Title (82 chars): Improving Photosynthesis and Crop Productivity by Accelerating Recovery from Photoprotection.

Authors: Johannes Kromdijk1,†, Katarzyna Głowacka1,5, Lauriebeth Leonelli2, Stéphane T. Gabilly2, Masakazu Iwai2,3, Krishna K. Niyogi2,3*, Stephen P. Long1,4,*

Affiliations:
1Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL 61801, USA
2Howard Hughes Medical Institute, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, Berkeley, CA 94720-3102, USA
3Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4Lancaster Environment Centre, University of Lancaster, LA1 1YX, UK
5Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479 Poznań, Poland

*Correspondence to: niyogi@berkeley.edu and slong@illinois.edu

†Contributed equally to this work.
Abstract (125 words):

Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. When sunlit leaves are shaded by clouds or other leaves, this protective dissipation continues for many minutes and reduces photosynthesis. Calculations have shown that this could cost field crops up to 20% of their potential yield. Here we describe the bioengineering of an accelerated response to natural shading events in *Nicotiana* (tobacco), resulting in increased leaf carbon dioxide uptake and plant dry matter productivity by about 15% in fluctuating light. Since the photoprotective mechanism that has been altered is common to all flowering plants and crops, the findings provide proof of concept for a novel route to obtaining a sustainable increase in productivity for food crops and a much needed yield jump.
One Sentence Summary (122 characters):

Altering the regulation of light harvesting increases photosynthetic efficiency and biomass productivity in a crop plant.
Main Text (2411 words):
Based on detailed forecasts of future global food demand, current rates of increase in crop yields per hectare of land are inadequate. Based on prior model predictions of opportunities to improve photosynthetic efficiency and thus improve crop yield (1), we here show improvement of photosynthetic efficiency and productivity through genetic manipulation of photoprotection.

Light in plant canopies is very dynamic, and leaves routinely experience sharp fluctuations in levels of absorbed irradiance. When light intensity is too high or increases too fast for photochemistry to utilize the absorbed energy, several photoprotective mechanisms are induced to protect the photosynthetic antenna complexes from over-excitation (2). Excess excitation energy in the photosystem II (PSII) antenna complex can be harmlessly dissipated as heat, which is observable as a process named non-photochemical quenching of chlorophyll fluorescence (NPQ, (3)). Changes in NPQ can be fast but are not instantaneous, and therefore lag behind fluctuations in absorbed irradiance. In particular, the rate of NPQ relaxation is slower than the rate of induction, and this asymmetry is exacerbated by prolonged or repeated exposure to excessive light conditions (4). This slow rate of recovery of PSII antennae from the quenched to the unquenched state implies that the photosynthetic quantum yield of CO₂ fixation is transiently depressed by NPQ upon a transition from high to low light intensity (Fig. 1). When this hypothesis was tested in model simulations and integrated for a crop canopy over a diurnal course, corresponding losses of CO₂ fixation were estimated to range between 7.5% - 30% (5-7). Based on these computations, increasing the relaxation rate of NPQ has been highlighted as a very promising strategy to improve crop photosynthetic efficiency and in turn yield (8).

While the exact NPQ quenching site and nature of the quenching mechanisms involved are still debated (9), it is clear that for NPQ to occur, PSII-associated antennae need to undergo a conformational change to the quenched state, which can be induced by a number of different
mechanisms with contrasting time constants (3). So-called energy-dependent quenching (qE, (10)) requires low thylakoid lumen pH and is greatly aided by the presence of PSII subunit S (PsbS) (11, 12) and de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin via the xanthophyll cycle (13, 14). Expression of PsbS strongly affects the amplitude of qE formation, and overexpression results in an increased rate of induction and relaxation of qE (15-17). As a result, the effects of PsbS overexpression on CO₂ fixation and plant growth depend on the prevailing light environment. Enhancement of qE via PsbS overexpression may offer increased photoprotection under high light or rapidly fluctuating conditions (18), but can be at the expense of CO₂ fixation under less stressful conditions (15). An alternative route of NPQ manipulation is to modify xanthophyll cycle kinetics. The xanthophyll cycle de-epoxidation state (DES) influences the level of NPQ (19), due to the stimulating effect of zeaxanthin on qE and on zeaxanthin-dependent quenching (qZ, (20)). qZ has slower relaxation kinetics (10-15 min) than qE (10-90 s), which are linked to the kinetics of the zeaxanthin pool. Arabidopsis mutants with increased xanthophyll cycle pigment pool size were shown to have slower rates of NPQ formation and relaxation, due to slower DES kinetics (21). Thus, the rate of adjustment of DES appears to be affected by the xanthophyll cycle pool size relative to the rate of turn-over via violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP), which in turn affects the adjustment rate of NPQ.

We hypothesized that by accelerating the xanthophyll cycle and increasing PsbS, NPQ would decline more rapidly on transfer of leaves to shade (Fig. 1), leading to faster restoration of the maximum efficiency of CO₂ assimilation that can be achieved at a given light intensity in the shade, which in turn would allow increased productivity.
Results

Transgene mRNA and protein expression

Nicotiana tabacum was transformed with the coding sequences of *Arabidopsis VDE*, *ZEP* and *PsbS* under the control of different promoters for expression in leaves (Fig. S1). Two transformants with a single T-DNA integration (VPZ-34 and 56) and one transformant with two T-DNA insertions (VPZ-23) were selected based on a seedling NPQ screen (Fig. S2 and S3) and self-pollinated to obtain homozygous T2 progeny for further investigation. All three VPZ-lines showed increases in total (transgenic plus native) transcript levels of *VDE* (10-fold), *PsbS* (3-fold) and *ZEP* (6-fold) relative to wild-type (WT) (Fig. 2A, C and E). For *PsbS* the increase in transcript levels translated into approximately 4-fold higher PsbS protein level (Fig. 2D), as exemplified in bands at 21 kDa (AtPsbS) and 24 kDa (NtPsbS; Fig. 2G). For *VDE* and *ZEP* the increase in transcript levels corresponded to 30-fold for VDE (Fig. 2B and G, 45 kDa) and 74-fold for ZEP (Fig. 2F and G, 73 kDa) increases over WT protein levels. Field-grown plants showed similar increases in protein levels (47-, 3- and 75-fold for VDE, PsbS and ZEP, Fig. S4), although increases in transcript levels were less pronounced (4-, 1.2- and 7-fold for VDE, PsbS and ZEP, Fig. S4).

Faster relaxation of NPQ and recovery of CO2 fixation rate

To compare the kinetics of dynamic NPQ adjustment, a double exponential model was fitted to dark relaxation of NPQ in young seedlings after exposure to fluctuating light between 2000 and 200 µmol photons m\(^{-2}\) s\(^{-1}\) (Fig. 3A). The qZ phase of NPQ relaxation (\(\tau_2\)) was significantly faster in VPZ-lines at an average of 753 s versus 2684 s in WT (\(p<0.05\)), and qE relaxation (\(\tau_1\)) was also noticeably faster at an average of 15 s versus 21 s (significant in VPZ-23 and VPZ-56, \(p<0.05\)). To see if this faster relaxation translated into higher leaf CO2 uptake, leaves were
exposed to a sharp transition in light from 2000 to 200 μmol photons m\(^{-2}\) s\(^{-1}\). CO\(_2\) assimilation declined immediately after the decrease in light intensity in both WT and VPZ lines (Fig. 3B), reaching a minimum at 30 s. During the following 150 s, CO\(_2\) fixation rate increased gradually, but more rapidly in the VPZ lines compared to WT, leading to significantly higher CO\(_2\) fixation rates, averaging an increase of 9% (p<0.02).

Effects of fluctuating light on the efficiency of photosynthetic CO\(_2\) assimilation

To evaluate the dynamic effect of VPZ overexpression on the response of leaf CO\(_2\) uptake to light, light intensity was varied in two different ways. First, light intensity was varied from low to high (Fig. S5A), taking care to allow gas exchange and fluorescence to achieve steady state at each light intensity. Second, light intensity was varied in 4 min alternating steps of high to low light (Fig. S5B). The resulting steady-state and fluctuating light response curves of CO\(_2\) fixation and linear electron transport rate were distinctly different between WT and VPZ lines. In steady state, the maximum quantum yield of CO\(_2\) fixation (Φ\(_{CO_2\text{-max}}\)) was not different between WT and VPZ lines, averaging 0.092 CO\(_2\)/absorbed photon (Fig. 4A). Fluctuating light decreased Φ\(_{CO_2\text{-max}}\) to 0.058 CO\(_2\)/absorbed photon in the WT plants (Fig. 4B), whereas Φ\(_{CO_2\text{-max}}\) in the VPZ lines showed a far smaller depression to 0.066 CO\(_2\)/absorbed photon (p<0.05). Similarly, under fluctuating light, maximum quantum yield of whole chain electron transport (Φ\(_{PSII\text{-max}}\)) declined from an average value of 0.73 (Fig. 4C) to 0.54 e\(^{-}\)/absorbed photon in the WT plants (Fig. 4D), compared to 0.60 e\(^{-}\)/absorbed photon in the VPZ lines (p<0.05). Thus, under these fluctuating conditions, average Φ\(_{CO_2\text{-max}}\) and Φ\(_{PSII\text{-max}}\) of the VPZ lines were 11.3% and 14.0% higher than WT. These differences were also confirmed in plants grown under field conditions (Fig. S6A and B) and were not caused by a difference in photosynthetic capacity, as shown by the lack of differences in Φ\(_{CO_2\text{-max}}\) and Φ\(_{PSII\text{-max}}\) between VPZ lines and WT when measured at
steady state (Fig. 4A and C). There were also no differences in the maximum carboxylation capacity (V_{cmax}) or ribulose bis-phosphate regeneration capacity (J_{max}) derived from CO$_2$ response curves (Table S1) nor were there differences in the levels and stoichiometry of the major photosynthetic complexes (Fig. S7). Instead, the differences under fluctuating conditions corresponded to the faster relaxation of NPQ resulting from VPZ overexpression. Steady-state NPQ below 400 µmol photons m$^{-2}$ s$^{-1}$ was very low (Fig. 4E and S5G) and did not differ between WT and VPZ lines. However, under fluctuating light intensity, NPQ was significantly higher in the WT compared to the VPZ lines at low light (Fig. 4F), whereas NPQ in high light did not differ between WT and VPZ lines (Fig. S5G and H).

Productivity under field conditions

Whether this greater photosynthetic efficiency during shading events would affect productivity was evaluated under field conditions in a randomized block design with 12 blocks (Fig. 5D and S8). Plants from VPZ lines exhibited greater total dry weight per plant by 14 to 20% relative to WT (Fig. 5A), which was evident in increases in leaf, stem and root weights (Fig. S9A-C). Additionally, plants from VPZ lines showed increases in leaf area (Fig. 5B) and plant height (Fig. 5C), relative to WT. Similar productivity increases were found under greenhouse conditions (Fig. S10A-F).

Xanthophyll cycle de-epoxidation as a function of different light treatments

In dark-acclimated leaves from both WT and VPZ lines, the xanthophyll cycle pool was completely epoxidated, i.e., entirely in the form of violaxanthin, (Table 1). Exposure to 400 µmol photons m$^{-2}$ s$^{-1}$ constant light did not lead to substantial de-epoxidation, but 2000 µmol photons m$^{-2}$ s$^{-1}$ constant light led to accumulation of antheraxanthin and especially zeaxanthin. VPZ lines retained more violaxanthin and accumulated less zeaxanthin and antheraxanthin
compared to WT, which led DES in the VPZ lines to be about half that of WT (26% versus 46%). Exposure to fluctuating light led to similar results as high light exposure, but with even less xanthophyll de-epoxidation in the VPZ lines, relative to WT (18% versus 53%), and field-grown plants of VPZ-23 showed significantly lower DES than WT throughout a diurnal period (Fig. S11). Because of the lower DES in the VPZ lines, a concern was that they would be more vulnerable to photoinhibition. However, photoprotection in seedlings after 2 h exposure to excessive light ($\lambda_{\text{max}}=470\text{nm}$, 2000 μmol photons m$^{-2}$ s$^{-1}$) appeared to be equal (VPZ-56) or even higher (VPZ-23 and VPZ-34; $p<0.05$) than WT (Fig. S12).

Discussion

How does introduction of the VPZ construct accelerate NPQ relaxation on transfer of leaves from high to low light, as would occur in a shading event? NPQ is a compound variable, encompassing several quenching mechanisms with contrasting relaxation kinetics (22). Whereas PsbS is exclusively associated with rapidly relaxing energy-dependent quenching (qE), the xanthophyll cycle is involved in multiple components of NPQ, especially qE and qZ. Even though VPZ lines had lower xanthophyll de-epoxidation state (DES) under high and fluctuating light intensity (Table 1), levels of NPQ were similar to WT at high light (Fig. S3B and S5H) implying that the relationship between xanthophyll DES and NPQ has been altered by PsbS overexpression, allowing for higher NPQ at lower DES. The presence of zeaxanthin correlates with faster induction and slower relaxation of NPQ, with respect to qZ and qE (4, 20, 23). Consistent with the lower DES in the VPZ-lines, relaxation of both qE (τ_1) and qZ (τ_2) was accelerated by the VPZ overexpression. The faster relaxation of NPQ by VPZ overexpression can thus be explained by two parallel manipulations of NPQ. Combined overexpression of VDE
and ZEP decreased xanthophyll DES, which in turn increased NPQ relaxation rate through qZ, qE and zeaxanthin-associated effects on NPQ kinetics. Second, the overexpression of PsbS led to an increase in qE, which more than offset the decrease due to lower DES (Fig. S3B).

The hypothesis that photosynthetic efficiency could be increased through acceleration of NPQ relaxation \((8, 24)\) relies on the inverse correlation between NPQ and photosynthetic efficiency. Under fluctuating light, the VPZ lines showed faster and greater decreases in NPQ following transitions from high to low light, relative to WT (Fig. 4F and S5H), which increased quantum yield of CO\(_2\) assimilation by 14\% (Fig. 4B), providing proof that on transition from high to low light, NPQ does indeed limit photosynthetic efficiency. Xanthophyll DES is correlated with NPQ \((19)\), which suggests that limiting violaxanthin de-epoxidation may also increase NPQ relaxation rate. However, decreased zeaxanthin formation by antisense \(VDE\) expression in tobacco in previous studies did not lead to an increase in photosynthetic efficiency and growth \((25, 26)\). Reduction in NPQ amplitude \((27)\) and anti-oxidant capacity \((28)\) leads to greater sensitivity to damage by excessive light in mutants with reduced zeaxanthin \((29)\). Here expression of VDE and PsbS was increased to balance the up-regulation of ZEP and avoid such damage (Fig. S12). This conservation of photoprotection in the VPZ lines most likely originates from an increase in qE, reflecting the positive correlation between photoprotection and PsbS content \((18)\).

About 50\% of canopy carbon gain in crops occurs under light-limitation \((5)\). Efficiency of photosynthesis in the shade declines even further with rapid light transitions caused by clouds and wind-driven movement of overshadowing leaves. Higher yields have followed increased planting densities, which also caused denser canopies and increased the proportion of partially shaded leaves, leading to more irregular light conditions for each leaf. Even for upper leaves on a
clear day, daily changes in sun angle cause light transitions that are rapid at the chloroplast level (7). Thus, light conditions in the field are anything but steady state. Under steady state light, the VPZ lines evaluated here would have shown no yield advantage over WT. Their yield advantage becomes apparent under more realistic, irregular, lighting conditions.

Because the xanthophyll cycle and PsbS are common to all vascular plants (11, 19), we expect that similar results would pertain to all major crops. Although this work has focused on crop light use efficiency, stomatal conductance also remains high during the first few minutes after transfer to shade. Increasing the rate of relaxation of NPQ will therefore not only increase net carbon gain, but also increase crop water use efficiency. This may be an important attribute given forecast climate change impacts on future crop production (30).

Transgenic expression of *Arabidopsis* VDE, PsbS and ZEP (VPZ) in combination in tobacco led to a marked and statistically significant acceleration of NPQ relaxation on transfer of leaves from high light to shade. As hypothesized, this led to a more rapid recovery of the efficiency of photosynthetic CO₂ assimilation in the shade. Results from field and greenhouse experiments showed that this corresponded to increased productivity in terms of final dry mass. Increases in crop productivity of 15%, as obtained here, demonstrate an important means to achieve the increases in crop yield forecast to be necessary by 2050 (31, 32).
References and Notes (891 words)

Acknowledgments: We thank David Drag and Ben Harbaugh for plant management in greenhouse and field studies, Marilyn Kobayashi for performing the HPLC analysis of pigments from the field-grown plants, and Katie Kucera, Madeline Steiner and Sydney Gillespie for general assistance during lab- and fieldwork. We also thank Prof. Tom Clemente for help with tobacco transformation. This research was supported by the Bill and Melinda Gates Foundation (OPP1060461) titled ‘RIPE – Realizing Increased Photosynthetic Efficiency for Sustainable Increases in Crop Yield’. K.K.N. is an investigator of the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through Grant GBMF3070). The data reported in this paper have been tabulated in the Supplemental Materials.

Competing financial interests: The University of Illinois has submitted a provisional patent on behalf of J.K., K.G., L.L., K.K.N. and S.P.L on aspects of the findings.
Fig. 1. Interaction between photoprotection and CO$_2$ fixation during sun-shade transitions. When leaves are exposed to high light, the rate of CO$_2$ fixation is high and excessive excitation energy is harmlessly dissipated through non-photochemical quenching (NPQ). The level of NPQ is positively correlated with the abundance of Photosystem II subunit S (PsbS) and further stimulated by the de-epoxidation of violaxanthin to zeaxanthin, catalyzed by violaxanthin de-epoxidase (VDE). Upon transition to low light, CO$_2$ fixation becomes limited by NADPH and ATP derived from photosynthetic electron transport, which in turn is limited by high levels of NPQ. The rate of CO$_2$ fixation therefore remains depressed until relaxation of NPQ is complete. This can take minutes to hours and is correlated with the rate of zeaxanthin epoxidation, catalyzed by zeaxanthin epoxidase (ZEP). The text underneath the figure describes the strategy employed to accelerate NPQ relaxation compared to wild-type (WT) tobacco.
Fig. 2. Levels of mRNA and protein of VDE, PsbS and ZEP.

Native (Nt) and transgenic (At) violaxanthin de-epoxidase (VDE), photosystem II subunit S (PsbS) and zeaxanthin epoxidase (ZEP) in leaves of wild-type *N. tabacum* (WT) and three lines expressing *AtVDE, AtPsbS* and *AtZEP* (VPZ) grown under greenhouse conditions. (A, C, E) mRNA levels relative to actin and tubulin. (B, D, F) Protein levels relative to WT, determined from densitometry on immunoblots. Error bars indicate SEM (n=5), and asterisk indicates significant differences between VPZ lines and WT (α = 0.05). (G) Representative immunoblots for VDE, PsbS and ZEP.
Fig. 3. Transient adjustment of NPQ and net CO₂ assimilation

(A) Dark relaxation of NPQ after exposure to alternating high/low light in young seedlings of wild-type *N. tabacum* (WT) and three lines expressing *AtVDE*, *AtPsbS* and *AtZEP* (VPZ). SEM were less than symbol size (n=18). Lines depict best fits of a double exponential model for WT ($τ_1 = 21.4 \pm 1.2$ s and $τ_2 = 2641.1 \pm 821.2$ s), VPZ-23 ($τ_1 = 13.3 \pm 1.3$ s and $τ_2 = 792.6 \pm 131.7$ s), VPZ-34 ($τ_1 = 19.4 \pm 1.4$ s and $τ_2 = 692.6 \pm 77.9$ s) and VPZ-56 ($τ_1 = 13.2 \pm 1.0$ s and $τ_2 = 774.9 \pm 94.5$ s). (B) Time course of net CO₂ fixation rate in fully expanded leaves in response to a decrease in light intensity of 2000 to 200 µmol photons m⁻² s⁻¹ at time zero, indicated by the black arrow. Error bars indicate SEM (n=5). Asterisk indicates significant difference ($α = 0.05$).
Fig. 4. Photosynthetic efficiency and NPQ under steady-state and fluctuating light.

(A) Quantum efficiency of leaf net CO$_2$ assimilation ($\Phi_{\text{CO}_2\text{max}}$) under steady-state light. (B) $\Phi_{\text{CO}_2\text{max}}$ under fluctuating light. (C) Quantum efficiency of linear electron transport ($\Phi_{\text{PSII}_{\text{max}}}$) under steady-state light. (D) Quantum efficiency of linear electron transport ($\Phi_{\text{PSII}_{\text{max}}}$) under fluctuating light. (E) Average NPQ corresponding to (A) and (C). (F) Average NPQ corresponding to (B) and (D). Data were derived from light response curves in which light intensity was either increased from low to high PFD, while waiting for steady state at each step (steady-state), or varied from high to low PFD with 4 min of 2000 µmol photons m$^{-2}$ s$^{-1}$ before each light intensity change (fluctuating). Error bars indicate SEM (n=6), and asterisks indicate significant differences ($\alpha=0.05$) between wild-type *N. tabacum* (WT) and three lines expressing *AtVDE, AtPsbS* and *AtZEP* (VPZ).
Fig. 5. Productivity of field-grown plants *N. tabacum* plants.

Lines expressing *AtVDE*, *AtPsbS* and *AtZEP* (VPZ) produced 15% larger plants than did the wild-type line (WT). (A) Total dry-weight. (B) Leaf area. (C) Plant height. Data were normalized to WT. Error bars indicate SEM (n=12), asterisk indicates significant differences between VPZ lines and WT (α=0.05). (D) Top-view of the field experiment in Urbana, Illinois (40.11 °N, 88.21 °W, photo credit: D. Drag) in the summer of 2016.
Table 1. Xanthophyll cycle pigment concentrations and de-epoxidation state (DES).

Samples were taken from greenhouse-grown fully expanded leaves of wild-type *N. tabacum* (WT) and three lines overexpressing *AtVDE*, *AtPsbS* and *AtZEP* (VPZ) in dark-acclimated state or after exposure to constant 400 or 2000 µmol photons m\(^{-2}\) s\(^{-1}\) (when steady state photosynthesis was reached) or 3 cycles of 3 min 2000 / 3 min 200 µmol photons m\(^{-2}\) s\(^{-1}\). Pigment concentrations (mean ± SEM, n = between 3 to 6) were normalized per unit leaf area (g m\(^{-2}\)). Asterisks indicate significant differences between VPZ lines and WT (α = 0.05). Vio = violaxanthin, Ant = antheraxanthin, Zea = Zeaxanthin. DES (%) = (Zea + 0.5Ant)/(Zea + Ant + Vio), n.d. = not detected.

<table>
<thead>
<tr>
<th>Light treatment</th>
<th>Pigment</th>
<th>WT</th>
<th>VPZ-23</th>
<th>VPZ-34</th>
<th>VPZ-56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark-acclimated</td>
<td>Vio</td>
<td>7.72 ± 0.37</td>
<td>6.64 ± 0.45</td>
<td>6.94 ± 0.64</td>
<td>6.70 ± 0.40</td>
</tr>
<tr>
<td></td>
<td>Ant</td>
<td>0.01 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Constant at 400 µmol photons m(^{-2}) s(^{-1})</td>
<td>Vio</td>
<td>6.68 ± 0.62</td>
<td>7.29 ± 0.47</td>
<td>7.05 ± 0.48</td>
<td>7.07 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>Ant</td>
<td>0.03 ± 0.01</td>
<td>0.01 ± 0.00</td>
<td>0.02 ± 0.01</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>Zea</td>
<td>0.20 ± 0.10</td>
<td>0.00 ± 0.00</td>
<td>0.05 ± 0.05</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>2.9 ± 1.4</td>
<td>0.1 ± 0.6</td>
<td>0.7 ± 0.6</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td>Constant at 2000 µmol photons m(^{-2}) s(^{-1})</td>
<td>Vio</td>
<td>4.47 ± 0.41</td>
<td>5.09 ± 0.52</td>
<td>3.63 ± 0.59</td>
<td>5.02 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Ant</td>
<td>0.07 ± 0.00</td>
<td>0.08 ± 0.01</td>
<td>0.06 ± 0.00</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Zea</td>
<td>3.81 ± 3.81</td>
<td>*1.48 ± 0.48</td>
<td>*1.23 ± 0.24</td>
<td>*1.94 ± 0.49</td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>46.2 ± 2.8</td>
<td>*22.9 ± 7.5</td>
<td>*26.2 ± 5.3</td>
<td>*27.4 ± 5.1</td>
</tr>
<tr>
<td>Fluctuating between 2000 and 200 µmol photons m(^{-2}) s(^{-1})</td>
<td>Vio</td>
<td>4.20 ± 0.16</td>
<td>*7.11 ± 0.57</td>
<td>*5.72 ± 0.15</td>
<td>*6.14 ± 0.34</td>
</tr>
<tr>
<td></td>
<td>Ant</td>
<td>0.16 ± 0.02</td>
<td>*0.08 ± 0.01</td>
<td>0.13 ± 0.03</td>
<td>*0.08 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Zea</td>
<td>4.70 ± 0.36</td>
<td>*0.88 ± 0.08</td>
<td>*2.29 ± 0.85</td>
<td>*1.20 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>52.5 ± 5.5</td>
<td>*11.4 ± 0.9</td>
<td>*25.5 ± 17.3</td>
<td>*16.4 ± 4.2</td>
</tr>
</tbody>
</table>
Supplementary Materials:

Materials and Methods

Figures S1-S14

Tables S1-S3

Datasets 1-21

References (33-49)