The influence of magnetospheric substorms on SuperDARN radar backscatter

J. A. Wild and A. Grocott

Received 24 October 2007; revised 3 January 2008; accepted 5 February 2008; published 25 April 2008.

[1] The SuperDARN ionospheric radar network is a leading tool for investigating the near-Earth space environment. However, reductions in ionospheric backscatter have been reported during magnetospheric substorms. We have therefore investigated the impact of substorms upon SuperDARN backscatter during 3005 substorms and find that the global level of scatter maximizes just prior to substorm onset. In the nightside ionosphere, backscatter poleward of ~70° magnetic latitude is reduced, with radar echoes shifting to lower latitudes. An examination into the frequency-dependence of nightside backscatter evolution during substorms reveals that although most backscatter data is based upon operations in the 08–14 MHz range, higher operating frequencies may offer improved performance in the period just prior to and immediately following expansion phase onset. We suggest that the SuperDARN array of high-frequency coherent-scatter radars, and in particular those radars with the ability to simultaneously operate at dual frequencies, will play a key role in future space- and ground-based studies of substorms.

1. Introduction

[2] Since the concept was first proposed by Akasofu [1964], the substorm has proven to be one of the greatest challenges in solar-terrestrial physics. Despite advances in the field, the timing, location and possible triggering mechanism of substorm onset remains unclear, with competing models seeking to explain the instability underlying the explosive reconfiguration during the substorm expansion phase [e.g., Lui, 2003].

[3] The Super Dual Auroral Radar Network (SuperDARN: Chisham et al. [2007]) is an international array of 18 high-frequency (HF) coherent-scatter ionospheric radars with fields-of-view covering a significant fraction of the auroral and polar ionosphere in both the northern and southern hemispheres. Data from a subset of the network can be analyzed to provide detailed localized measurements of ionospheric plasma dynamics while measurements from all radars may be combined using the “potential mapping” technique of Ruohoniemi and Baker [1998] in order to estimate the global ionospheric convection pattern in both hemispheres. Consequently, SuperDARN has become one of the pre-eminent ground-based tools for the investigation of the space and ionospheric plasma environment and a vital tool when undertaking combined space- and ground-based investigations [e.g., Amm et al., 2005].

[4] The SuperDARN system has provided significant inroads to the substorm problem by revealing ionospheric flows in the nightside ionosphere during both the growth and expansion phase, the response of the ionospheric convection pattern to the increased tail reconnection rate during the expansion phase and the family of substorm-associated convection transients observable in the nightside ionosphere (the reader is directed to Chisham et al. [2007, section 5], for a comprehensive review). However, an equatorward migration of radar backscatter has previously been reported during the substorm growth phase [Lewis et al., 1997] while a loss of backscatter (upon which all SuperDARN data products depend) is sometimes reported in the nightside ionosphere during substorm onset, an effect attributed to absorption of HF radio waves by the enhanced electron densities in the substorm precipitation region [Milan et al., 1999] and rapid changes in HF propagation conditions [Gauld et al., 2002].

[5] Apart from case-studies of individual substorms, the only previous study to examine the impact of magnetospheric substorms upon SuperDARN radar backscatter was that of Provan et al. [2004]. In that study, SuperDARN data was used to examine the northern hemisphere ionospheric convection pattern during 67 substorms identified by the far ultra violet (FUV) auroral imager on board the IMAGE satellite. Provan and coworkers reported little change in the occurrence of radar backscatter during the substorm growth phase with the highest number of radar echoes observed in the post-noon sector dayside ionosphere. Following substorm onset, this post-noon sector backscatter grew stronger while nightside scatter diminished and showed some evidence of equatorward migration.
the number of radars operating at that time in order to produce a backscatter parameter \(\Psi \), given by:

\[
\Psi(t) = \frac{n_{\text{scatter}}(t)}{n_{\text{radar}}(t)}
\]

where \(\Psi(t) \) is the backscatter parameter, \(n_{\text{scatter}}(t) \) the number of backscatter measurements and \(n_{\text{radar}} \) the number of operating radars, all measured at time \(t \). By weighting \(\Psi \) in this way, variations in the number of operating radars over the 2000–2005 epoch under investigation will be minimized.

[10] We note that by gridding data according to a geomagnetic coordinate system, variations in the location of substorm expansion phase onset (as described by Frey et al. [2004]) imply that the results will provide a insight into the backscatter response relative to the statistically averaged substorm onset location. Nevertheless, this will allow the results to be compared with other statistically well-defined features such as the auroral oval and the ionospheric projection of the magnetospheric cusp.

3. Results

[11] Figure 1 presents the variation in \(\Psi \) summed over the 3005 substorms described above as a function of time relative to substorm expansion phase onset. In this case, \(\Psi \) has first been computed for all northern hemisphere radars, and then for all southern hemisphere radars (solid traces
labeled “NH” and “SH” respectively) with the denominator in equation (1) being replaced by the number of northern/southern hemisphere radars available as appropriate. Clearly, the backscatter recorded by both northern and southern hemisphere SuperDARN radars during the 90 min prior to substorm onset gradually builds, peaking 5–10 min prior to substorm onset before falling to the pre-substorm level by 90 min after onset. In the northern hemisphere, the level of backscatter observed at \(t + 90 \) min is slightly lower than that at \(t - 90 \) min, but shows evidence of recovery toward the pre-substorm level.

[12] The weighting of the \(\Psi \) parameter takes into account the fact that fewer SuperDARN radars were operating in the southern hemisphere compared to the northern hemisphere during the 2000–2005 interval under investigation. It is therefore interesting to note that the northern hemisphere backscatter parameter is typically twice that in the southern hemisphere. Although the SuperDARN radars used are virtually identical and all located within a few degrees of 60° magnetic latitude, it is possible that this systematic difference in the amount of backscatter is an instrumental effect. Interhemispheric differences in the HF radio propagation conditions within radar fields-of-view may also be responsible. For example, northern hemisphere radars observe a considerable number of echoes from so-called “one-and-a-half-hop” scatter; ionospheric radar backscattered that is reflected by the ground/sea before propagating through an ionospheric path to the receiver. The increased abundance of one-and-a-half-hop scatter in the northern hemisphere (where the radars typically overlook ground or sea) compared to the southern hemisphere (where the radars mainly overlook the generally icy Antarctic continent) may explain this interhemispheric difference.

[13] The traces labeled “NH” and “SH” include data at all latitudes and local times. As such, they show the “global” variation in backscatter. However, it is reasonable to expect the largest impact of substorms on radar backscatter will occur in the nightside ionosphere. Thus the broken lines in Figure 1 present the variations of \(\Psi \) when only scatter observed between 21–03 MLT (northern and southern hemispheres combined) is included in the numerator of equation (1). Here, \(\Psi \) is further broken down to indicate the variation in backscatter in the 60°–70°, 70°–80°, 80°–90°, and 60°–90° magnetic latitude ranges. In the 60°–70° range, the variation in backscatter resembles the global trend, rising from \(t = -90 \) min to peak within a few minutes of substorm onset (in this case just after onset) and then gradually falling to pre-substorm levels. The 70°–80° range is hardest hit, with the level of backscatter dropping by ~30% within a few minutes of onset. Very little backscatter is observed within the polar cap (mlat ≥ 80°), but the level is approximately constant throughout the substorm period.

[14] Figure 2 shows changes in the spatial distribution of \(\Psi \) in the crucial period from 18 min prior to the substorm expansion phase (\(t - 18 \) min) to 18 min after onset (\(t + 18 \) min). The distribution of \(\Psi \) in both the northern and southern hemispheres from \(t - 18 \) to \(t + 18 \) min is presented in the magnetic latitude/magnetic local time coordinate system shown in the key. In order to improve the statistical significance of the data, the grid size in both the meridional and zonal directions has been doubled (i.e., 2° in magnetic latitude and ~220 km in the longitudinal dimension). The change in backscatter (\(\Delta \Psi \)) in both hemispheres is presented in the same coordinate system at 6 min time steps. In each case, \(\Delta \Psi \) is computed relative to the backscatter distribution at the time of the previous plot (and only where \(\Psi \) is greater than 10). The values of \(\Psi \) and \(\Delta \Psi \) are color-coded according to the appropriate color bar.

[15] At \(t - 18 \) min, the distribution of backscatter roughly corresponds to the expected location of the auroral oval, spanning all local times and found at higher magnetic latitudes in the dayside ionosphere than in the nighttime. In the northern hemisphere dayside ionosphere, most scatter is observed in the ~75°–80° magnetic latitude region, distributed somewhat asymmetrically about noon. Backscatter maximizes in the morning (06–12 MLT) sector with a minimum around dusk, somewhat in contrast to the postnoon maximum reported by Provan et al. [2004]. Although fewer southern hemisphere data are available (as discussed above), there is evidence that the dayside maximum occurs in the afternoon sector with a minimum in the morning sector. In the nightside ionosphere (both hemispheres), backscatter is greatest in the ~66°–76° magnetic latitude zone and relatively evenly distributed about midnight.

[16] Between \(t - 18 \) min and \(t - 0 \) min, the amount of dayside scatter increased slightly, indicated by the orange/red \(\Delta \Psi \) color coding in the dayside ionosphere as shown in Figure 2, while the amount of nightside scatter remained broadly steady, consistent with the trends presented in Figure 1. Indeed, the data presented in Figure 1 indicate that the overall scatter in each hemisphere is tending to a maximum as the time of substorm onset approaches, suggesting that the regions where backscatter is increasing more than compensate for those where backscatter is reducing.

[17] At the time of substorm onset (\(t - 0 \) min), there is a marked reduction in nightside backscatter (indicated by the purple/blue color-coding) in the auroral zone in both hemispheres. In the northern hemisphere, the backscatter reduction is greatest in the ~70°–80° magnetic latitude region between ~19–03 MLT, while in the southern hemisphere there is some evidence that the effect extends from ~21–05 MLT (albeit based upon fewer data points). Meanwhile, in the northern hemisphere, where there are more backscatter data at lower latitudes, the level of backscatter in the region equatorward of ~65° increases significantly at substorm onset, suggesting that the scatter has shifted in location. This displacement of backscatter to lower latitudes occurs across most local times from dusk to dawn.

[18] The reduction in nightside backscatter in the ~70°–80° magnetic latitude region continues over the next 18 min (lower 3 rows presented in Figure 2). At \(t + 6 \) min, the region in which northern hemisphere scatter is falling most rapidly appears to move from the pre- to post-midnight sector. A similar motion is observed in the southern hemisphere at \(t + 12 \) min. Also, the lower latitude region of increased scatter extends to virtually all local times in the northern hemisphere at \(t + 6 \) min. We note that throughout the interval presented, backscatter in the polar cap is broadly unchanged (as indicated in Figure 1).

[19] Figure 3 shows relative backscatter parameter variations in the nightside ionosphere (21–03 MLT, between (a) 60°–70° and (b) 70°–80° magnetic latitude) sorted by
radar operating frequency \((\Psi_{freq})\). This is computed by substituting \(n_{radar}(t)\) in equation (1) by the number of radars operating at a given frequency, \(n_{radar}(t, \nu)\). Thus the \(\Psi_{freq}\) backscatter parameter is weighted according to the number of radars operating at the selected frequency. The baseline value is simply the mean value of the \(\Psi_{freq}\) computed in each frequency band during the \(t - 90\) to \(t - 60\) min interval and reflects the average pre-onset level of the backscatter parameter. \(\sum \Psi_{freq}\) is the sum of \(\Psi_{freq}\) in each frequency band computed over the entire epoch and is therefore related to the total number of backscatter measurements made in that band.

[20] In the \(60^\circ - 70^\circ\) magnetic latitude region (Figure 3a), the variations in backscatter parameter follow the broad trend presented in Figure 1 (i.e., increasing prior to substorm onset and falling afterward). However, there are

Figure 2. The spatial variation in backscatter parameter (\(\Psi\)) around substorm expansion phase onset.
subtle differences in the backscatter variations at each operating frequency. If we consider that of the 4193 substorms in the Frey et al. [2004] list, 85% occurred in the 60°–70° region, then these differences may have important consequences for the operation of the SuperDARN radars when studying substorms. SuperDARN radars most commonly observed echoes in the 8–14 MHz range (as indicated by the large baseline values and \(\Sigma \Psi_{freq} \) in these frequency bands). Clearly, this is due to these being the preferred operating frequencies (since backscatter cannot be observed in a frequency band that the radar is not sounding). Operations in the 14–18 MHz range are less common, with operation in the 18–20 MHz range being somewhat unusual (with consequently poor backscatter statistics). However, we note that in the 12–14 MHz range, despite reasonable overall performance, the backscatter parameter drops below the pre-growth phase baseline level 30 min after substorm onset. In contrast, in the 8–10 MHz range, backscatter is roughly constant until the time of substorm onset (slightly before substorm onset in the case of 10–12 MHz) but then falls steadily over the first ~30 min of the expansion phase. At higher frequencies, the backscatter trend is quite different. For example, in the 16–18 MHz band, although there is significantly less scatter overall (in part because these frequencies are utilized less often), there is a notable increase in the level of backscatter during the ~30 min prior to onset. Indeed, in the frequency bands above 14 MHz, there is only a modest fractional reduction in backscatter in the crucial ~5 min after onset (albeit imposed on a lower level of pre-onset scatter compared to lower operating frequencies).

4. Conclusions

[22] We have performed an analysis of SuperDARN radar backscatter during 3005 substorms identified from IMAGE FUV observations in the period May 2000 to December 2005. We find that the global level of backscattered signal rises during the 90 min preceding substorm onset by ~20%, peaking a few minutes prior to the expansion phase and then gradually declining to approximately the pre-substorm level over the following 90 min. In the nightside ionosphere, the level of backscatter begins to fall a few minutes prior to substorm onset, with an overall reduction of ~25% in the hour following onset. This modest “loss” of backscatter is concentrated in the region poleward of ~70° magnetic latitude, with significant levels of backscatter actually shifting to lower magnetic latitudes. Although radar operations in the 8–14 MHz frequency range in the nightside ionosphere generally result in a significant fraction of backscatter data, there is evidence that operations at frequencies outside this range might prove advantageous. For example, the 8–10 MHz band, which yields excellent radar backscatter in the 60°–70° magnetic latitude region of the nightside ionosphere does not perform as well in the 70°–80° region within ±30 min of substorm onset.

[23] The upgrade of a subset of the SuperDARN radars to provide a “stereo” capability has enabled simultaneous
We therefore propose an evaluation of dual frequency operations in the nightside ionosphere during substorms, simultaneously sounding in the 8–14 and 14–20 MHz bands in order both to maximize the overall level of backscatter and provide an uninterrupted diagnostic capability (albeit with less backscatter) in the ionospheric regions associated with substorm expansion phase onset.

[24] NASA’s THEMIS mission [Frey et al., 2004] launched in February 2007, is specifically designed to address the present uncertainty in the location and timing of substorm expansion phase onset in the Earth’s magnetic tail. The mission comprises five identically instrumented probes with orbits arranged such that during key observing seasons, the spacecraft align radially every four days in order to measure the timing and evolution of the signatures of substorm onset. Crucial to achieving this aim is a complementary network of ground-based experiments, including a dedicated array of all-sky imagers and fluxgate magnetometers [Donovan et al., 2006]. Given the upcoming focus upon the substorm problem as a result of the THEMIS mission and the huge potential contribution to be made by the SuperDARN radar network, the possible benefits of dual-frequency operations to SuperDARN radar performance during the substorm expansion phase may prove to be crucial.

Acknowledgments. The authors are grateful to H. U. Frey (Univ. of California, Berkeley) for making the list of substorms available to the community and to M. Lester for helpful comments on the manuscript. We are also indebted to the PIs of the various SuperDARN radars, without whose efforts this study would not have been possible. Throughout this study, AG was supported by STFC rolling grant number PP/E000983/1.

References

