach gives an
average speed-up of 9.4%.

Energy Consumption Figure 7 compares our approach against
PKM when optimizing for energy consumption, i.e. when trying to
preserve battery life is the main priority. Both methods are able
to reduce energy consumption for more than half of the kernels.
For this metric, using the power-hungry GPU is not always desired.
For some of the kernels, PKM delivers rather poor energy efficiency
performance, consuming up to 8x more energy, because it maps
the kernel to run on a device with a much longer execution time
than the big GPU. Comparing to PKM, while our approach also gives
the wrong prediction for some of the kernels, e.g. mri-q.k2 and
histo.k3, the performance degradation is modest (11% and 2%
respectively). We believe the prediction accuracy of our model can
be improved by using more examples during training. On average,
PKM achieves a 28% improvement for this metric, which is again
outperformed by our approach that gives a 45% improvement. This
means that our approach outperforms PKM by a factor of 1.6x when
optimizing for energy consumption.

EDP Figure 8 shows the performance achieved by each method
when optimizing for EDP, i.e. trying to reduce energy consumption
without significantly increasing execution time. Both methods are
able to achieve some performance increase over the baseline for
EDP. While both approaches are not able to achieve a performance
increase every time, our approach limits its performance degradation
to -12%, whereas PKM reaches -9.7x for cfd.k5 and -8.1x for
stencil.k1. This huge decrease in EDP can be explained by PKM
predicting these benchmarks to be offloaded to the CPU incorrectly,
which gives a significantly longer execution time over the baseline.
Overall, PKM fails to deliver any improved performance for EDP (-
19%). Our approach, however, is able to give an average performance
increase of 32% (up to 96%), with a significant improvement for the
majority of benchmarks. PKM is only able to slightly outperform our
approach in one instance for EDP optimization; it is caused by our
approach incorrectly predicting the host device.

7.2 Comparing with the Oracle
Figures 6 - 8 also compare our approach against the performance
achieved by using an ideal predictor (Oracle) for all three evalu-
ation metrics. This comparison shows how close our approach is
to the theoretically perfect solution. Our approach is able to either
match, or come very close to match, with the Oracle’s performance
in most cases. Overall, we are able to achieve 93.9%, 96.8%, and
96.1% of the Oracle’s optimizing capability for performance, en-
ergy consumption, and EDP respectively. We could further improve

lud
.k2

lud
.k3

nn
.k1

sra
d.k

1

sra
d.k

2

sra
d.k

3

sra
d.k

4

sra
d.k

5
cfd

.k4

ho
tsp

ot.
k1

ba
ck

pro
p.k

1

km
ea

ns
.k2

cfd
.k5

cfd
.k3

bfs
.k1

cfd
.k1

bfs
.k2

cfd
.k2

ba
ck

pro
p.k

2

pa
rtic

lef
ilte

r.k
1

pa
rtic

lef
ilte

r.k
2
lud

.k1

his
to.

k1

his
to.

k2

his
to.

k4

ste
nc

il.k
1

sg
em

m.k1

sp
mv.k

1

mri-q
.k2

mri-q
.k1

his
to.

k3
bfs

.k1

Geo
mea

n

Harm
on

ic
Mea

n

Med
ian

-20

0

20

40

60

80

100
Parboil

-90%-80%-500%

Im

pr
ov

em
en

t o
ve

r b
ig

-G
P

U
 o

nl
y

%
 PKM Our Approach Oracle

-160%

Rodinia

Figure 6: Optimization for runtime for each kernel. Our approach outperforms PKM and does not slowdown any programs. We achieve, on
average, 93.9% of the Oracle performance for this metric.

ba
ck

pro
p.k

1

km
ea

ns
.k2

cfd
.k4

lud
.k3

ho
tsp

ot.
k1

ba
ck

pro
p.k

2

pa
rtic

lef
ilte

r.k
1

sra
d.k

3
cfd

.k5

sra
d.k

4
cfd

.k3
bfs

.k2
lud

.k2
bfs

.k1

sra
d.k

1

sra
d.k

2

sra
d.k

5

pa
rtic

lef
ilte

r.k
2
cfd

.k1
cfd

.k2
nn

.k1
lud

.k1

sg
em

m.k1

ste
nc

il.k
1

mri-q
.k2

his
to.

k3

sp
mv.k

1

his
to.

k2

his
to.

k4

his
to.

k1

mri-q
.k1

bfs
.k1

Geo
mea

n

Harm
on

ic
Mea

n

Med
ian

-20

0

20

40

60

80

100

-36%-130%-800%

ParboilRodinia

Im
pr

ov
em

en
t o

ve
r b

ig
-G

P
U

 o
nl

y
%

 PKM Our Approach Oracle

Figure 7: Optimizing for energy consumption for each kernel. Our approach outperforms PKM and only uses more energy in one kernel
compared to the baseline. We achieve, on average, 96.8% of the Oracle performance for this metric.

ba
ck

pro
p.k

1

ba
ck

pro
p.k

2

km
ea

ns
.k2

cfd
.k4

lud
.k3

ho
tsp

ot.
k1

pa
rtic

lef
ilte

r.k
1

sra
d.k

3

sra
d.k

4
cfd

.k5
bfs

.k2
cfd

.k3
lud

.k2
bfs

.k1

sra
d.k

2

sra
d.k

5

sra
d.k

1
cfd

.k1

pa
rtic

lef
ilte

r.k
2
cfd

.k2
nn

.k1
lud

.k1

sg
em

m.k1

ste
nc

il.k
1

mri-q
.k2

sp
mv.k

1

his
to.

k3

his
to.

k2

his
to.

k4

his
to.

k1

mri-q
.k1

bfs
.k1

Geo
mea

n

Harm
on

ic
Mea

n

Med
ian

-20

0

20

40

60

80

100

-19%-29%-970% -810%
-580%

ParboilRodinia

Im
pr

ov
em

en
t o

ve
r b

ig
-G

P
U

 o
nl

y
%

 PKM Our Approach Oracle

Figure 8: Optimization for EDP for each kernel. Our approach outperforms PKM and only leads to a small increase in EDP when compared to
the baseline for a few kernels. We achieve, on average, 96.1% of the Oracle performance for this metric.

the performance of our predictive model by increasing the accu-
racy of host processor configuration predictions. We suggest that
this would be possible through the introduction of more/different
features which are capable of characterizing the host program bet-
ter than we are currently able. Our model could also be improved
through the inclusion of more OPENCL kernels to allow us to better
train our models. There could be cases where a model cannot be

trained because of a lack of data, this can be solved by including
more, and a wider range, of kernels [8].

7.3 Improvement Per Benchmark
Figures 9 to 11 compare our performance improvement on a per-
benchmark basis against PKM and the Oracle predictor. Similar to
comparisons on a per-kernel basis we are able to consistently out-
perform PKM while achieving close to the Oracle’s performance.

ba
ck

pro
p

ga
us

sia
n

km
ea

ns nw cfd lud

ho
tsp

ot

pa
rtic

lef
ilte

r
sra

d bfs nn

sg
em

m
ste

nc
il
mri-q

sp
mv

his
to bfs

Geo
mea

n

Harm
on

ic
Mea

n

Med
ian

-20
0

20
40
60
80

100

-19% -94%-45%-371%Im
pr

ov
em

en
t o

ve
r

bi
g-

G
P

U
 o

nl
y

%

 PKM Our Approach Oracle

Rodinia Parboil

Figure 9: Optimization for runtime for each benchmark. Our ap-
proach outperforms PKM and does not slowdown any programs. We
achieve, on average, 92.6% of the Oracle performance for this
metric.

ba
ck

pro
p

ga
us

sia
n

km
ea

ns nw cfd lud

ho
tsp

ot

pa
rtic

lef
ilte

r
sra

d bfs nn

sg
em

m
ste

nc
il
mri-q

sp
mv

his
to bfs

Geo
mea

n

Harm
on

ic
Mea

n

Med
ian

-20
0

20
40
60
80

100

Im
pr

ov
em

en
t o

ve
r

bi
g-

G
P

U
 o

nl
y

%

 PKM Our Approach Oracle

Rodinia Parboil

-555% -42% -36%

Figure 10: Optimizing for energy consumption for each benchmark.
Our approach outperforms PKM and only one benchmark consumes
more energy compared to the baseline. We achieve, on average,
91.4% of the Oracle performance for this metric.

ba
ck

pro
p

ga
us

sia
n

km
ea

ns nw cfd lud

ho
tsp

ot

pa
rtic

lef
ilte

r
sra

d bfs nn

sg
em

m
ste

nc
il
mri-q

sp
mv

his
to bfs

Geo
mea

n

Harm
on

ic
Mea

n

Med
ian

-20
0

20
40
60
80

100

Im
pr

ov
em

en
t o

ve
r

bi
g-

G
P

U
 o

nl
y

%

 PKM Our Approach Oracle

-5025%

Rodinia Parboil

-373% -29% -811% -71%

Figure 11: Optimization for EDP for each benchmark. Our approach
outperforms PKM and only leads to a small increase in EDP when
compared to the baseline for a few benchmarks. We achieve, on
average, 84.5% of the Oracle performance for this metric.

We achieve 92.6%, 91.4%, and 84.5% of the Oracle’s optimizing
capability for performance, energy consumption, and EDP respec-
tively. Comparing on a per-benchmark basis shows our model’s
capability to achieve high levels of the Oracle’s performance not
only for each kernel but for the whole benchmark, i.e. while taking
every kernel execution into account.

7.4 Prediction Accuracy
Our predictive model is comprised of 4 SVMs organized in a
hierarchical structure (Figure 5, Section 5.1). Each SVM is trained
separately on the subset of data which is relevant to it, i.e. SVM
Accelerator Config is only trained on the kernels which run best on
the accelerator, whereas Initial is trained on all kernels. Overall,
our predictive model achieves a high accuracy. The predictive
models for performance and energy consumption are able to achieve
100% prediction accuracy. Any reduction in performance when
compared to the Oracle are due to assumptions about the Host
Device’s frequency, that is, some frequencies of the same host are
considered as one to help train our model, e.g. kernels with optimum
configurations of CPUL,1.2Ghz − CPUb and CPUL,1.4Ghz −

C
-1
C
-2
C
-3
C
-4
C
-5
C
-6
C
-7
C
-8
C
-9

C
-1
0

C
-1
1

C
-1
2

C
-1
3

C
-1
4

C
-1
5

C
-1
6

C
-1
7

C
-1
8

C
-1
9

C
-2
0

C
-2
1

C
-2
2

C
-2
30

2
4
6
8
10
12

N
um

be
r

of
 K

er
ne

ls

(a) Runtime

C
-1
C
-2
C
-3
C
-4
C
-5
C
-6
C
-7
C
-8
C
-9

C
-1
0

C
-1
1

C
-1
2

C
-1
3

C
-1
4

C
-1
5

C
-1
6

C
-1
7

C
-1
8

C
-1
9

C
-2
0

C
-2
1

C
-2
2

C
-2
30

2
4
6
8
10
12

N
um

be
r

of
 K

er
ne

ls

(b) Energy consumption

C
-1
C
-2
C
-3
C
-4
C
-5
C
-6
C
-7
C
-8
C
-9

C
-1
0

C
-1
1

C
-1
2

C
-1
3

C
-1
4

C
-1
5

C
-1
6

C
-1
7

C
-1
8

C
-1
9

C
-2
0

C
-2
1

C
-2
2

C
-2
30

2
4
6
8
10
12

N
um

be
r

of
 K

er
ne

ls

(c) EDP

Figure 12: The number of kernels which benefit from each of
the processor configurations listed in Table 7. These histogram
diagrams show that the optimal processor configuration depends on
the optimization goal.
CPUb, are all considered as CPUL,1.4Ghz−CPUb. The predictive
model for EDP was able to achieve a correct match for 30 of our 32
kernels, achieving a prediction accuracy of 93.6%.

For EDP Inital, Accelerator and Host Config, and Accelerator
Config SVMs all achieve 100% accuracy. Only the final SVM, Host
Config, is unable to achieve 100% accuracy, although, at this point
in our model an incorrect prediction does not yield catastrophic
results. Both lud.k3 and histo.k3 achieve their best performance
when hosted by the big CPU, but both are predicted to be hosted by
the little CPU. We speculate that this difficultly to accurately predict
the host comes as a result of our compact set of features (due to the
small number of training programs). However, these features are
able to represent the intrinsic parts of each kernel, so are able to
accurately predict the best device to execute each kernel. Beyond
our feature transfer_size, little information is given to the SVM to
characterize how the host program of each kernel will perform.
Including more features, perhaps just to this final model, which are
able to characterize how the host program performs is likely to solve
this issue.

7.5 Optimal Processor Configurations
Figure 12 shows the number of kernels which perform best on
each of the processor configurations we found useful in this work.
Table 7 shows how each Config-Num corresponds to a processor
configuration, any configuration not included in this table never
yielded an optimum result when optimizing any of our kernels for
any of our metrics.

It can be observed that there is not a singular configuration which
gives an optimum result over many kernels across performance,
energy consumption and EDP. For example, C-20 (CPUB,2.0Ghz −
GPUb) is an optimum configuration for 11 of our 32 kernels when
optimizing for performance. However, if we used C-20 to optimize

Table 7: Useful processor configurations in this work.

Config-Num Configuration

C-1 CPUB,400Mhz − GPUb

C-2 CPUB,1.2Ghz − GPUb

C-3 CPUB,1.4Ghz − GPUb

C-4 CPUB,1.6Ghz − GPUb

C-5 CPUB,1.8Ghz − GPUb

C-6 CPUB,2.0Ghz − GPUb

C-7 CPUB,1.8Ghz − GPUl

C-8 CPUB,2.0Ghz − GPUl

C-9 CPUL,400Mhz − GPUb

C-10 CPUL,600Mhz − GPUb

C-11 CPUL,800Mhz − GPUb

C-12 CPUL,1.0Ghz − GPUb

C-13 CPUL,1.2Ghz − GPUb

C-14 CPUL,1.4Ghz − GPUb

C-15 CPUL,800Mhz − GPUl

C-16 CPUL,1.2Ghz − GPUl

C-17 CPUL,1.4Ghz − GPUl

C-18 CPUB,1.0Ghz − CPUb

C-19 CPUB,1.6Ghz − CPUb

C-20 CPUB,2.0Ghz − CPUb

C-21 CPUL,800Mhz − CPUl

C-22 CPUL,1.0Ghz − CPUl

C-23 CPUL,1.2Ghz − CPUl

km
ea

ns
-in

1

cfd
-in

1

ba
ck

pro
p-i

n1

cfd
-in

2

ba
ck

pro
p-i

n2

lud
-in

1

lud
-in

2

bfs
-in

2

bfs
-in

1

km
ea

ns
-in

2

his
to-

in1

mri-q
-in

1

sp
mv-i

n2

ste
nc

il-i
n1

sg
em

m-in
1

bfs
-in

2

bfs
-in

1

sp
mv-i

n1

Geo
mea

n

Harm
on

ic
Mea

n

Med
ian

0

20

40

60

80

100

Im
pr

ov
em

en
t o

ve
r

bi
g-

G
P

U
 o

nl
y

%

 Our Approach Oracle

Rodinia Parboil

Figure 13: Optimization for EDP. Performance of our model com-
pared to the Oracle when different inputs are considered. Bench-
marks names have either -in1 or -in2 appended to denote the differ-
ent input sizes.

for energy consumption or EDP we would only achieve an optimum
result for 4 and 3 kernels, respectively. Each configuration which
performs well for one optimization goal does not perform well
for the others. We can also see that the best number of kernels a
configuration can optimize for at once is 11 (34%), and that there is
a wide range of configurations which give optimizing performance
for each metric. This shows the need for an approach that is able to
spot the subtle differences in each kernel to optimize correctly.

7.6 Varying Input Sizes
Figure 13 shows how our model performs when we consider
different inputs. Only some of the benchmarks provided us with
methods to change their input. We have presented these results on a
per-benchmark basis for EDP. However, the results per-kernel, and
for each metric are very similar.

It can be observed that our approach performs well, even when
optimizing the same benchmark with different inputs. In fact, for
EDP, our model never gives a slowdown. Overall, we achieve 90%
of the Oracle performance. Our approach is successful when input
sizes differ as a benchmark’s input size will alter the execution of a
kernel, thus, changing some features. Our model will treat this as
a new, unseen kernel.

8. Model Analysis
In this section we analyse the overall effectiveness of our model.
First, we analyse the importance of each of our chosen features
for each of our evaluation metrics. We then compare our model
against other widely used machine learning classification techniques.

Figure 14: A Hinton diagram showing how each selected feature is
likely to impact the performance for each model. Here, the larger
the box, the more important a feature is.

Finally, we analyse the training and deployment overhead of using
our approach.

8.1 Feature Importance
Figure 14 shows a Hinton diagram illustrating the importance of
our features. The impact each feature has on each of our predictive
models, for performance, energy consumption and EDP, can easily
be seen. Here, the larger the box, the more significant a particular
feature’s contribution to the prediction accuracy is. Along the x-axis
is each feature, and along the y-axis is each metric, corresponding
to each of our models. We calculate the importance of each metric
though the information gain ratio.

It can be observed that comm-comp_ratio and transfer_size
are important features when determining the correct processor
configuration, independent of the optimizing metric. Each feature
has a different level of importance for each metric, e.g. transfer-
work_ratio is extremely important when optimizing for Energy
Consumption, less important for runtime, and has little importance
for EDP. This diagram shows the need for distinct models for
different optimization goals.

8.2 Alternative Predictive Modeling Techniques
Figure 15 shows the geometric mean of improvement of each kernel
from the baseline achieved by our approach and four widely used
classification techniques: Multi-layer Perceptron (MLP), K-Nearest
Neighbours (KNN), Logistic Regression, and Naive Bayes. Each
of the alternate predictive modeling techniques were trained and
evaluated using the same methods and training data as our model.

Our approach outperforms each alternate technique for every
optimization metric. None of the alternate techniques were able to
achieve a positive geometric mean when optimizing for runtime,
and were unable to yield better optimization results for any of the
kernels or metrics we considered. This figure shows the success
of our approach against alternate techniques. It is to note that the
performance of these alternate modeling techniques may improve
if there are more training examples to support the use of a richer
set of features. However, we found that our hierarchical SVM based
approach performs well on the available benchmarks.

8.3 Training and Deployment Overhead
Our models are trained offline with training examples. In this work,
collecting the examples took three days using one platform, which
has no impact on runtime cost. The overhead of using the trained
models includes extracting program features and making predictions.
These processes take place during the just-in-time compilation of the
OPENCL kernels. This overhead is negligible, approximate 10ms in
total.

R u n t i m e E n e r g y C o n s u m p t i o n E D P
- 2 0
- 1 0

0
1 0
2 0
3 0
4 0
5 0

Im

pro
ve

me
nt

ov
er

big
-G

PU
 on

ly %
 M L P K N N L o g i s t i c R e g r e s s i o n N a i v e B a y e s O u r a p p r o a c h

Figure 15: Comparisons to other predictive modeling techniques.
Our hierarchical SVM based approach delivers the best overall
performance.

9. Conclusion
This paper has presented an automatic approach to map OPENCL
tasks on heterogeneous mobile platforms, providing a significant
performance improvement over comparative works. Central to
our approach is a unified, machine learning based framework
that predicts, for a given optimization criterion, which of the
processors of the system to use to run the OPENCL program, and
the clock frequency of the processor. The prediction is based on
a set of code and runtime features of the program. Our model is
built and trained off-line, and is fully automatic. We evaluate our
approach on an ARM big.LITTLE mobile platform using a set of
OPENCL benchmarks from the Rodina and the Parboil benchmark
suites. Experimental results show that our approach consistently
outperforms a comparative OPENCL mapping technique across
three evaluation metrics: runtime, energy consumption and EDP.
This translates to, on average, above 93% of the performance given
by an ideal predictor.

Acknowledgement
The research was partly supported by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) under grant agreements
EP/M01567X/1 (SANDeRs) and EP/M015793/1 (DIVIDEND).

References
[1] H. Almatary et al. Reducing the implementation overheads of ipcp and

dfp. In RTSS ’15.
[2] J. Ceng et al. Maps: an integrated framework for mpsoc application

parallelization. In DAC ’08.
[3] P. Chakraborty et al. Opportunity for compute partitioning in pursuit

of energy-efficient systems. In LCTES 2016.
[4] K. Chandramohan and M. F. O’Boyle. Partitioning data-parallel

programs for heterogeneous mpsocs: time and energy design space
exploration. In LCTES 2014.

[5] S. Che et al. Rodinia: A benchmark suite for heterogeneous computing.
In IISWC ’09.

[6] G. Chen et al. Effisha: A software framework for enabling effficient
preemptive scheduling of gpu. In PPoPP ’17.

[7] Y. Cho et al. Energy-reduction offloading technique for streaming
media servers. Mobile Information Systems, 2016.

[8] C. Cummins et al. Synthesizing benchmarks for predictive modeling.
In CGO 2017.

[9] K. Dev and S. Reda. Scheduling challenges and opportunities in
integrated cpu+gpu processors. In ESTIMedia’16.

[10] M. K. Emani et al. Smart, adaptive mapping of parallelism in the
presence of external workload. In CGO, 2013.

[11] S. Eyerman and L. Eeckhout. Probabilistic job symbiosis modeling for
smt processor scheduling. In ASPLOS XV, 2010.

[12] E. Garzón et al. An approach to optimise the energy efficiency of
iterative computation on integrated gpu–cpu systems. The Journal of
Supercomputing, 2016.

[13] D. Grewe et al. Portable mapping of data parallel programs to opencl
for heterogeneous systems. In CGO ’13.

[14] D. Grewe et al. A workload-aware mapping approach for data-parallel
programs. In HiPCA, 2011.

[15] D. Grewe et al. Opencl task partitioning in the presence of gpu
contention. In LCPC, 2013.

[16] N. Guan et al. Schedulability analysis of preemptive and nonpreemptive
edf on partial runtime-reconfigurable fpgas. ACM TODAES, 2008.

[17] C. Imes and H. Hoffmann. Bard: A unified framework for managing
soft timing and power constraints. In SAMOS, 2016.

[18] Jääskeläinen et al. Pocl: A performance-portable opencl implementa-
tion. Int. J. Parallel Program., 2015.

[19] W. Jia et al. Gpu performance and power tuning using regression trees.
ACM Trans. Archit. Code Optim., 2015.

[20] R. Kaleem et al. Adaptive heterogeneous scheduling for integrated
gpus. In PACT ’14.

[21] S. S. Latifi Oskouei et al. Cnndroid: Gpu-accelerated execution of
trained deep convolutional neural networks on android. In MM ’16,
2016.

[22] J. Lee, M. Samadi, and S. Mahlke. Orchestrating multiple data-parallel
kernels on multiple devices. In PACT ’15, .

[23] M. S. Lee et al. Accelerating bootstrapping in fhew using gpus. In
ASAP ’15, .

[24] J. Leng et al. Gpuwattch: enabling energy optimizations in gpgpus. In
ISCA 2013.

[25] K. Ma et al. Greengpu: A holistic approach to energy efficiency in
gpu-cpu heterogeneous architectures. In ICPP 2014.

[26] A. Magni et al. Automatic optimization of thread-coarsening for
graphics processors. In PACT ’14.

[27] D. Majeti et al. Automatic data layout generation and kernel mapping
for cpu+gpu architectures. In CC 2016.

[28] P.-J. Micolet et al. A machine learning approach to mapping streaming
workloads to dynamic multicore processors. In LCTES 2016.

[29] W. Ogilvie et al. Minimizing the cost of iterative compilation with
active learning. In CGO, 2017.

[30] P. Pandit and R. Govindarajan. Fluidic kernels: Cooperative execution
of opencl programs on multiple heterogeneous devices. In CGO ’14.

[31] H. Park et al. Zero and data reuse-aware fast convolution for deep
neural networks on gpu. In CODES+ISSS 2016.

[32] J. Ren et al. Optimise web browsing on heterogeneous mobile
platforms: a machine learning based approach.

[33] J. Ren et al. Optimise web browsing on heterogeneous mobile
platforms: a machine learning based approach. In INFOCOM, 2017.

[34] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on
multi/many-core systems: Survey of current and emerging trends. In
DAC 2013.

[35] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simulta-
neous multithreaded processor. In ASPLOS IX, 2000.

[36] J. A. Stratton and others. Parboil: A revised benchmark suite for
scientfic and commercial throughput computing.

[37] G. Tournavitis et al. Towards a holistic approach to auto-parallelization:
integrating profile-driven parallelism detection and machine-learning
based mapping. In PLDI ’09.

[38] S. Verdoolaege et al. Polyhedral parallel code generation for cuda.
ACM TACO, 2013.

[39] Z. Wang and M. O’Boyle. Mapping parallelism to multi-cores: a
machine learning based approach. In PPoPP ’09.

[40] Z. Wang and M. F. O’Boyle. Partitioning streaming parallelism for
multi-cores: a machine learning based approach. In PACT, 2010.

[41] Z. Wang et al. Integrating profile-driven parallelism detection and
machine-learning-based mapping. ACM TACO, 2014.

[42] Z. Wang et al. Automatic and portable mapping of data parallel
programs to opencl for gpu-based heterogeneous systems. ACM TACO,
2015.

[43] Y. Wen et al. Smart multi-task scheduling for opencl programs on
cpu/gpu heterogeneous platforms. In HiPC, 2014.

