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Abstract 

The behaviour of two graphene based structures has been theoretically investigated and 

analysed by using one or more tools. This tool kit consists firstly of SIESTA, a density 

functional theory software package, secondly Gollum, a non-equilibrium Green’s 

function code, and finally the tight binding approach. The first project considers the 

variation of the thermoelectric properties of a graphene-graphene junction functionalised 

by the amino-silane molecule. The second project studies the mechanical properties of the 

interface between a silicon-carbide substrate and monolayer graphene. The results of 

these two projects are summarised in the next paragraphs. 

The calculation of the thermoelectric properties of a graphene-silane-graphene 

junction reveals a number of interesting results. The most important result is that silane 

hinders the cross-plane electron transmission and thermal conductance. Such properties 

have effective applications through controlling the heat flow in the electronic chip. 

Furthermore, the silane molecule enhances the figure of merit of the junction which refers 

to the ability to convert heat. To sum up, silane-functionalized graphene has an improved 

heat mediation over a non-functionalised junction. 

The second project analyses the mechanical properties of the silicon-

carbide/graphene junction. The study of this junction focuses on the trends in terms of 

stiffness and work function as the hydrogen concentration intercalating the interface and 

the number of graphene sheets on top of the silicon-carbide substrate varies. As a result 

of this study I have found that the effect of increasing the number of penetrating 

hydrogen atoms is to reduce the stiffness and to enhance the work function. The same 

situation is found for the stiffness when the number of graphene layers is increased. 

However the work functions shows two completely opposing behaviours; the first one 

can be seen in the quasi-free standing graphene layer type 1 and type 2, where the work 

function has  increased, while it has decreased for as-grown interface. An additional 

property can be deduced is that a certain amount of hydrogen atoms at the interface of 

approximately 33%, can dramatically change the characteristics of the interface. Another 

feature is that the junctions exhibit three distinct values of stiffness depending on the 

hydrogen concentration. The highest value is calculated for the directly attached graphene 



  
 

sheet to the silicon-carbide, while the softest junction is obtained when the concentration 

of hydrogen atoms passivates more than 50% of the surface silicon atoms. The last value 

has been shown for the graphene-graphene layer.  
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Chapter 1 - Introduction  

 

Over the last two decades, condensed matter physics has witnessed great advances in 

both theoretical and experimental methods. These advances have enabled scientists to 

create new materials[1, 2], minimize the structure of electronic circuits[3, 4] and develop 

powerful simulation tools[5-7]. Molecular electronics has arisen as a novel field with ever 

expanding possibilities dating back to 1974, when the first prediction was proposed by 

Aviram and Ratner[8]. 

However reducing the size of a circuit, to nearly 10 nm or less[9] requires the 

development of new theories to explain and analyze the behavior of molecules in such 

realms or to predict their properties and phenomena[10]. The aim of this thesis is to 

present a step forward to deepen our understanding of molecular electronics and to 

therefore help strengthen the technology by suggesting new devices as our pivotal goals.  

To achieve these aims an effective road map has been set up which consists of three main 

steps. Firstly, structure optimization via density functional theory (DFT), secondly 

calculating the single electron transmission via a Green’s function formalism (GF) and 

finally to analyse the results by using the tight binding (TB) approach.  

The above three steps have certain dependencies. For example the DFT calculations 

describe the ground state properties whereas the GF mainly depends on DFT for the 

transmission calculation since it requires a DFT Hamiltonian of the system[11].  In 

contrast to GF, TB can either be fully or partially independent from DFT.  

Regarding the importance of these three theoretical tools I have devoted chapter two in 

this thesis to briefly discuss DFT starting from the very beginning up to current 

implementation in the numerical codes such as SIESTA [12] and CASTEP [13]. The next 

part of chapter two deals with GF in more detail as it is extensively applied and 
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developed by our group and can provide comprehensive information about the system. 

The TB approach is presented in the   last section in chapter two. 

The following chapters will be organized so that they illustrate the projects I have carried 

out using the aforementioned procedures. Chapter three illustrates the effect of single 

molecule on the cross plane transmission of graphene. The results can be exploited to 

control the heat produced in the electronic devices and then either efficiently discards the 

excess heat or transforms it into a power via the Seebeck effect.  

Chapter four investigates the topological properties of a graphene sheet above a silicon 

carbide (4H-SiC) substrate. The workfunction, stiffness, and charge transfer for different 

number of layers of graphene on top of SiC were checked in addition to the calculation of 

the same properties as a function of hydrogen intercalating between the sheet and the 

substrate. 
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Chapter 2 - Theoretical Methods  

 

2.1. Introduction 

The main purpose I am trying to achieve is calculating the transmission coefficient of a 

molecular junction. From the behaviour of the transmission I can deduce very important 

information about the electronic nature of the system under bias, for example, 

conductance, power transmission efficiency, the type of charge carriers, and susceptibility 

to the environment. All of this data about the behavior of molecular junction has many 

potential applications such as transistors, sensors, rectifiers, electrodes and solar cells.. 

Therefore to gain the transmission amplitude I need to obtain the Hamiltonian of the 

system which can be acquired by solving the many-body Schrödinger equation.  

However solving the Schrödinger equation for many interacting particles is a difficult 

task even more so for  a system with thousands of atoms. Therefore I resort to 

approximations such as DFT. The obstacle of DFT is that it only calculates the ground 

state properties i.e. the properties of a closed system. This means that I cannot calculate 

the transmission coefficient because it is a property of an open structure which is a 

system which allows electrons to flow from one side of a device to another. To overcome 

this barrier a Green’s function formalism  is adopted which describes the susceptibility of 

any point in the whole system to the distortion in the source[14].  

In summary this chapter will present 

1. The method used to obtain the Hamiltonian of the system via DFT. 

2. The implementation of the Hamiltonian from DFT in Green’s function to 

calculate the transmission coefficient of the system. 

3. The tight binding procedure to mimic the DFT-Hamiltonian and the GF-

transmission coefficient and analyse the results. 
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2.2. Density Functional Theory (DFT) 

The first section in the current chapter deals with DFT. Therefore, the main purpose of 

this section is to give a general understanding, since it is not a DFT or quantum chemistry 

textbook, of how this theory works and the historical developments led to the present 

well-known theory. Based on this I will start my DFT journey with the pretty, elegant 

equation of Schrödinger. 

 

2.2.1. Many-particle Schrodinger equation 

A fundamental starting point of any computational methods, whether it is DFT or not, is 

writing down the Schrödinger equation,   

ˆ | |H EΨ〉 = Ψ〉                                         (2.1) 

( )1 2 1 2, , , , , , ,N Nr r r R R RΨ = Ψ                                          (2.2) 

where Ĥ represents the total Hamiltonian of the system, E the corresponding eigenvalues, 

and  Ψ is the total wave function of the system, in which the positions of the electrons 

and nuclei are represented by ri and Rj, respectively. The explicit and general form of Ĥ , 

for a system with Ne number of electrons and Nn number of atoms, is  

2 22 2 2 2 2

2 2
1 1 1 1

ˆ
2 2

ˆ ˆ ˆ ˆ ˆ

e n e n e nN N N N N N
j j j

i j i i j j i je i n j i i j j i j

e N ee NN eN

Z Z e Z ed d eH
m dr m dR r r R R r R

T T V V V

′

′ ′= = ≠ ≠ = =′ ′

= − − + + +
− − −

= + + + +

∑ ∑ ∑ ∑ ∑ ∑ 

               (2.3) 

where 
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22 2 2

2
1 1 1

22 2

2
1

ˆ ˆ ˆ; ;
2

ˆ ˆ;
2

e e e n

n n

N N N N
j

e ee eN
i i i i je i ii i j

N N
j j

N NN
j j jn j j j

Z ed eT V V
m r rdr r R

Z Z edT V
m dR R R

′= ≠ = =′

′

′= ≠ ′

= − = =
− −

= − =
−

∑ ∑ ∑ ∑

∑ ∑





 

where eT


 and NT


 are the kinetic energy of electrons and nuclei respectively. The 

electron-electron potential is represented by eeV


, eNV


 is the potential between electrons 

and nuclei, and NNV


 represents the potential between nuclei. Suffices i and j refer to the 

electron and nucleus respectively. The electron charge is e, Z is the atomic charge, the 

reduced Planck constant is  , and the mass of electron and nucleus are me and mn 

respectively [15].  However, solving such an equation for large systems is a problematic 

task. Therefore, a number of approximations have been suggested and applied.  

 

 

2.2.2. Adiabatic approximation 

The first step, applied to expedite the solution of Schrödinger equation Eq.(2.3), is the 

adiabatic (or Born-Oppenheimer) approximation. This approximation simply ignores the 

kinetic energy of the nuclei. Thus, the Schrödinger Hamiltonian can be written as a sum 

of two Hamiltonians, 

ˆ ˆ ˆe NH H H= +   (2.4) 

ˆ ˆ ˆ= N
N NNH T V+   (2.5) 

ˆ ˆ ˆ ˆe
e ee eNH T V V= + +   (2.6) 

Where ˆ NH represents the nucleus part and ˆ eH  stands for the electron part. 
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The justification for this operation is that the mass of the nucleus is much greater than the 

mass of the electron and their movement is much slower than the electron. As a result, the 

electrons can simultaneously adjust themselves to the position of the nucleus[16]. 

 

 

2.2.3. Thomas-Fermi theory 

The second step is Thomas-Fermi (TF) approximation, which is regarded as the first 

ancestor approach of today’s well known DFT method. The beauty of the TF approach is 

the replacement of a vector state by a one variable scalar function, namely the electron 

density n(r), i.e., instead of using Eq.(2.2) as a solution one can use n(r). However, the 

TF approach adapted different calculation logic, rather than using the usual Schrödinger 

equation, they suggest that the energy [ ( )]TFE n r  of the atom can be calculated using the 

following formula   

[ ]
5
3 ( ) ( ) ( )1[ ( )] ( )

2
TF TF TF

TF TF TF TF
n r n r n rE n r C dr n r Z dr dr dr

r r r
′ ′′

′ ′′= − +
′ ′′−∫ ∫ ∫ ∫         (2.7) 

( ) e
TF

dN
n r

dr
=   (2.8) 

where CTF is a constant, equal to 2.871 a.u., and r, r’,and r’’ are vectors defining the 

space of the whole system, the first electron atomic space, and second electron atomic  

space respectively [17]. 
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2.2.4. The Hohenberg-Kohn Theorems 

The third step, effectively contributed to the emergence of DFT, was opened by the 

Hohenberg-Kohn theorems, which state: 

1. The system would have a unique ground state density n0(r) associated with a specific 

external potential vext, where ˆ
ext eNv V≡ . It is worth to mention that the nomenclature 

for êeV in Hohenberg-Kohn theorems is Vint. 

2. The energy of the system E[n0(r)] associated with that external potential vext  is the 

global minimum point and the related ground state density n0(r) is the exact solution. 

The contributions of these theorems into DFT are: 

1. One can divide the Hamiltonian of Eq. (2.6) into two parts: the intrinsic electronic 

part and the nucler part, which can be dealt with as external potential vext 

2. Both the external potential and the ground state density map each other, vext ↔ n0(r). 

3. The total energy of the system can be written as a functional of the ground state 

density E[n0(r)]. 

According to the above results, the total energy of the system can be written as [16], 

[ ] [ ] [ ] [ ] 3ˆ ˆ[ ( )] ( ) ( ) ( ) ( ) ( ) ( )

[ ( )] [ ( )] [ ( )]
e ee ext

HK HK ext

E n r n r T n r n r V n r v r n r d r

T n r V n r V n r

= Ψ Ψ + Ψ Ψ +

= + +
∫            (2.9) 

where  

[ ] [ ]
[ ] [ ]

3

ˆ[ ( )] ( ) ( )

[ ( )] ( ) ( )

[ ( )] ( ) ( )

HK e

HK ee

ext ext

T n r n r T n r

V n r n r V n r

V n r v r n r d r

= Ψ Ψ

= Ψ Ψ

= ∫
 (2.10) 
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2.2.5. Kohn-Sham theorems 

The final step which shaped the modern DFT is the Kohn-Sham theorems. The key idea 

of these theorems is the replacement of the ground state energy functional of an 

inhomogeneous interacting particle system with a homogeneous non-interacting one. This 

means that instead of solving one M-particle Schrödinger equation, one can solve M one-

particle Schrödinger equations. In addition, they have explicitly introduced the exchange 

and correlation operator, but as yet this needs to be solved self consistently.  

Kohn-Sham starting point is [18],  

[ ( )] [ ( )] [ ( )] ( ) [ ( )]non non HK ext xcE n r T n r V n r V r V n r= + + +                                               (2.11) 

where Tnon is the kinetic energy of a non-interacting-particle system, and VXC is the 

exchange-correlation energy of the interacting-particle system.  

As a result of minimizing Eq. (2.11), Kohn-Sham were able to suggest the following: 

The equations govern the interacting particle system are exactly as the same as the non-

interacting particle system under a specific potential. Thus, self-consistently solving a 

Schrodinger one-particle equation (Eq. (2.12)) of non-interacting-particle system to 

obtain the required potential is equivalent to that of interacting system[19].  

2
2 ( )( ) ( ) [ ( )] ( ) ( )

2 | |ext xc
e

i i i
n r dr dr n r

m r r d
v v n r r r

n
ψ ε ψ

 
= 

 

′
− ∇ + + +

′−∫


                      (2.12) 

2( ) | ( ) |
eN

i
i

n r rψ=∑                                                                                                          (2.13) 

The trick is that after obtaining the density n(r), one should define the potentials in (2.11). 

The next step is to minimize (2.11) in order to solve (2.12), i.e., a self-consistent 

iteration[18]. 
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2.2.6. Exchange and correlation potential 

Even though Kohn-Sham had introduced the term exchange-correlation potential, they 

did not define it exactly. Therefore, as a rule of thumb, the absence of an optimum and 

comprehensive exchange-correlation (XC) functional definition should be confirmed, and 

all methods should be calibrated with pretested results[20]. Bearing this in mind, one 

should start from the general definition of the exchange-correlation energy, which is the 

difference between the energy of inhomogeneous interacting electron system and the 

energy of homogeneous non-interacting electron system. Although, this difference can 

exactly be calculated numerically via a number of contributions, but in real life I have to 

apply approximations, which defines the margin that all XC approximations work 

within[21, 22]. 

For instance the local density approximation (LDA) is the first XC approach proposed by 

Kohn and Sham in 1965. They suggested a solution to Vxc[n(r)] in Eq. (2.11) as, 

[ ( )] ( ) [ ( )]xc xcV n r dr n r v n r= ∫                                        (2.14) 

where vxc[n(r)] is the electron exchange-correlation in the homogeneous electron gas. 

LDA is valid, provided that the density n(r) is highly localized with slow variation. 

 

Now by subjecting Eq. (2.11) to  

( ) 0n r drδ =∫                                        (2.15) 

[ ( )]( ) [ ( )] [ ( )]) 0
( )

{ }non
int xc

T n rn r n r n r dr
n r

δδ
δ

+ + =∫             (2.16) 

[ ( )] ( ) [ ( )]xc xc
dn r n r v n r
dn

=                                     (2.17) 

( )[ ( )] ( )
| |int ext
n rn r v r dr
r r

′
′= +

′−∫                                    (2.18) 
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Kohn-Sham have separated the potentials into two terms, where Eq. (2.17) depicts the 

exchange-correlation participation, and the left potential represent the internal potential, 

Eq. (2.18) [18]. 

 

2.2.7. SIESTA 

DFT electronic structure calculations have been performed by using SIESTA, Spanish 

Initiative for Electronic Simulations with Thousands of Atoms. SIESTA produces the 

ground state properties and the mean field Hamiltonian, which is the main requirement to 

perform the transport calculations [12, 23]. The main features of SIESTA can be 

summarised as, 

• Linear scaling DFT method [7, 24]. 

• Implementation of Linear Combination of Atomic Orbitals (LCAO) via using 

numerical atomic orbitals basis sets [25]. 

• Eliminating core electrons through Kleinman-Bylander approach for norm-

conserving pseudopotential [26]. 

• Hellmann-Feynman theory has been used for forces between atoms [23]. 

 

 

2.3. Green's Function (GF) 

The first section of this chapter briefly reviewed how DFT can be used to obtain the 

Hamiltonian of the system. In this section I will demonstrate the way to use the DFT 

mean field Hamiltonian (DFT-mfH) via Green’s function method to calculate the 

transmission coefficient τ(E) [27, 28]. Therefore the GF’s procedures followed to 

calculate τ(E) are  

1. Calculating the GF of double infinite periodic lead. 

2. Calculating surface GF of the lead via applying boundary conditions. 
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3. Using Dyson’s equation to obtain the total Green’s function of the whole system, 

i.e., a system with two leads plus scatter region.  

4. Calculating the τ(E) of the electron from one lead to the other through the 

molecule. 

 

 

 

 

2.3.1. Mean field Hamiltonian 

The starting point is the Hamiltonian of the system, which can mainly be divided into two 

parts; the semi-infinite lead parts and the scattering region (SR) part. This procedure 

makes life easy and also takes into account the effect of the leads on the scattering region 

without losing generality [27]. As a result, I can now deal with the Hamiltonian of the 

leads without worrying about the SR. In addition to the first separation between 

Hamiltonians, I can also deconstruct the total Hamiltonian of the double infinite lead into 

two parts as well, so that it will be a combination of perfectly periodic layers along the 

transport direction, which is usually the z direction as shown in Figure 1. Each layer is 

described by a sub-Hamiltonian H0 which includes orbital interactions within a single 

Figure 1: Double infinite lead with H0 Hamiltonian for the interactions within a single 

layer and H1 Hamiltonian to represent the interactions between two adjacent layers. 
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layer and another sub-Hamiltonian H1 describing the orbital interactions between two 

adjacent layers. I can then write down the Hamiltonian of double infinite lead as, 

1
†
1 0 1

†
1 0 1

†
1 0 1

†
1

0 0 0
0 0

0 0
0 0
0 0 0

H
H H H

H H H H
H H H

H

 
 
 
 =
 
 
  





                                                      (2.19) 

Therefore, the Schrödinger equation can be written as, 

†
0 1 1 1 1j j j jH H H Eψ ψ ψ ψ− ++ + =                                                         (2.20) 

Since I have an infinitely periodic system along the z direction and finite in the other 

directions, I can apply Bloch’s theorem for the wave function, such that, 

ikj
j k kA eψ ϕ=                                                                              (2.21) 

where k represents the wavenumber and Ak is the normalization constant. By substituting 

this result into Eq. (2.20) and do simple mathematical manipulations, I will have the 

dispersion relation of the system by solving secular equation which results in the 

following determinant equation, 

†
0 1 1det( ) 0ik ikH H e H e E−+ + − =                                                        (2.22) 

Equation (2.20) can be also rewritten to be in a numerical friendly form, 

1 1 †
1 0 1 1( )

0
k kik

k k

H E H H H
e

I
ϕ ϕ
µ µ

− − −    
=    

    
                                           (2.23) 

 

where  μk =e-ikφk.. The last two equations give rise to the following important results: 

1. From Eq. (2.22), the number of the bands (M) is equal to the number of orbitals in H0.  

2. Symmetric bands can be seen if the H1 is hermitian, while asymmetric bands when H1 

is not hermitian. 
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3. Positive (negative) real values of k result in right (left) propagating modes, with a 

positive (negative) group velocity (ν), which is associated with an open channel. 

1 ( )k E kν = ∂


                                                                              (2.24) 

4. Positive (negative) complex values of k result in right (left) decaying mode, i.e. 

closed channels. 

 

2.3.2. Green's function of double infinite lead (DIL) 

Based on the solution for the wave function of the double infinite lead a Green’s Function 

can be constructed as, 

, '

k k k
DIL
j j

k k k

e B j j
g

e B j j

ϕ

ϕ

 ′≥= 
 ′ ≤


  (2.25) 

where  

( )

( )

v

v v

v

v v

M
ik j j

k k k k k
v

M
ik j j

k k k k k
v

e B e B

e B e B

ϕ ϕ

ϕ ϕ

′−

′−

=

=

∑

∑
  (2.26) 

The first and second parts of Eq. (2.25) represent a distortion propagating to the right and 

left of the source at point jˊ, respectively. This means a retarded Green’s Function 

construction. Thus, for gj,jˊ to be a solution, it should fulfill two conditions: 

1. It should be continuous at j=jˊ. 

k k k kB Bϕ ϕ=   (2.27) 

2. Should fulfill Green’s Function equation, 



  
Chapter 2 23 
 

( ) ,E H G I− =   (2.28) 

which gives 

( )†
1 k kk k kH e B e B Iϕ ϕ− =   (2.29) 

Introducing the dual space theorem, 

k k k k Iϕ ϕ ϕ ϕ= =   (2.30) 

Therefore  

k k k k

k kk k

B B

B B

ϕ ϕ

ϕ ϕ

=

=
  (2.31) 

Plugging the last result into Eq. (2.29) and using the continuity equation, Eq. (2.27), I 

obtain 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }

†
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where 



  
Chapter 2 24 
 

( ) ( ){ }†
1 k k kk k kC H e eϕ ϕ ϕ ϕ= −                     (2.33) 
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                           (2.34) 

 

2.3.3. Surface Green's function (SGF) 

I obtain the SGF by applying boundary conditions into the double infinite lead GF via 

adding a new wave function. This procedure constructs a new Green’s Function for a 

semi-infinite lead (SIL), by which the left and right leads will extend until j=j0, i.e. I can 

define the left lead to be periodic within (-∞,j0-1) and the right lead within (j0+1,∞). Thus 

0 0 0 0, , 0L R
j j j jg g= =   (2.35) 

and  
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Substituting (2.37) into (2.36) and using the result of (2.35), I can define D for the left 

and right propagating waves as, 
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Thus, the semi-infinite lead Green’s function, 
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Finally, I obtain the SGF as, 
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2.3.4. Total Green's function (G) 

As shown in Fig. (1), I can get the total Green’s Function using Dyson equation [11],  

1 1( )G g H− −= −                                            (2.41) 
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2.3.5. Transmission via Fisher-Lee 

Without resorting to complicated jargon, the Fisher-Lee relation simply extracts the 

amplitudes of wave functions projected on scattering region from the TGF depending on 

two logical foundations: 

1. The well-defined scattering matrix approach. Since I have coherent transport, the 

projected de Broglie wave of electron can either be reflected or transmitted at specific 

points in the system, as shown in Figure 2. 

2. The “beloved” Green’s Function approach. The beauty of GF is that it reveals how 

different parts of the system interact with each other from each matrix element. Thus I 

can relate the TGF element at a specific site with its counterpart amplitude to deduce 

the required information.   

Showing how to obtain the τ(E),  I will consider the simplest case where the points are on 

the surfaces of the leads and the transmission occurs as the electron pass from channel i 

in the first lead to channel j in the second lead. Therefore, the transmission amplitude (t) 

can be written as,   

1
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, ,

j i

j i

j i j i k k

j i k j i k

G t C

t G C

ϕ ϕ

ϕ ϕ

−′=

′ =
  (2.44) 

Where I have applied (2.34) into (2.44) to define t, and finally calculate τ(E)[29]  
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2.4. Tight binding (TB) 

In the last two main sections, I have demonstrated how to first construct a Hamiltonian 

operator, via DFT, and secondly how to use this operator to calculate the transmission 

coefficient, via GF. Besides DFT, a number of methods are available which can fulfill the 

same task, of course with different accuracy. One of these methods is the Tight Binding 

method. The elegancy of the TB is the localization of the potentials and the 

wavefunctions, presumed to be orthonormal, are centered on the atomic sites [30]. These 

properties essentially result in a parameter dependent Hamiltonian, i.e., a few parameters, 

two at least, can define the whole system[31]. Furthermore, these parameters can be 

extracted through fitting to empirical, semi-empirical, DFT, or ansatz  calculations [30]. 

In addition to the simplicity, TB is a very effective tool to explain and analyse the 

behaviour of materials[32]. 

Thus, Eq. (2.1) can be written as, 
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where α is equal to (ε0-E)/γ, ε0 is the energy of the atomic orbital when the corresponding 

atom is isolated, it is also known as Coulomb  integral and defined as in Eq.(2.49). The γ, 

defined in Eq.(2.50), is the interaction energy between two adjacent orbitals, known as 

resonance, tunneling or hopping integral and it measures the probability of electron i 

being in the orbital ψj(r). Since the system has the property of high localization, then any 

interaction with remote orbitals would be very weak and can be neglected. As a result the 

Hamiltonian of the system in TB formula is tridiagonal matrix, as seen in Eq.(2.48). 

0 i iHε ψ ψ=  (2.49) 

i jHγ ψ ψ=  (2.50) 

where iψ  is electronic orbital centered around atom i, and jψ is electronic orbital at site j. 

The transmission coefficient can be extracted from the TB Hamiltonian via GF the same 

way it is extracted from DFT one. 

 

 

 

Figure 2: A schematic illustration of a 1D scattering region attached to two leads 
along z-direction. The points j=0 and j=L are the boundaries of the scattering region 
where it is attached to lead one and two respectively.  
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Chapter 3 - Functionalization mediates heat transport in 

graphene 
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3.1. Introduction 

Anisotropic properties of two-dimensional (2D) layered materials make them promising 

in the application of next-generation electronic devices, among which graphene and few-

layer graphene (FLG) have been most intensively studied for thermal management, due to 

their extraordinarily high in-plane thermal conductivity (σ) [33-37]. For instance, Yan et 

al. [38] reported that the maximum hotspot temperature can be lowered by ~20oC in 

transistors operating at ~13 Wmm-1 using FLG as a heat spreader for a gallium nitride 

(GaN) transistor. Gao et al. [39] reported that the maximum hotspot temperature 

decreased from 121 to 108oC (∆T=13o C) for a heat flux of 430 W cm-2 after the 

introduction of a single-layer graphene heat spreader. Moreover, the simulations of 

graphene heat preaders were also reported for silicon-on-insulator integrated circuits [40] 

and three-dimensional (3D) integrated circuits[41]. The thermal conductivity of a 

graphene laminate film supported on substrate was also investigated and found to remain 

rather large[42]. However, in most practical applications, graphene/FLG will be 

supported by and integrated with insulators, both in electronic circuitry and heat-spreader 

applications[43]. Therefore, thermal energy flow will be limited both by the in-plane 

thermal conductivity (σ) of the supported graphene/FLG and by the thermal boundary 

resistance (R) at the graphene/FLG–substrate interface [44]. 

The properties of 2D layered materials are very sensitive to the interactions with external 

bodies. Indeed, when supported on an amorphous substrate, σ of suspended graphene 

decreased by almost one order of magnitude, from ~4,000 (ref.[45]) to ~600 W  m-1 K-1 
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(ref.[46]). Such a striking discrepancy in σ significantly limits the thermal performance of 

graphene/FLG in real applications. It is reported that the different behaviours are due to 

the strong correlation [47]  to the substrate [48]. These studies have improved our 

fundamental understanding in the physics behind the problem, and it was suggested that 

making rational choice of the substrate material [46, 49] and modulating its coupling to 

graphene[50] may be useful to improve σ of the supported graphene/FLG. 

The thermal boundary resistance (R) of a graphene/FLG–substrate interface is another 

limiting factor to their thermal performance in devices. Covalent functionalization has 

been proved to efficiently promote heat transfer between interfaces by introducing 

additional thermal pathways through the functionalizing molecules [51-66]. For example, 

self-assembled monolayers (SAMs) were used to functionalize metallic surfaces to 

enhance heat transport across metal–water [53, 60], metal–gas [61], metal–semiconductor 

[54] and metal–polymer [64] interfaces. Functionalization was used in graphene and 

carbon nanotube nanocomposites to mitigate the high thermal boundary resistance 

between the graphene/carbon nanotube fillers and the polymer matrices [51, 58, 59, 63]. 

Functionalized molecules also assist to align and densely pack multilayer graphene sheets 

and reduce the interlayer thermal resistance of graphene [58]. Recently, it was shown that 

plasma functionalized graphene raised the cross-plane thermal conductance between 

aluminum and its substrate by a factor of two[52]. Nevertheless, the functionalization-

introduced point defects will further decrease σ of the supported graphene/FLG, as they 

introduce phonon-scattering centres [58, 65, 66]. To correct this drawback, a robust 

solution that maintains the high thermal conductivity of graphene/FLG when supported, 

while effectively reducing the interface thermal resistance is needed. 

DFT calculations show that the electronic part of inter-plane thermal conductance κe of 

silane functionalized graphene can be effectively reduced due to stiffness of the amino-

silane molecule which suppresses the flow of the electrons and phonons through it. 

Furthermore, the cross-plane thermal conductance due to phonons κph has also decreased 

due to silane molecule which confirmed by the collaborating theoretician group who 

calculate the phonon part of thermal conductance and the experimentalist group who did 
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the measurements. They also verified the improvement of the in-plane thermal 

conductance which provides a very attractive platform for thermal management 

applications. 

3.2. Methods 

Ab initio calculations were carried out using the quantum chemistry DFT code SIESTA 

[12]. Local density approximations (LDA) within Ceperley-Alder version (CA), double-

zeta polarized basis set, 0.01 eV/Ao force tolerance and 250 Ry mesh cutoff were all 

applied to obtain the relaxed atomic structures which can be seen in Figure 4-Figure 4).  

First the structures were individually relaxed, where silane molecule has been 

kept fully isolated using 15 Ao of the vacuum region in each direction to prevent any 

interactions with its replica as applied in SIESTA via the supercell approach[7] to keep 

the periodicity of the system in three dimensions [67].  To preserve the periodicity of 

graphene, its geometries were kept periodic in xy plane and “isolated” in z direction. 

After the relaxation of the individual systems, I sandwiched the silane molecule 

between two graphene monolayers to create the junction shown in Figure 4. Then and to 

retain a more realistic conformation, I have relaxed the junction once more following the 

same boundary conditions used for the graphene sheet relaxation. Next, an additional 

graphene layer was attached to each previously relaxed layer of the initial structure to 

simulate a few layers graphene junction, as shown in Figure 5a and Figure 5b.  

As a reminder, it is mentioned in chapter 1 that in order to calculate the 

transmission coefficient of a molecule, one needs to calculate the total Green’s function 

which depends on the Green’s function of the lead. This entails creating a graphene lead 

which consists of four adjacent monolayers at least. Each layer should contain 90 carbon 

atoms to ensure there is no interaction between the silane molecule and its replicated 

images. This means that I need to use ~ 850 atoms to simulate the junction, which is an 

expensive calculation in terms of resources and time. Therefore, I redesign the model 

using the configuration shown in Figure 5.  However, using Z-like structure immediately 
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creates a problem of the dangling bonds at the edges, which can be mitigated by 

hydrogen saturation [68]. 

After structure optimization, one can calculate the transmission coefficient and 

then thermoelectric properties. These properties can be calculated and studied via the 

relation between the electrical (Ie) and heat (Iq) currents on one hand and the voltage bias 

(∆V) and temperature difference (∆T) on the other hand, which is  

e

q

V R S I
I Tκ
∆    

=    Π ∆   
 (3.1) 

The coefficients are: the electrical resistance R, Seebeck coefficient S,  Peltier 

coefficient  Π,  and the electrical part of the thermal conductance κe [69]. In the linear 

response region of temperature and voltage, these coefficients can be calculated by [69-

72], 
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where n is integer (= 0, 1, and 2), T is temperature, h is Plank’s constant,  and  f(E)  is 

Fermi function, details of the derivation of the last five equations can be found in 

references [70, 73-75], where one can find a basic and nice derivation in the second and 

the third references, whereas the first and the forth references give more advanced details. 

The definition for κe is the ratio of the heat current with respect to temperature 

difference between the electrodes when electrical current is zero. Similarly, Seebeck 

coefficient (S) is defined as the variation of the voltage ue to the temperature change in 

the electrodes when the electrical current is zero. Whereas, the definition for Π is the heat 

current induced via electrical current when the temperature difference is zero. Device 

efficiency to generate current due to heat transfer and vice versa is defined by the 

thermoelectric figure of merit (ZT) [76], which can be defined as [77], 

2

,S GTZT
κ

=  (3.7) 

where κ = κe+κph, κph is the phonon contribution to the total thermal conductance which 

is calculated by the collaborative group. The phonon thermal conductance is an expensive 

calculation and I did not have the adequate resources to fully conduct then. 

The electrical conductance G is related to the thermal conductance via  Wiedemann–

Franz law [36], 

2 2

2 ,
3

B
e

k G T
e

πκ =  (3.8) 

and the Seebeck coefficient can be written in terms of energy as[78, 79], 
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k TS E E
e
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where 1 2( ) / 2T T T= − , is the leads average temperature. 
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Figure 4: (a) Molecular structure of silane molecule. (b) Sample of graphene sheet. The 
nitrogen, hydrogen, carbon, silicon, and oxygen atoms are respectively represented 
blue, white, gray, yellow, and red.  

(a) (b) 

Figure 4: A representation of the graphene-silane-graphene junction, which is one part 
of a salf-assamble-molecule (SAM) structure. To preserve the periodicity of this 
structure in two dimenstions, the edges of the graphene sheets kept unsaturated to let 
them interact with their supercell images. 
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Table 1: Mullikan atomic population of graphene carbon atoms attached directly to silane 
molecule on the right and the same atoms when silane is absence on the left hand side.  

Without silane  With silane 
Atom Mullikan 

Population 
∆ %  Atom Mullikan 

Population 
∆ % 

C 4.001 0.025  C 4.009 0.225 
C 3.998 0.05  C 4.011 0.275 
C 4.002 0.05  C 4.012 0.3 
C 4.002 0.05  C 3.957 1.075 
C 3.999 0.025  C 4.022 0.55 
C 4.002 0.05  C 4.019 0.475 
C 3.999 0.025  C 4.023 0.575 
C 3.998 0.05  C 4.021 0.525 
    O 6.271 4.516 
    N 4.905 1.9 
       

∆=100|( Av- Mv)/Av|, where Av and Mv are the atomic and molecular valence number, 
respectively. Av is the valance charge of the atom in the isolated state, whereas Mv is the 
valnce charge of the same type of atom interacted with other atoms in the molecule.  Δ 
represents the strength of the net transferred charge at each atom.  

 

Figure 5: Graphene-silane-graphene junction, where the directly attached graphene 
layers have been replaced by graphene flakes because of the high expense of the 
calculation. For the same reason, the edges have been saturated with hydrogen. Finally, 
carbon and hydrogen atoms are represented by grey and white balls, the red, blue and 
green one are the oxygen, nitrogen, silicon atoms respectively. 
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3.3. Results and discussion 

The results can be seen in Figure 7-Figure 13, where one can notice that silane molecule 

has lowered τ(E), κe, G, Π, and S  with one exception the ZT which has increased. 

The first point I am going to discuss is the behaviour of the transmission 

coefficient, as shown in Figure 7. One can see that silane molecule has increased the 

distance between the graphene layers from 3.56 Ao to 8.186 Ao which destroys the long 

range Coulomb interaction (CI) that couples the epilayers[80] since these interactions are 

distance dependent[81]. In addition to the Coulomb potentials, the van der Waals (vdW) 

forces which interact between the adjacent layers owing to the dipole-dipole correlation 

of the two neutral layers are also distance dependent[80]. As a result, the interaction 

between two graphene monolayers is mainly defined by the distance between the layer 

and their charge distribution.  

Graphene charge distribution can be considerably modified by nitrogen and 

oxygen atoms of the silane, which can also alter the bonding structure. Indeed, the 

nitrogen and oxygen atoms change the sp2 into sp3 bonding, which can be seen in the 

charge modulation of the interacted atoms Table 1. In the absence of silane, the sp2 

bonding is obvious where each carbon atom preserves four valence electrons. However, 

these carbon atom shows charge transfer in the presence of silane molecule, which means 

a distortion of the sp2 bonding. Moreover, the bond lengths of these interacted carbon 

atoms with silane have increased confirming the sp3 bonding[82]. 

Owing to elongation of the graphene interdistance and charge redistribution, 

asymmetric junction between the two graphene monolayer occurs in the presence of 

silane. This asymmetry property will decrease the transmission coefficient through the 

junction due the descending k values as it is approved theoretically[83] and 

experimentally[84].  Andres et al. have also mention this behaviour reporting that 

increasing the distance between two AA stacked graphene layers will change their 
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behaviour from metal to semimetal. They attributed this transition in the behavior to the 

strength of the interaction between layer. In other words, when the distance between 

bilayer graphene is reduced, due to stress, to be less that the van der Waals limit the 

bands broaden and density of states increase at K point [82].  

A transmission coefficient from a tight binding toy model, shown in Figure 8, 

captures the main features of the transmission curve calculated by DFT which confirms 

the findings. In the tight binding model, the graphene sheets have been replaced by one 

dimension one-orbital chain, and silane molecule has been replaced by one atom 

intercalating the two chains, as shown in Figure 6. In Figure 8, it is worthy of note that 

the blue curve, system (b) in Figure 6, has a minimum at the centre of the energy domain 

referring to the depletion of the density of state in this point where it can be considered as 

a semi-metal behaviour. In contrast to the blue curve, the black one, system (a) in Figure 

6, shows a high transmission peak at the same point, i.e. high density of states, which 

reflects a metallic behaviuor.  
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Figure 6: Tight binding toy model for graphene-silane-graphene junction. In both a and b 
figures, graphene monolayer is represented by one dimension chain, which consists of one-
orbital per each site with onsite energy parameter os1, graphically represented by grey balls. 
These orbitals, balls, connected to each other by hopping parameter cp1. Figure (a) illustrates 
two semi-infinite two chains coupled to each other by weak hopping element cp2, dashed line 
through five overlapped sites. Figure (b) shows the same semi-infinite chains but connected to 
each other through intercalated site, orange ball, with onsite energy os2, which represents the 
silane molecule. The couplings between silane and the chains is represented by cp3 as a 
coupling parameter. In (b), the tilted site simulates the actual molecule tilting, as it can be seen 
in Figure 4, and breaks the symmetry as well. The parameters cp1, cp2, cp3, os1, and os2 are 
respectively equal to -0.5, -0.1, -0.5, 0, and 0. 
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Figure 7: Using DFT , the electronic transmission coefficient curve versus energy of 
graphene-silane-graphene junction, where the black line represents the cross plane 
transmission between graphene sheets without including silane molecule, while the blue 
curve is for the junction with silane molecule. 

Figure 8: Energy dependence of the transmission coefficient of tight binding toy model 
for graphene-molecule-graphene junction.  
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Figure 9: Using DFT, the electrical conductance as a function of the temperature. The black 
curve represents the junction without silane, whereas the effect of silane between the sheets 
is considered in the blue curve. 

Figure 10: Using DFT, the electrical thermal conductance of the junction as a function of 
temperature. The black curve is the junction without silane, while the blue one is the 
junction with silane molecule. 
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The cross-plane electrical conductance has decreased due to silane, as shown in Figure 9. 

The conductance is the average of the transmission over a voltage or temperature 

range[85], i.e, it is the susceptibility of the system to the variation of the voltage or 

temperature[73]. Therefore, the conductance lowering is attributed to the transmission 

behaviour. The same argument can be used with electronic thermal conductance, Figure 

10, via Wiedmann-Frantz law, 

,e TL
G
κ

=  (3.10) 

where L is Lorentz number (=
2 2

23
Bk

e
π )[86, 87]. Furthermore, when the temperature is low, 

the mean free path of the electrons (le) is independent of temperature, and thus κe linearly 

changes with temperature. However, when temperature increases, le inversely relates to T, 

which makes κe temperature independent[88]. κe independence of T is attributed to the 

proportional of le, the distance the electron passes before being scattered[89], with  the 

number of phonons. Therefore, when the temperature passes the Debye temperature, the 

number of phonons grows with temperature, and le decreases ( 1/el T∝ ). Thus, at high 

temperature, the phonons dominate, and the thermal conductance due to phonons 

dominates, the electronic contribution to the total thermal conductance will be limited 

[88, 90]. 

To discuss Peltier and Seebeck coefficients, I need to return to Eq.(3.1). In the linear 

response theory, one can write Eq.(3.1) as 

,e

q

I G L V
I M K T

∆    
=    ∆   

 (3.11) 
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where K, L,  and M are thermoelectric coefficients. In the absence of any time reversal 

symmetry breaking factor1, and using the Onsager relation, which interconnects the linear 

response coefficients to each other [91-93], M can be written in terms of L as 

M LT= −  (3.12) 

Equations (3.11) and (3.1) lead to the following result 

1 L
G G
M LM

eG G

R S
K κ
−   

=   − Π  
 (3.13) 

Therefore[74], 
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e T q
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d I K S GTKκ
=

= − = − +  (3.16) 

As a result of (3.14) and (3.15), the lower electrical conductance, the higher S and  

Π regardless of the sign, as shown in Figure 11 and Figure 12 respectively. This means 

that the junction permits for less heat current to cross and electrons will feel high bias on 

both sides. But decreasing κe and G will result in decreasing of ZT. However, silane has 

improved ZT, as shown in Figure 13. This anomalous behaviour of ZT can be attributed 

to the fact that the increament in S has overcome the suppression in both κe and G.  In 

order to improve the figure of merit of an electronic device, scientists try either to restrain 

the thermal conductance, the denominator of (3.7), or enhancing the thermopower, the 

numerator of (3.7). With silane molecule, the latter scenario has occurred.  

                                                 
1 These factors include as an example magnetic field, see the introduction of Ref..91. Jacquod, P., et 
al., Onsager relations in coupled electric, thermoelectric, and spin transport: The tenfold way. Physical 
Review B, 2012. 86(15): p. 155118.  
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Figure 11: Using DFT, the variation of Peltier coefficient with temperature for the 
junction without silane, black curve, and with silane, blue curve. 
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Figure 12: Thermopower change as a function of the junction temperature, where the 
black and the blue curves represent the junction with and without the functionalization 
molecule, silane 

Figure 13: Figure of merit due to electrons as a function of temperature. The effect 
of the existence and absence of silane was considered in the blue and black curves 
respectively. 
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3.4. Synopsis 

The high thermal conductivity of graphene and few-layer graphene undergoes severe 

degradations through contact with the substrate. Here I have shown that the thermal 

management of a micro heater is substantially improved by introducing alternative heat-

escaping channels into a graphene-based film functionalized with amino-silane 

molecules. The current chapter illustrates the effect of amino-silane molecule on 

electronic contribution to the thermoelectric properties of graphene-molecule-graphene 

junction. Indeed, silane has largely affected the properties of the junction by decreasing 

transmission coefficient, and thermal conductance, whereas it has noticeably enhanced 

Peltier coefficient, and Seebeck coefficient. Furthermore, the main result of the current 

work is that silane has increased the figure of merit, as shown in Figure 13, of the 

junction which confirms its validity for electronic devices.  

The main message of this project is that silane functionalized graphene can be effectively 

used to mediate heat in the electronic chip. Experimentally, it was monitored that the 

hotspot temperature was lowered by ~28 oC for a chip operating at 1,300 Wcm-2. 

Moreover, thermal resistance measurements demonstrated an improved thermal coupling 

due to functionalization of the graphene. 
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Chapter 4 - Interplay between electronic and nano-

mechanical properties of quasi-free standing graphene 

on SiC  

 

4.1. Introduction 

The unique electronic and mechanical properties of graphene make it attractive for the 

use in the  nanoelectronics industry[34]. In particular, epitaxial graphene on SiC has 

shown great potential for integration in large-scale production due to its compatibility 

with complementary metal-oxide semiconductor (CMOS) fabrication process and the no 

need for graphene transfer (due to the insulating nature of the substrate). Due to the two-

dimensional nature of graphene, the substrate will have a substantial influence on both 

the electronic and mechanical properties of epitaxial graphene. Thus, the vision of 

integrating graphene into nanoelectronic devices such as high-speed transistors[94], ring 

oscillators[95], integrated circuits[96] and many more depends on our ability to minimize 

the electronic interactions between graphene and the substrate and at the same time 

maintaining the high mechanical durability of graphene, resting on the SiC substrate.  

Despite the reproducible control of the growth process and the excellent quality of the 

graphene produced epitaxial on the Si(0001) face of the 4H-SiC, the intrinsic electronic 

properties of graphene, such as mobility, suffer due to impurities and phonon 

scattering[97, 98]. Furthermore, the as-grown graphene, a partially attached graphene 

sheet to the substrate through covalent bonding [99], exhibits strong electron doping. The 

reason for the modification of both properties is the formation of the interfacial layer 

(IFL, also known as a buffer layer), which is a carbon layer covalently bonded to the SiC 

substrate [97, 100-102]. 

A proposed method for decoupling of the epitaxial graphene from the SiC substrate is 

hydrogen intercalation, which already has resulted in improved intrinsic cut-off frequency 

graphene field-effect transistors[103]. By annealing the as-grown graphene at high 
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temperatures 700-1100 °C in hydrogen environment, hydrogen penetrates underneath the 

graphene layers and breaks the C-Si bonds between the IFL and substrate and creates Si-

H bonds. This process results in decoupling of the IFL and its transformation into a quasi-

free standing graphene (QFSG), resulting in superior carrier mobility as well as reversing 

the carrier type from electrons to holes [97, 100-102].  

Currently QFSG is the only production method that has the potential to bridge the gap 

between scalable and high mobility graphene, while maintaining the desirable mechanical 

properties and support by the substrate. Although hydrogen intercalation was 

systematically studied to understand the changes in the electronic and structural 

properties on both global[101] and local scale[104], there are currently no studies 

investigating the changes in the mechanical properties (i.e. stiffness) of the QFSG, which 

will play a crucial role in the mechanical and electronic integrity of future devices. In this 

work, I directly correlate the changes in the local (work function) and global (carrier 

mobility and concentration) electronic and local nano-mechanical (stiffness) properties 

upon hydrogen intercalation. For this investigation I analyse frequency-modulated Kelvin 

probe force microscopy (FM-KPFM) to construct a work function map of graphene 

samples, which provides information on the graphene layer distribution with nanometer 

resolution, outlining areas of different carrier concentration (i.e. thicker graphene). 

Moreover, transport measurements in the van der Pauw geometry provide information 

about the carrier concentration and mobility on global scale, without the need for 

patterning devices. In particular, the method demonstrates the change of the carrier type, 

i.e. from n- to p-type, and significant 4-fold enhancement in mobility following the 

intercalation process. The correlation with the nano-mechanical properties is performed 

using ultrasonic force microscopy (UFM), which maps the stiffness of the material with 

nanometer resolution, exposing the changes that the graphene samples undergo following 

decoupling from the SiC substrate. These structural properties were also obtained from 

density functional theory (DFT) code SIESTA by taking the difference between the 

potential at the surface layer (graphene) and the potential in the vacuum. In addition, in 

order to calculate the stiffness, I first calculated the total energy for different separations 
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between the SiC and graphene, and then differentiated the total energy with respect to 

these distances.  

 

 

 

For this investigation I consider three types of samples, namely: i) as-grown one layer 

graphene (1LG); ii) quasi-free standing one layer graphene (QFS 1LG) obtained as a 

result of hydrogen intercalation of IFL; iii) quasi-free standing two layer graphene (QFS 

2LG) obtained as a result of hydrogen intercalation of 1LG. A comparison between 

experimental measurements and my theoretical calculations are shown in Figure 14, wich 

reflects a good agreement. UFM measurements demonstrate that following hydrogen 

intercalation the graphene stiffness decreases, i.e. from 860 N m-1 (as-grown) to 454 N 

m-1 for the QFS 1LG. Comparison of our results with the previous studies demonstrates 

that the QFS 1LG still exhibits higher stiffness than the suspended exfoliated graphene 

(340 N m-1)[105], while retaining the mechanical integrity and high mobility making is 

suitable for high speed electronics (3900 cm2 (V•s)-1). This is not the case for the QFS 

Theory Experimental 

Figure 14; A comparison between theortical calculations (left) and experimental 
measurements (right). The results show good agreement 
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2LG, where the measured stiffness is 211 N m-1, lower than the exfoliated graphene 

measured by Lee et. al.[105], and at the same time exhibits lower mobility compared to 

the QFS 1LG. Furthermore, pockets of mobile trapped excess hydrogen have been 

observed near the edges of the QFS 2LG, a situation which should be avoided when 

fabricating nano-electronic devices. It is therefore essential that future graphene-based 

high speed nano-electronics utilize the superior quality, carrier mobility and stiffness of 

the QFS 1LG. 

 

4.2. Methods 

4.2.1. Optimization 

The optimization is performed using the supercell approximation [67]  which is explicitly 

introduced by Junquera et al. [106] in SIESTA. The reason for this approximation is to 

retain the periodicity of the plane wave basis in space [107], namely 3D for bulk, 2D for 

surface, and 1D for chains. Therefore, and as result of the 2D surface of SiC/graphene 

interface, the current supercell is kept periodic in xy-plane in order to cancel out any 

dipole potentials which result from charge accumulation at the edges[106] and is 

discontinuous in z direction by imposing 15 Ao vacuum region. The SiC/graphene 

supercell is composed of a commensurate number of carbon atoms for monolayer 

graphene on one side and the silicon carbide on the other side. To consider the effect of 

the intercalation of hydrogen between SiC and graphene, I have varied the concentration 

of the hydrogen from 0% to ~200%. The introduced hydrogens have only a direct 

interaction with the last Si layer and the first graphene sheet. Thus the hydrogen 

concentration (Hconcentration) is calculated as the percentage required to saturate all Si 

atoms at the surface of the SiC, 

100%,atom
concentration

atom

HH
Si

= ×  (1.1) 
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where Hatom and Siatom represent the number of hydrogen and silicon atoms respectively.  

The relaxed geometries of the cell were calculated through the aforementioned Quantum 

Chemistry code, SIESTA [12]. First, I overcome the k-point error by converging the total 

energy with Brillion zone of 4×4×1 k points and a plane wave basis with 300 Ry mesh 

cutoff radius[67]. Double zeta polarized basis sets have also been used to describe the 

long range interactions and charge distribution. The system is considered relaxed when 

the forces between atoms are less than 0.03 eV/Ang. Along the z direction, I implemented 

the dipole correction[108] to cancel out the dipole gradient surrounding the surface. 

Moreover, an extra charge has been imposed to the system to simulate the doner or/and 

acceptor graphene. All the above characteristics have been implemented within the Van 

der Waals approximation of the exchange-correlation via the BH approach[109, 110]. the 

Van der Waals (vdW) functional takes into account delocalized long-range 

interactions[110, 111], and has proved to be successful for a number of system such as 

the multilayer ones and system with physisorption interactions[112].  

The relaxed structures are shown in Figure 15. In order to have a systematic study, I have 

simulated five structures with 0%, ~33%, ~60%, 100%, and ~200% hydrogen 

concentrations, which are represented by Figure 15a, b, c, d, and e respectively. The last 

unit cell is a model for a quasi free standing layer of graphene type two ( according to the 

experimental nomeclature). Furthermore, for each concentration the number of graphene 

layers has been increased from one layer until 3 layers, samples can be seen in Figure 16. 
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Figure 15: Unit cells for interfacial graphene layer (IFL) on top of SiC substrate with a) bare 

SiC and b) 30% passivated with H. Quasi free standing graphene layer on top of SiC substrate 

with c) 60% passivated with H, d) 100% passivated with H, and e) 100% passivated and 

covered with H2 molecules. f) shows a SiC substrate and the QFSL graphene are respectively 

passivate with 100% and 6.25% with H. The percentage is defined as 100×(the total number 

of hydrogen atoms) / (the total number of atoms of the attached surface).  
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Figure 16: Increasing the number of graphene layers on top of two SiC unit cell samples. In total, 

three graphene monolayers are attached to the surface of SiC one layer at a time. The graphene 

layers are represented by the numbers from one to three and the IFL is the acronym of the 

graphene interfacial layer. Unit cell (a) consists of SiC substrate interacts directly to a graphene 

interfacial layer (IFL) with no intercalated hydrogen atoms at the interface. Whereas, the 

concentration of hydrogen is 100% in unit cell (b) and then the fully saturated SiC substrate is 

attached to the graphene layer, one layer per step. 
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4.2.2. Workfunction 

After structure optimization, I calculated the work function as the energy required to 

extract an electron from the surface of the system [113]. The work function simulation 

was conducted for the surface layer with six hydrogen concentrations (0%, 8%, 17%, 

25%, 33%, and 100%), where 0%, 33%, and 100% concentrations stand for (a), (b) and 

(d) unit cells in Figure 15. In addition, I have also calculated the variation of the work 

function with number of graphene layers for as-grown, quasi-free standing graphene 

type-1 (QFSL1) and quasi-free standing graphene type-2 (QFSL2), illustrated in Figure 

29. The profile of the potentials of the slabs can be obtained by means of the Macroave, 

SIESTA post processing code for charges and potentials[12]. Macroave takes the planar 

average along the z direction for the xy-plane potentials and charges. As a result, one can 

infer the vacuum energy level (Evac), which is required to calculate the work function (W) 

as [114, 115] 

,vac FW E E= −  (1.2) 

where EF is the Fermi level. Now, equation (4.2) is not as a simple as it looks. The reason 

for that is the Evac term. Therefore, to clearify the meaning Evac, I shall outline the 

SIESTA definition for the potentials used to produce the potential at vacuum. 

SIESTA defines the total Hartree potential ( ( )H
T rξ  ) in real space as [116]  

( ) ( ) ( )

( ) ( ),

H local H
T ion elec

local H
J elec

J

r r r
r r

ξ ξ ξ

ξ ξ

= +

= +∑

  

                       (1.3) 

where the total Hartree potential consists of two part: 

1. The ionic contribution ( )local
ion rξ   ( )( )local

JJ
rξ=∑   is the long range contribution 

to the Hartree potential. Where ( )local
J rξ   represents the local part of the 

pseudopotential and J refers to the atomic site. 

2. The electronic contribution ( )H
elec rξ  emerges from the charge density ( )( )elecn r

of the electrons, which can be defined as 
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( ) ( ) ( )
( ) ( ),

elec atom

atom
J

J

n r n r n r
n r n r

δ

δ

= +

= +∑

  

   (1.4) 

The corresponding potentials for each term in the last equation are [116] 

( ) ( ) ( ),H atom
elec J

J
r r rξ ξ δξ= +∑  

 (1.5) 

where 

• ( )atomn r  ( )( )atom
JJ

n r=∑   is the sum of the intact atomic valence charge 

densities[114]. 

• ( )n rδ  is the deformed charge density stems from atomic interactions 

By substituting (4.5) in (4.3), one obtains 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ),

H local atom
T J J

J J

local atom
J J

J
neut

r r r r

r r r

r r

ξ ξ ξ δξ

ξ ξ δξ

ξ δξ

= + +

 = + + 

= +

∑ ∑

∑

   

  

 

  (1.6) 

where  

( ) ( ) ( ) ,neut local atom
J J

J
r r rξ ξ ξ ≡ + ∑    (1.7) 

represents the neutral atom potential. The three potential contributions to the total Hartree 

potential can be schematically shown in Figure 17. By taking the average of the total 

Hartree potential[116]  

( ) ( ) ( )H neut
T r r rξ ξ δξ= +
  

 (1.8) 

Thus [117, 118],   

( ) ( )H H
vac T Tslab vac

E r rξ ξ= −
   (1.9) 

Using the definition of Eq.(4.9), one can calculate the work function. 
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4.2.3. Stiffness 

In order to calculate the stiffness (X) due to the interaction between the 

mono/multilayer/IFL graphene and the substrate, one needs to find the gradient of the 

total energy with distance. Since the stiffness is the resistance of the system to the applied 

displacement[119], it is defined   

,dFX
dh

⊥=  (1.10) 

where h is the separation distance between two adjacent layers, and F⊥  is the vertical 

force [120], which is defined as 

EF
h⊥

∂
= −

∂
 (1.11) 

Therefore, Eq.(4.10) can be rewritten as 

2

2

EX
h

∂
= −

∂
 (1.12) 

In the measurements, the cantilever of an ultrasonic force microscopy is used to push the 

surface of the system by applying two different forces and recording the corresponding 

distance variations. Experimentally, the stiffness is measured via  

exp ,dFX
ds

=  (1.13) 

where s is the distance between two layers. Therefore, the total energy has been 

calculated in steps, where each step means a change in the distance between the SiC and 

the attached layer. During the simulation, the SiC substrate was fixed and let the next 

bound layer allowed to move. Next, the resultant total energy curve was fitted to a 

parabola, which can be seen in Figure 18.   
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Figure 17: A schematic representation of the atomic potentials. The  term 

represents the local ionic part of the atomic potential,  is the valence charge 

density potential, is bonding charge density potential, the superposition of the 

first two potentials is represented by , and finally results from the sum 
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Figure 18: Stiffness fitted curves for the first five unit cells shown in Figure 14, where labels 

a-e correspond to the same labelling used there. In all figures, the solid black circles 

represent DFT calculations and the red lines stand for the fitted curves. 



  
Chapter 4 58 
 

4.3. Results and discussion 

The calculations were set up to study the effect of two variables: hydrogen concentration 

and the number of graphene layers. Therefore, the current section has been arranged to 

discuss the work function and stiffness corresponding to each one of these variables. As a 

result, I will divide my discussion into two sub-sections, one for each variable. 

 

4.3.1. Hydrogen Concentration 

 The main features are illustrated in Figure 19 and Figure 24 which show the variation of 

stiffness and work function with hydrogen concentration respectively. The letters from 

(a-e) refer to the unit cells shown in Figure 15.  

The stiffness calculations show that unit cells (a) and (b) have the highest values with a 

very sharp variation compared to the last three unit cells. One should remember that the 

unit cells (c-e) have a high concentration of hydrogen atoms intercalating the interface 

between the surface silicon layer and the first graphene monolayer. As a result of the 

increasing of the penetrating hydrogen atoms, the separation distance between the 

interfacial layers increases, as shown in Figure 20. Furthermore, moving SiC and 

graphene apart from each other will lessen the direct interaction[121], as shown in Figure 

22 and Figure 23, and thus the binding energy between them will drop with the number of 

hydrogen atoms. In order to get a deep analysis, I have plotted the partial density of states 

for each element in three unit cells, where the SiC has been 0% (a), 33% (b), and 100% 

(d) saturated with hydrogen. The energy levels are shifted so that the Fermi energy (EF) is 

located at 0.0 eV. 

With no hydrogen intercalating between the surface silicon and graphene layer, Figure 

22a shows that there is a strong interaction between graphene and silicon at the Fermi 

with a localized state, indicating the presence of the covalent bonding. This localized 

peak can be attributed to the dangling bonds of Si atoms[121] at the interface, which can 

be verified by the local density of states, as illustrated in Figure 23a. This is also 
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supported by the dominating weight of silicon over carbon atoms, which previously 

showed by Figure 22a. Furthermore, there is then an energy gap of approximately 1.5 eV 

to the left of the Fermi in consistent with other experimental[122] and theoretical 

results[121, 123]. This huge deviation from normal graphene behaviour is due to the 

strong coupling between the first graphene layer, so-called interfacial layer, and the Si 

terminated substrate[123].   

At 33% saturation with hydrogen for the surface-silicon layer, Figure 22b, the Fermi level 

sits in middle of the gap of approximately 1 eV width, which is less than the gap of the 

first case by nearly 30%.  Moreover, a highly bound state is present near the HOMO level 

at approximately -0.75 eV from the Fermi. All these results have appeared as the distance 

between the interacted layers elongated due to the extra hydrogen atom.  Indeed, DFT 

calculations show that the averaged distance between graphene and SiC substrate has 

changed from 2.314 A to 2.482 A for the cases of 0% and 33% respectively. Meanwhile, 

it is well known that the Si-C interactions at the interface mainly depend on the structure 

of the interface [124]. Therefore, the Si-C covalent bonding would fade away as the Si 

and C atoms detach farther from each other. A comparison between Figure 22a and 

Figure 22b points to the fact of such a weak interaction. Related to this, carbon nanotubes 

(CNT) have also shown the same behaviour as a function of the hydrogen concentration 

between the tube and the substrate[125], suggesting to a sort of universal behaviour for 

all carbon allotropes  on SiC layers. For CNT, Miwa et al. have explained this behaviour 

to the strong adsorbing of the CNT to the substrate for low concentration, while a 

physisorption relation governs the Si-C interface at high or fully saturated surface[125]. 

Finally, the fully hydrogen saturated silicon/graphene interface, Figure 23d, shows a 

prominent domination of carbon states  in the HOMO and LUMO level. Moreover the 

gap has disappeared and the Dirac point of the graphene has emerged. The interface 

separation distance has increased to become 4.6775 A, whereas both charge transfer and 

bonding between the silicon and carbon at the interface are negligible. The shallow states 

of silicon over a region of approximately 2.0 eV confirms the increasing role of the 

carbon atoms of the graphene sheet, which is supported by the local density of states, 
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shown in Figure 23d. The emergence of the Dirac point and the delocalized state over 

graphene sheets are both characteristics of an unperturbed graphene sheet. Therefore, one 

can conclude that increasing the hydrogen concentration between the substrate and the 

graphene will support the cleavage between them, resulting in a fully saturated and stable 

substrate and independent graphene monolayer. This results are in high consistent with 

the research data of Xu et al.[124].  

Another result is that unit cell (b), Figure 21, shows a distinctive outcome. Indeed, the 

binding energy of structure (b) exceeds all other structures. This can be attributed to the 

full saturation of the surface silicon atoms by both the intercalating hydrogen and the 

graphene atoms. Comparing the partial density of states of Figure 22a and Figure 22b 

reveals the increasing role of the hydrogen atoms which contributes to this distinctive 

result.   Whereas, the imperfection in the saturation between directly attached graphene to 

SiC is due to lattice mismatch between their unitcells. Such mismatch creates some 

dangling bonds at the interface, which can be compensated by a certain amount of 

hydrogen atoms, as it is mentioned before.  

The work function, on the other hand, exhibits a trough at low levels of hydrogen, 

between 0% to 25%. Then a noticeable growth can be seen at 33%, which then shows a 

gradual increasing up to 100%. After that, a slight change can be recognized even when 

the number hydrogen atoms is a twice larger than the surface hydrogen atoms, where the 

work function approaches the value of a free graphene sheet. I should confirm here that I 

have different surface structures owing to the optimization, which renders the surface 

adapting the optimum shape. Therefore, comparsion between such structures requires a 

standard reference, such as the Fermi level of the system. This level, provided we use the 

same temperature, is the most valid refrence, since it is always located between the 

occupied and empty states regardless of the structure. Based on that, the Fermi level can 

be considered as a reflection for doping concentration [126], i.e. the hydrogen 

intercalating level. Figure 24b shows that the Fermi energy decreasess with the number of 

hydrogen atom penetrating the interface. The existence of hydrogen at the interface can 

be regarded as a doping, which enhance the separation distance between SiC substrate 
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and the graphene. As a result of this distance inverse, the work function approaches the 

value of a free graphene monolayer without equaling it due to charge transfer from 

hydrogen atom as shown in Figure 25. Therefore, one can easily peel the graphene sheet 

on top of SiC layer, which is the reason for calling it quasi-free standing graphene.   

 

 

 

 

Figure 19: The stiffness for all structures a-e, illustrated in Figure 14, is presented. The 
stiffness is calculated by plotting the gradient of the total energy of unit cell with 
separation distance between SiC substrate and the first carbon layer. The considered 
structures are: a) bare SiC in contact with interfacial graphene and b) SiC with 30% 
passivated with H in contact with interfacial graphene. Whereas a QFSL graphene is on 
top of SiC with c) 60% passivated with H, d) 100% passivated with H, and finally e) 
100% passivated hydrogen and covered with H2 molecules. 
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Figure 20: The minimum-energy average distance between the SiC substrate and the first 
layer of carbon atoms as a function of concentration of hydrogens intercalated at the 
interface. Where x-axis letters represent the molecules in Figure 14, which are: a) bare 
SiC in contact with interfacial graphene and b) SiC with 30% passivated with H in 
contact with interfacial graphene. Whereas a QFSL graphene is on top of SiC with c) 
60% passivated with H, d) 100% passivated with H, and finally e) 100% passivated 
hydrogen and covered with H2 molecules. 

Figure 21: Binding energy between SiC and the first carbon layer for structures a-e, with 
different concentrations of intercalated hydrogen atoms. The percentage is calculated 
relative to the total number of the surface silicon atoms. The letters in the x axis are: a) 
bare SiC in contact with interfacial graphene and b) SiC with 30% passivated with H in 
contact with interfacial graphene. Whereas a QFSL graphene is on top of SiC with c) 
60% passivated with H, d) 100% passivated with H, and finally e) 100% passivated 
hydrogen and covered with H2 molecules. 
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Figure 22: Partial density of states of SiC substrate covered with monolayer of graphene 
and saturated with (a) 0% hydrogen, (b) 33% hydrogen, and (d) 100% hydrogen. The 
labels were chosen so as to match the corresponding unit cells in Figure 14. Fermi level is 
set to be at zero for clarity in all panels. The inset in panel (d) shows the region on both 
sides of the Fermi energy, where levels to the right are carbon dominated which refers to 
a non-bonding region.  
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Figure 23:  Local density of states (blue cloud) at Fermi energy of SiC unit cells 
corresponding to the PDOS illustrated in Figure 22. Labels of the panels were adapted to 
reflect to the related unit cells illustrated in Figure 15. Silicon, carbon, and hydrogen 
atoms are characterized by green, gray, and white colours respectively. 
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Figure 24: (a) Work function of SiC as a function of hydrogen concentration at the interface 
between SiC substrate and the surface carbon layer. (b) Fermi level variation with hydrogen 
concentration fraction, which is defined as the total number of hydrogen atoms over the total 
number of surface silicon atoms. 

Figure 25: Extra net charge accumulated on the surface graphene layer covering the SiC unit 
cell for different numbers of the intercalating hydrogen atoms. These numbers range from 
zero hydrogen, i.e. clean Si-graphene surface, to 32 atoms. The labels next to each point refer 
to the corresponding number of hydrogen atoms at the interface. 
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4.3.2. Number of graphene layers 

The first property of interest in this section is the stiffness, which shows an inverse 

relation with the number of graphene layers for all first five unit cells, shown in Figure 

15. This decrease can be attributed to the increment in the separation distance between 

the interfacial/first graphene layers[121], as shown in Figure 27. Another prominent 

result is the variety of stiffness values with respect to the adjacent layers, illustrated in 

Figure 28. According to the DFT calculations, one can find that there are three values of 

spring constants. The first and strongest one is stiffness between the interfacial graphene 

layer and the surface silicon layer. Such strength results from high covalent interaction 

between carbon atoms in graphene and silicon atom in the substrate[127], as it can be 

inferred from the local density of states, seen in Figure 23a and 23b, and binding energy 

graph, Figure 21, which reaches its maximum value at 33% concentration of hydrogen. 

The second spring constant is one between any two adjacent graphene layers. This type is 

less than the first one and greater than the third type of spring constant. The third level is 

the stiffness between the surface graphene layer and the substrate in the presence of 

hydrogen between them. Obviously, hydrogen atoms ease the detachment between 

graphene and SiC due to the full saturation of SiC, on one hand, and the long distance 

between SiC and graphene on the other hand. Furthermore, the first/buffer graphene layer 

protects the higher layers from the effect of the substrate[121]. For all above mentioned 

reasons, Figure 26, three categories of stiffness can be recognized clearly: ~1200 N/m, ~ 

70-95 N/m, and ~ 25-45 N/m. 

The calculation of the above three spring constants can be summarized as follow. Figure 

28 shows different values of stiffness of interest. For example γ1 and γ3 can be computed 

by fixing the spacing between the three graphene sheets and then computing the energy 

curvature as a function of the distance between the left-most graphene sheet and the SiC. 

Similarly γ2 can be computed by fixing the spacing between the middle and right-most 

graphene sheets and the distance between the left-most graphene sheet and the SiC and 

then computing the energy curvature as a function of the distance between the left-most 

graphene sheet and the middle graphene sheet. 
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The second property is the workfunction which shows two distinctive behaviours. The 

first trend is shown by QFSL1 and QFSL2 where the work functions grow with the 

number of the layers, whereas it declines for as-grown graphene. Figure 30 and Figure 31 

explain the origin of this trend. Before discussing the results I first explain the calculation 

method. 

The electric dipole moment vector ( )P r


is calculated,  

( ) ,P r qd=


 (1.14) 

 

where q is the charge difference between the directly attached graphene layer (negative) 

and the right most hydrogen layer (positive), and d is the separation distance between 

these two layers/charges. Mattausch and  Pankratov [127] have shown that the interfacial 

region mainly controls the characteristics of the surface of the junction. One of their 

results has shown that charge transfer between the interfacial graphene and the substrate 

controls the value of the surface work function via an internal induced electric dipole 

moment vector. Depending on Mattausch and Pankratov findings, I have found that when 

the charge difference increases, the dipole increases, and thus the work function 

decreases as a result of the repulsion of the negative charges, as seen for as-grown.  
However, QFSL1 and QFSL2 show the opposite trends, where the effect of this repulsion 

on the outermost graphene layer is reduced as the number of layers is increased. Hence 

the work function increases with the number of layers.  
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Figure 26: Stiffness variation between SiC-graphene as a function of the number of 
graphene layers on top of SiC for each hydrogen concentration. Where the letters from a-
e respectively denotes the bare SiC in contact with graphene, 30% passivated with H, 
60% passivated with H, 100% passivated with H, and finally 100% passivated and 
covered with H2 molecules. 
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Figure 27: For structures a-e, this figure shows how the minimum energy distance 
between SiC substrate and the first graphene sheet changes as a function of the 
number of graphene layers on top of SiC. Where the letters from a-e respectively 
denotes the bare SiC in contact with graphene, 30% passivated with H, 60% 
passivated with H, 100% passivated with H, and finally 100% passivated and covered 
with H2 molecules. 
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Figure 28: A schematic representation of the force constants, γn, govern the stiffness between 
each two adjacent layers in SiC(Y)-grn and SiC(X)-grn structures, where n=1, 2, and 3, Y=bare 
and 4H, and X =8H, 12H, 12H+10H2. The strength of force constants can be arranged as  γ1> 
γ2> γ3. The first top scheme represents structures (a) and (b) in Figure 15, and the bottom one 
illustrates the structures (c), (d), and (e) in Figure 15. One should note that the first graphene 
layer attached to SiC substrate illustrated in Figure 15(a and b) is an interfacial (IFL) graphene 
layer and the second layer attached to the IFL graphene is the first graphene layer. 

Figure 29: The gradient of work function with number of graphene layers on top of SiC 
substrate. The letters in the parentheses refer to the unit cells shown in Figure 15. QFSL1 and 
QFSL2, quasi free standing layers of graphene on top of SiC, respectively refer to bare 
graphene monolayer and 6.25% passivated with H. These graphene sheets are in contact with 
SiC with 100% passivated with hydrogen. One should note that as-grown graphene unit cell 
(a), Figure 15(a), shows interfacial graphene layer on top of SiC substrate, whereas here I 
have 1-3 layers on top of that interfacial layer. 
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Figure 31: Net charge difference per atom between the first attached graphene layer and 
the right most hydrogen layer of the unit cells.  

Figure 30: Graphene layer dependence of the electric dipole moment along z direction 
between the first graphene sheet and the hydrogen terminated end.  
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Figure 32: Work function map of: (a) as-grown 1LG showing terraces covered by 
predominantly 1LG (brightest contrast) and 2LG islands, and terrace edges covered by 2-
3LG (darkest contrast). (b) QFSL1   showing terraces covered by predominantly 1LG 
(darkest contrast) and 2LG islands of triangular shape, and terrace edges covered by 2-
3LG (brighter contrast). (c) QFSL2 showing terraces covered by predominantly 2LG 
(darkest contrast) and 3LG islands, and terrace edges covered by 3-4LG (brighter 
contrast). (d) Work function summary of all the samples, open/close symbols correspond 
to measurements done at the terraces/edges, respectively. Sub-figures (e-g) show 
schematic representation of the layer structure. 
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4.4. Synopsis 

By means of density functional theory, the mechanical properties of silicon-carbide 

substrate covered with one or multi layers of graphene have been investigated. For these 

2-dimensional surfaces, I have studied the correlation between their stiffness and work 

function on one hand and hydrogen concentration and the number of graphene layers on 

the other hand. Therefore, I have first modeled the concentration of hydrogen by 

changing the number of hydrogen atoms intercalating the interface between the top 

silicon-carbide surface and the directly attached graphene layer. Secondly, I have added 

more graphene layers on top of the first one to mimic the experimental measurements.  

The stiffness of the surface has revealed a number of results, which can be summarid as: 

Firstly, the more hydrogen atoms penetrating the interface, the lower the stiffness of the 

junction. Secondly, the unit cell with approximately 33% of the Si-terminated substrate 

saturated with hydrogen represents the most stable and stiffest configuration. Further 

more, there is a threshold limit for hydrogen concentration to detach the graphene from 

SiC layer underneath. Therefore, I conclude that manipulating the concentration of the H 

at the interface will eventually determine the electronic and mechanical properties of the 

junction. Moreover, the stiffness generally possesses three main contributions: the stiffest 

one is between SiC and the interfacial graphene layer, i.e., a graphene monolayer attached 

directly to clean or slightly H-doped Si-terminated surface; the softest one is when the 

concentration of hydrogen is greater than approximately 35% of the surface Si atoms; the 

final one the stiffness between two adjacent graphene layers. Finaly, the stiffness also 

decreases with the number of graphene layer. 

   

The work function, as the second property also shows a number of interesting features: 

1. The more hydrogen atoms between the layer, the higher the work function. 

2. With more hydrogen, the work function approaches the graphene level. 

3. SiC surface saturation with approximately 33% with hydrogen breaks the status quo. 

4. For the same 2-dimension interface, the higher the dipole at the connection region is, 

the less work function at the surface will be, regardless of doping. 
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Chapter 5 

 

Conclusions 

In this thesis I have shown that DFT  predicts properties which are consistent with 

experimental measurements through the simulation of two totally distinct problems. The 

first problem is the thermoelectric properties of a amino-silane functionalized graphene 

junction. Within this project, Green’s function and tight binding methods were also used 

to tackle the problem. The second implementation of DFT is the calculation of 

mechanical properties of the interface region of silicon-carbide/graphene junction. The 

following combined results have emerged from this thesis, 

One of the main results emerges from this thesis is that amino-silane molecules can 

enhance the thermal properties of graphene in electronic devices, and functionalizing 

graphene with organic molecule improves heat management in the electronic chip.  

Another main result is that manipulating hydrogen concentration at the interface between 

graphene and its substrate can controls the work function, band gap, stiffness, and Fermi 

level of the junction. Therefore, controlling the concentration leads to better design and 

effective electronic engineering and that fully hydrogen saturated substrate produces easy 

to handle graphene. Finally, the threshold level of hydrogen concentration, in my case it 

is approximately equal to 33%, may have a serious impact on the system properties, 

which should be scrutinized much more. 

In addition, some minor results of the thesis can be also summarised. As a result, the 

interactions at the graphene-substrate interface effectively control the surface properties. 

Another result is that an n-type (p-type) system will have higher work function if the 

number of negative (positive) charges is decreased (increased), provided that the 

directionality of the dipole is preserved. Moreover, the stiffness of two-dimensional 

stacked systems is structure-dependent, and cannot be easily inferred due to the fact that 

the each surface in the multilayer system has different stiffness value, this variation 

should investigated in depth.  
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For the future, one can envisage a number of follow on investigations which build upon 

the above results, inclcuding: 

1. How the stiffness is affected by the number of graphene layers. 

2. A more detailed analysis about the effect of hydrogen concentration on stiffness 

and the interface properties. 

3. A detailed work function calculation as a function of doping. 

4. Testing silane molecules with different leads and junctions. 

5. The effect of the concentration level of dopants, such as H or O, at the interface of 

attached systems on the properties of the junction. 

Hopfully I will find an opportunity to tackle these studies in the future year. 
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