
Experiments with a Machine-centric Approach to Realise
Distributed Emergent Software Systems

Roberto Rodrigues Filho
School of Computing and Communications

Lancaster University
Lancaster, UK

r.rodriguesfilho@lancaster.ac.uk

Barry Porter
School of Computing and Communications

Lancaster University
Lancaster, UK

b.f.porter@lancaster.ac.uk

ABSTRACT
Modern distributed systems are exposed to constant changes
in their operating environment, leading to high uncertainty.
Self-adaptive and self-organising approaches have become a
popular solution for runtime reactivity to this uncertainty.
However, these approaches use predefined, expertly-crafted
policies or models, constructed at design-time, to guide sys-
tem (re)configuration. They are human-centric, making mod-
elling or policy-writing difficult to scale to increasingly com-
plex systems; and are inflexible in their ability to deal with
the unexpected at runtime (e.g. conditions not captured in
a policy). We argue for a machine-centric approach to this
problem, in which the desired behaviour is autonomously
learned and emerges at runtime from a large pool of small
alternative components, as a continuous reaction to the ob-
served behaviour of the software and the characteristics of
its operating environment. We demonstrate our principles
in the context of data-centre software, showing that our ap-
proach is able to autonomously coordinate a distributed in-
frastructure composed of emergent web servers and a load
balancer. Our initial results validate our approach, showing
autonomous convergence on an optimal configuration, and
also highlight the open challenges in providing fully machine-
led distributed emergent software systems.

CCS Concepts
•Software and its engineering→Distributed systems
organizing principles; Software design engineering;

Keywords
Self-adaptive systems, Self-organising systems, Distributed
emergent software systems

1. INTRODUCTION
Current systems are reaching a level of complexity that

is beyond human capacity to fully understand and manage.
This complexity increases when considering large-scale dis-
tributed systems that support modern applications, as is the
case of widely used Internet services running in data centres.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARM 2016, December 12-16, 2016, Trento, Italy
c© 2016 ACM. ISBN 978-1-4503-4662-7/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3008167.3008168

Self-organising systems [10] are one solution to handle this
complexity in environments with constant change. Such sys-
tems are able to coordinate and execute distributed archi-
tectural adaptation by adjusting their infrastructure and be-
haviour to accommodate changes in their environment.

Current self-organising techniques use policies to guide
system adaptation (e.g. [2, 5, 9]). Human-defined poli-
cies express the context in which adaptation should be ex-
ecuted and how adaptations should occur, i.e., to what be-
haviour the system should adapt. These are human-centric
approaches which have limited impact on the complexity is-
sue, as developers must retain a detailed understanding of
the system and its behaviour in each environment it may
encounter. In addition, these approaches rely on prediction
of how a system will respond to environments (which may
turn out to be false) and result in inflexibility to operating
environment ranges that were not considered at design time.

We consider distributed emergent software systems, which
use machine learning to emerge into optimal designs from
a pool of available components, based on real-time obser-
vations of their current environment and their performance.
In contrast to the above, this is a machine-centric approach
which moves the burden of complexity into software itself,
avoids the need for prediction of behaviours, and supports
total flexibility to the actual environments encountered as
they are observed and learned about. Our approach is based
on our existing work on local emergent software, which we
have demonstrated can assemble, reason over and design
software at runtime using limited information [8, 7].

Our key contributions in this paper are: (i) an analysis
of the design space of distributed emergent software sys-
tems, based on our experience of implementing them to date;
(ii) a prototype design of our distributed emergent software
framework and case study application for which we examine
distributed emergent behaviour; and (iii) an initial experi-
mental evaluation, which highlights the major benefits and
challenges of this approach. As our case study application
in this paper we examine two web server nodes along with
a load balancer. Each of these nodes exhibits locally emer-
gent properties, able to be composed from a set of possible
components, and must form a globally optimal solution in a
given operating environment. Our results demonstrate that
different operating environment conditions exist for this sys-
tem, which drive the need for different compositions of com-
ponents; that our framework can autonomously locate the
optimal compositions with very little prior information; and
that different approaches to distributed coordination signif-
icantly impact the behaviour of the emergent system.

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Adaptive and Reflective Middleware, 2016.

The rest of this paper is structured as follows: in Sec. 2
we discuss the design space of distributed emergent software,
and in Sec. 3 we present our prototype implementation. In
Sec. 4 we then present our initial experimental work, and we
discuss related work in Sec. 5. We conclude in Sec. 6.

2. DESIGN SPACE
In this section we define our model of distributed emergent

software systems and discuss the key challenges in their con-
struction. First, however, we summarise the concept of local
emergent software systems [8] as necessary background.

2.1 Local Emergent Software Systems
As detailed in [8], local emergent systems are defined as

systems whose behaviours emerge at runtime to satisfy a
goal in the face of fluctuations in their current operating
environment. We formalise this with the following model:

There exists a goal G, expressed in a given form. A set
of small software units SU exists that can be composed
together into systems that achieve this goal, where each
u ∈ SU has one or more behavioural variations (implemen-
tations that offer the same functionality using different tech-
niques). One or more u emits a stream of ‘metrics’ describing
the current health of u, and one or more u emits a stream
of ‘events’ describing the software’s current external stimuli
(i.e. received inputs, or deployment environment charac-
teristics). The aim of an emergent software system is then
to continually maximise its satisfaction of G by assembling
the most optimal collection of u (where ‘satisfaction’ is the
combined health of all chosen u as reported by metrics) in
each set of deployment environment conditions experienced
by the software at runtime (as characterised by events).

This model assumes that at least some of the software
components involved in the construction of a target system
have a natural set of behavioural variations; this may be
different sorting algorithm implementations, different cache
replacement strategies, or solutions that do or do not use a
memory caching component to deliver a service. We also as-
sume the property of ‘divergent optimality’, such that some
compositions of component variants are most efficient in
some operating environments, while other compositions are
most efficient in other operating environments. In [8] and
[7] we demonstrate these properties for a single web server
instance. We do not elaborate on this further here, but the
interested reader is referred to [8] for more detail.

2.2 Distributed Emergent Software Systems
In the distributed case, involving multiple collaborating

nodes, we augment our above model as follows:
There exists a set of nodes N , each with its own local

goal G, such that some of those goals depend on their node
interacting with other nodes within N . Each n ∈ N is a
complete emergent software system as described above. The
set of local goals may either be identical (for example in a
pure peer-to-peer system) or may be different across some
or all nodes (for example in a hierarchical system).

This creates a new problem, beyond the local case, of how
to successfully converge on a distributed (or ‘global’) emer-
gent software system that is (indirectly) built from a large
pool of available software components on a set of different
nodes. Where assembly of a single emergent node can easily
be ‘centrally’ controlled, for example, the latencies involved
in networking can make this difficult in a distributed setting.

We note that, in our current implementation, we do not
attempt to model network connections as first-class aspects
of our model. Instead we leave all routing decisions to the
application itself, with the exception that selecting different
components on individual nodes may in itself affect the way
that network routing or peering takes place. We now discuss
the major challenges here in more detail.

2.2.1 Combinatorial explosion in search space
For a local node, the number of possible ways in which a

system can be composed already grows super-linearly with
more component variants. This is because the number of
ways in which components can be combined grows quickly
with the number of available components and their variants.

This creates a very large search space for a machine learn-
ing algorithm to explore until it finds an optimal composi-
tion for any given set of operating environment conditions.
This search space size problem becomes combinatorial in a
distributed setting: consider a web server with 50 valid com-
positions of components, and a load balancer with 10 valid
compositions. With one web server and one load balancer
working together, this creates 500 total permutations of the
combined system. If we add another web server, this total
increases to 25,000, and so on. If the web server instances
are themselves reliant on a third tier of emergent software
(such as database nodes), this problem grows exponentially.

2.2.2 Locus and personality of control
A distributed emergent software system can be controlled

from a single central point with a global view of the sys-
tem, or can be controlled by individual control entities on
each node. To generalise this, arbitrary groupings of nodes
can be controlled together as appropriate (i.e. single nodes,
clusters of two, three or four nodes, etc., up to all nodes
being treated as a single group for emergent software con-
trol). Orthogonally to this, the control system can adopt
different ‘personality’ types for each node: a controller can,
for example, act in an entirely selfish way, maximising the
satisfaction degree of its local control scope, or in an altru-
istic way, attempting to maximise the satisfaction degree of
both themselves and their connected control scopes.

2.2.3 Information sharing
To help overcome the combinatorial search space explo-

sion, emergent software instances can share information in
various ways. This includes the fact that they are currently
in an ‘exploration’ or ‘exploitation’ mode of learning, indi-
cating their relative behavioural consistency to nodes that
interact with them; sharing the metrics and events that are
observed at a given node with other nodes around them;
or sharing learned information (such as the optimal compo-
sition for a given set of operating environment conditions)
with similar nodes to avoid re-learning of the same infor-
mation at multiple locations in a distributed system. These
levels of sharing may best be represented by a unified infor-
mation bus tied in to the learning models on each node.

2.2.4 Interference effects
It is likely that changes to the composition of any one

node affect the way that other nodes experience the world.
This may be evident for both metrics and events. In metrics,
the metric data perceived at a given ‘dependent’ node are
likely affected by the behaviours of other nodes with which it

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Adaptive and Reflective Middleware, 2016.

interacts in the distributed system, such that changes to the
composition of emergent software at those other nodes may
cause unexpected changes in metrics of the dependent node.
In events, differences in components such as the scheduling
module of a load balancer can change the request pattern
observed at each server in a cluster – in this case the load
balancer impacts the environment observed by web servers.
These complex interference effects between nodes can in turn
make distributed real-time learning difficult.

2.2.5 Behavioural mismatches
Finally, distributed emergent software systems must avoid

behavioural mismatches at different nodes – for example the
use of different encoding schemes or encryption algorithms
that make nodes incompatible. While these factors can be
trivially captured by rules or constraints in a human-centric
approach to distributed system adaptation, other mecha-
nisms are needed in machine-centric emergent software, such
that freedom of exploration and learning is not impeded
while simultaneously assuring global system validity.

3. DISTRIBUTED EMERGENT SOFTWARE
FRAMEWORK

In this section we present a fully functional framework to
realise distributed emergent software systems. This is built
on our local emergent software framework (described in [8]).
All of our source code for this paper is available online at
[1]. This work was carried out using the ultra-adaptive Dana
component-based programming language [6], though other
component models such as OSGi could potentially be used.

3.1 Local Framework
Our local emergent software framework is composed of

three main modules: Assembly, Perception and Learn-
ing. The Assembly module discovers all available compo-
nents for use in the target system, by starting from a ‘main’
component and recursively inspecting required interfaces to
search for all components offering compatible provided in-
terfaces. A list of all possible configurations of the target
system is then generated, any of which the assembly mod-
ule can (re)assemble the target system into at runtime. The
Perception module allows software components to generate
numerical information (e.g., response time in ms) about the
system’s perceived operating environment and its current
health condition. The Learning module uses both Assembly
and Perception to experiment with available compositions
of components and collect perception data generated by any
in-use components. The learning algorithm we use for this
paper in particular is a simple reinforcement learning ap-
proach. This is chosen to establish an initial baseline for
future comparison, when more elaborate or complex learn-
ing approaches are used. Our simple reinforcement learn-
ing approach uses an exploration and exploitation phase.
During exploration, each available software composition is
tested for a fixed observation window time, and perception
data collected after each test. Following this, the operat-
ing environment that existed during that exploration phase
is quantified and the best-performing configuration for that
environment noted; the exploitation phase then selects that
best configuration for use, until perception data indicates
that either the environment of system performance deviates
outside the current window. For more details, see [8].

3.2 Distributed Framework
In our local framework the Assembly, Perception and Learn-

ing modules interact by local function calls. To help realise
the distributed framework we define a RESTful web services
API to allow remote interaction among the framework mod-
ules. The Assembly module offers the functions setMain(),
getConfigs() and setConfig() functions. The Perception
module provides the function getPerception().

The setMain() function is used to discover all possible
components and compositions of components for the target
system, starting from a main component. The getConfigs()
function returns a list of possible valid configurations of the
assembled system, and setConfig() changes the system’s
configuration. The getPerception() function returns nu-
meric information generated by the system’s components.

In the distributed framework, the Assembly and Percep-
tion modules are grouped to form a Controller module.
The Learning module must register itself with a Controller
by calling a registerLearner() function in order to gain ac-
cess to the Controller’s API. This process ensures that only
one Learning module is allowed to access the Controller at a
time, guaranteeing consistency in the learning process across
multiple independent Learning modules.

We also define a RESTful web services API for the Learn-
ing module itself to enabling learning coordination, with the
functions on(), off() and getKnowledge(). The on() func-
tion activates the Learner and takes a list of Controller end-
points (IP addresses) that the Learning module will control.
The getKnowledge() function can be used among Learn-
ers to share learned information for cooperative distributed
learning strategies. For a fully centralised learning strat-
egy, only one Learning module is activated and controls all
nodes in the system. For a fully decentralised strategy, one
Learning module is activated for each node in the system.

3.3 Target Software System
As a case study distributed system for this paper we use

a web server (of which there may be many instances) and
a load balancer which acts as a rendezvous point between
clients and a cluster of web servers.

3.3.1 Web Server
Our web server uses three main concepts: a HTTPHan-

dler, Cache and Compression. The HTTPHandler repre-
sents the core functionality of the web server, defining how
HTTP requests are handled. Different implementations of
HTTPHandler process requests differently by combining ex-
tra elements such as Cache and Compression. The Cache
interface defines the general caching functionality, for which
there are various implementations. Similarly, the Compres-
sion interface defines the general compression functionality,
with a set of available implementations. These elements
form the basis of our web server, allowing the formation of
four different architectural ‘groups’ which serve requests by:
i) simply reading each requested resource direct from disk;
ii) caching a limited set of requested resources in memory,
iii) compressing requested resources to send as response, iv)
caching a limited number of compressed resources. For this
paper we employ just one example caching implementation
and one compression implementation, yielding four possi-
ble configurations (though we have many more available).
For perception data, the web server emits response times as
metrics, and requested content types and volumes as events.

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Adaptive and Reflective Middleware, 2016.

3.3.2 Load Balancer
Our load balancer receives HTTP requests from clients,

forwards them to a specific web server using a scheduling
algorithm, and returns the response to the client. Its main
functionality is a RequestHandler, for which we have im-
plemented four scheduling variants: i) Round Robin, ii)
Mime-type, iii) Cache-Location, and iv) an approach that
enables the load balancer to locally cache the most recently
requested files, using a Round Robin scheduling algorithm.
The Round Robin variant simply has a (circular) list of avail-
able web servers and forwards each new client request to the
next server on the list. The Mime-type variant considers the
MIME type of each HTTP request and builds a mapping of
MIME types to web servers, such that for example all im-
age requests are forwarded to server A, all text requests to
server B, etc. Finally, the Cache-Location variant remem-
bers the web server to which a request for a given resource
was last sent (if any) and forwards further requests for that
resource to the same server. The load balancer emits the
same perception data as our web server (response times as
metrics and request content types and volumes as events).

4. EVALUATION
In this section we present results of our initial experimen-

tal work with our distributed emergent software framework,
using our load balancer / web server system. This gives key
insights into some of the major challenges in building sys-
tems in this way. The main results that we present demon-
strate that (i) different optimal compositions of our example
system exist under different environments; (ii) these optimal
compositions can be autonomously discovered by our frame-
work; and (iii) coordinated and decentralised approaches in
the learning dimension provide significantly different overall
behaviours in our emergent software system.

All of our experiments were performed with our two web
servers running on two identical rackmount servers in a typ-
ical datacentre environment, with our load balancer on a
third machine, and our client (generating workloads) resid-
ing on a fourth machine in a different subnet. All of our
source code for this paper, with instructions on how to re-
produce our experiments, is available online at [1].

4.1 Divergent optimality
Our results here, shown in Fig. 1 and Fig. 2, indicate

that: i) different global distributed system configurations
behave very differently in the same operating environment
conditions; ii) for two different environments, there are no-
tably different global system configurations that perform op-
timally; and iii) there are very clear groups of configurations
with similar performance levels in both environments.

In detail, Fig. 1 and Fig. 2 show the average response
time to client requests, as reported at the load balancer, for
every possible global distributed system configuration (i.e.
every possible configuration of components for every local
node, combined) for two tested environments, characterised
by different workloads (Workload 1 and Workload 2).

For Workload 1, shown in Fig. 1, there is a difference of
193 ms in request handling latency between the best and
worst performing distributed configurations. Similarly, for
Workload 2 shown in Fig. 2, the difference in request han-
dling latency between the best and worst architecture is 126
ms. This clearly shows that different configurations have
significant impact on overall performance (result (i)).

0

20

40

60

80

100

120

140

160

180

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64R
e

sp
o

n
se

 T
im

e
 (

m
s)

Architectures

Figure 1: Average response time of every available
distributed configuration when using Workload 1.

0

50

100

150

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64R
e

sp
o

n
se

 T
im

e
 (

m
s)

Architectures

Figure 2: Average response time of every available
distributed configuration when using Workload 2.

Comparing these two graphs, it is also noticeable that the
best performing global architecture in both scenarios are
different (result (ii)). For Workload 1, the best architecture
is #33 (LB-C, WS1-GZ, WS2-GZ)1, while for Workload 2
the best architecture is #49 (LB-RR, WS1-GZ, WS2-GZ).

Considering that Workload 1 consists of one client repeat-
edly requesting only one text-only html file, global architec-
ture #33 performs best because, in this configuration, the
web servers always compress the requested files, and once the
file is returned to the load balancer, it is stored in a small
content cache at the load balancer. Thereafter, all subse-
quent requests for the same file can be retrieved instantly
by the load balancer itself, from its local cache, avoiding the
communication between load balancer and web servers, and
therefore significantly reducing response time.

On the other hand, for Workload 2, which consists of one
client repeatedly requesting a different text-only html file
for every request, architectures with caching will not per-
form well due to the frequency of cache misses. As a re-
sult, the best performing architecture is one which does not
use caching at either the load balancer or the web servers.
The architecture #49 defines a round-robin scheduling al-
gorithm for the load balance, and web servers that return
compressed files (from disk) as responses. As for the load
balancer scheduling algorithm (LB-RR), each incoming re-
quest will be evenly passed over to the web servers.

The last notable result here is the equivalent performance
of large groups of architectural configurations (result (iii)).
This is easily identified in both workloads, though is visually

1LB stands for load balancer, WS1 stands for web server 1, WS2
stands for web server 2. The configurations are indicated by their
initials: C for Cache, GZ for Compression, CGZ for Cache and
Compression and, finally, RR for Round Robin.

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Adaptive and Reflective Middleware, 2016.

more obvious in Fig. 1. One clear reason for this is that both
web servers are running on machines with the exact same
hardware features and capacity. Thus, a global distributed
configuration that sets WS1 to configuration X and WS2 to
configuration Y is essentially the same (performance-wise)
as having WS1 set to Y and WS2 to X. Furthermore, when-
ever requests are limited to a subset of the system’s nodes, all
configurations of the unreachable nodes do not affect the sys-
tem’s performance, making those configurations indifferent
for the system. This situation is observed in two cases: the
first case happens when the load balancer, due to its schedul-
ing algorithm, forwards 100% of the incoming requests to
only one web server. This is observed in architectures #1
to #32 in Workload 1, and from #1 to #16 in Workload 2.
The second case happens when the load balancer forwards
its incoming requests only once to one web server, and all
subsequent requests are handled by the load balancer itself
due to its local caching configuration. This happens only in
Workload 1 and is observable for architectures #33 to #48.

4.2 Learning behaviour
The above results provide a ground truth, informing us

which distributed system configurations are the best options
for our two workloads. We now examine different learning
strategies, using our framework, which autonomously dis-
cover this at runtime. In all cases we use a simple reinforce-
ment learning approach, but we examine this approach in a
global configuration, where a single instance of the learning
algorithm controls the entire system, and also in a local con-
figuration, where every individual node learns in isolation.

The results are shown in Fig. 3 and Fig. 4. Both graphs
show the learning process and its convergence to the optimal
configuration. On both graphs we show the performance of
three different configurations of our system, for comparison:
the learning line is the version running our distributed emer-
gent software framework to control the system (the blue and
purple lines in Fig. 3 and Fig. 4 respectively), whereas the
red and green lines are a fixed architectural configuration
that we use as reference points (i.e. their configurations
do not change over time). The configuration represented
by the red line is LB-C, WS1-GZ and WS2-GZ, and is the
best performing distributed configuration for Workload 1,
as shown by our earlier results in which we manually tested
each configuration. The green line then represents the archi-
tectural configuration LB-RR, WS1-GZ and WS2-GZ, which
is the best performing configuration for Workload 2. At the
midpoint of both experiments we change the workload from
Workload 1 to Workload 2, therefore demonstrating the way
in which our framework learns the change in environment.

These graphs show that: i) the centralised learning ap-
proach, in both workloads, autonomously identifies the op-
timal global architectural configuration, with no prior infor-
mation; ii) the decentralised learning approach, for Work-
load 1, converges faster than the coordinated learning ap-
proach, but it never converges for Workload 2.

In detail, the centralised learning approach, as shown in
Fig. 3, takes 320 seconds (∼5 minutes) to find the optimal
configuration for each environment it encounters. This is be-
cause our learning algorithm works by exposing each of the
64 available configurations and observing them for 5 seconds,
after which it selects the configuration that had the lowest
average response time. The advantage of this approach is
that it will always find the optimal solution, due to its ex-

0

50

100

150

200

250

300

350

7
.3

6
5

.7

1
2

4
.1

1
8

2
.5

2
4

0
.9

2
9

9
.3

3
4

5

3
8

5

4
2

5

4
6

5

5
0

5

5
4

5

5
8

5

6
4

2
.1

7
0

9
.4

6

7
7

6
.8

2

8
4

4
.1

8

9
1

1
.5

4

9
5

5

9
9

5

1
0

3
5

1
0

7
5

1
1

1
5

1
1

5
5

1
1

9
5R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Centralised Learning
LB-C, WS1-GZ, WS2-GZ
LB-RR, WS1-GZ, WS2-GZ

Workload 1 Workload 2

Figure 3: Performance of our coordinated learn-
ing approach for two different workloads, compared
with static baseline configurations. The spikes at
the beginning of the coordinated learning curve for
both workloads represent the exploration phase.

0

50

100

150

200

250

300

350

7
.3

6
5

.7

1
2

4
.1

1
8

2
.5

2
4

0
.9

2
9

9
.3

3
4

5

3
8

5

4
2

5

4
6

5

5
0

5

5
4

5

5
8

5

6
4

2
.1

7
0

9
.4

6

7
7

6
.8

2

8
4

4
.1

8

9
1

1
.5

4

9
5

5

9
9

5

1
0

3
5

1
0

7
5

1
1

1
5

1
1

5
5

1
1

9
5

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Decentralised Selfish Learning
LB-C, WS1-GZ, WS2-GZ
LB-RR, WS-GZ, WS2-GZ

Workload 1 Workload 2

Figure 4: Performance of our decentralised learn-
ing approach for two different workloads, compared
with static baseline configurations. The spikes at
the beginning of the selfish learning curve for Work-
load 1 represent the exploration phase.

haustive search. On the other hand, this approach does not
scale to larger numbers of components and/or nodes due to
the combinatorial explosion that occurs when doing this.

The decentralised (selfish) learning approach, by compari-
son, converges 15 times faster than the centralised approach
when exposed to Workload 1, as shown in Fig. 4. The
rapid convergence here is because the local learning process
at the load balancer must only iterate through 4 different
configurations, quickly identifying the local content caching
in the load balancer as the best option, this configuration
suffers little performance impact from the web servers (as
was seen in Fig. 1). However, we see that this approach
never converges on the optimal solution when exposed to
Workload 2. In this more complex workload, in which the
‘local content caching’ solution at the load balancer is not
the best option, this lack of convergence is due to a complex
set of interference conditions: first, because each local emer-
gent system is exploring independently, it is unlikely that
all nodes will simultaneously happen to be in the globally
optimal set of configurations at the same moment; second,
the locally optimal solution for the web server nodes is not
necessarily the globally optimal one; and third, the act of
exploring different configurations on different nodes causes
constant changes in observed metrics and observed events
at both the load balancer and the web servers. In the more
complex Workload 2, these conditions mean that all nodes in
the system are effectively in a constant state of re-learning.

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Adaptive and Reflective Middleware, 2016.

Finally, we note that our workloads for this paper were
synthetically generated in order to carefully control our tests;
in future work we will also examine real-life workloads.

5. RELATED WORK
This section surveys the most relevant work in self-adaptive

and self-organising systems, presenting different ways for en-
abling software adaptation and optimisation at runtime.

Static adaptation policies are the most common ap-
proach to enable software re(configuration). This approach
requires a predefined correlation of operating conditions and
software configurations. Examples of this include the use of
manually-written temporal rules to specify and constraint
software adaptation [5], or encoding adaptation rules in a
causally-connected model of the running system via mod-
els@runtime to manage multi-cloud applications [2]. These
approaches rely on a set of rules (sometimes realised within a
model of the software system) defined by experts in advance.
Our approach goes a step further that this by self-assembling
software and automatically learning the creation of rules by
which adaptation is needed based on observed conditions.

Dynamic policies approaches improve on static adapta-
tion rules by enabling updates to the policies as new con-
ditions arise. Elkhodary et al. propose a feature model
framework to enable self-adaptive architectures [4]. Offline-
learning is used to create functions that supports system’s
adaptation, and online-learning is used to tune the func-
tions when new environment conditions are detected. Our
approach differs from by placing the learning process in the
system, starting with no prior information, and allowing ac-
tive experimentation with the available software configura-
tions under the conditions actually experienced at runtime.

Biologically-inspired approaches are commonly used
to implement adaptive solutions by incorporating patterns
of behaviours found in nature to help optimise software sys-
tems. There are multiple examples of how ant colony be-
haviour can be used in the context of optimisation problems
[3], including routing algorithms, scheduling algorithms, and
so on. This class of solution consists of encoding in algo-
rithms ants’ ability to find the shortest path to food us-
ing pheromone trails. These approaches generally involve
software developers writing problem-specific algorithms in-
spired by nature; in contrast our work seeks a more general
approach to autonomous system assembly and optimisation.

Coordination is often required in distributed adaptive
systems. A recent example describes an approach to al-
low structural adaptation of decentralised coordination pro-
cesses [9], introducing a voting scheme to solve conflicts be-
tween adaptive elements on the system. Though the overall
approach to guide software adaptation relies heavily on pre-
defined policies, the decentralised coordination of systems
adaptation provides insightful concepts that may be com-
plementary to our work, particularly in the exploration of
hybrid learning solutions based on information sharing.

6. CONCLUSION
In this paper we introduce the first example of a machine-

centric approach to realise distributed emergent software
systems. We evaluated a prototype framework operating
in two learning modes (centralised and decentralised) in the
context of distributed system composed of two instances of
a web server and one load balancer, each with four distinct
architectural configurations. Our results show that there

are different optimal global configurations available even in
a very simple distributed system, when that system is bro-
ken down into small components with variation. We also
demonstrate that a coordinated learning approach can au-
tonomously locate the optimal distributed emergent soft-
ware system across multiple nodes. However, this solution
does not scale to larger numbers of nodes. A fully decen-
tralised approach, meanwhile, does scale because it does not
suffer from the combinatorial explosion problem, but does
not converge on an optimal global solution. In future work
we intend to examine hybrid solutions that offer the best of
both of these alternatives to learning.

7. ACKNOWLEDGEMENTS
This work was partly supported by the UK EPSRC in the

Deep Online Cognition project, grant no. EP/M029603/1.
Roberto Rodrigues Filho would like to thank his sponsor,
CAPES Brazil, for the scholarship grant BEX 13292/13-7.

8. REFERENCES
[1] Demos and code from this paper with instructions:

http://research.projectdana.com/arm2016rodrigues.

[2] L. Cianciaruso, F. Di Forenza, E. Di Nitto,
M. Miglierina, N. Ferry, and A. Solberg. Using models
at runtime to support adaptable monitoring of
multi-clouds applications. In Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 2014
16th International Symposium on. IEEE, 2014.

[3] M. Dorigo and M. Birattari. Ant colony optimization.
In Encyclopedia of Machine Learning. Springer, 2010.

[4] A. Elkhodary, N. Esfahani, and S. Malek. Fusion: A
framework for engineering self-tuning self-adaptive
software systems. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’10, pages
7–16, New York, NY, USA, 2010. ACM.

[5] O. Kouchnarenko and J.-F. Weber. Adapting
component-based systems at runtime via policies with
temporal patterns. In Formal Aspects of Component
Software, pages 234–253. Springer, 2014.

[6] B. Porter. Runtime modularity in complex structures:
A component model for fine grained runtime
adaptation. In Component-Based Software
Engineering, pages 26–32. ACM, June 2014.

[7] B. Porter, M. Grieves, R. Rodrigues Filho, and
D. Leslie. REX: A development platform and online
learning approach for runtime emergent software
systems. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and
Implementation. USENIX, 2016.

[8] B. Porter and R. Rodrigues Filho. Losing control: The
case for emergent software using autonomous
perception, assembly and learning. In Proceedings of
the 10th IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, 2016.

[9] T. Preisler, T. Dethlefs, and W. Renz. Structural
adaptations of decentralized coordination processes in
self-organizing systems. In Autonomic Computing
(ICAC), 2016 IEEE International Conference on.

[10] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 2009.

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Adaptive and Reflective Middleware, 2016.

