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Abstract

Automatic detection of objects is critical to video
tracking systems. One of the simplest techniques
for detection is background subtraction (BS). BS
refers to the process of segmenting moving regions
from image sequences. The BS process involves
building a model of the background and extract-
ing regions of the foreground (moving objects).
In this paper, we propose an extended cluster BS
(CBS) technique based on symmetric alpha sta-
ble (SαS) distributions. The developed method
functions at cluster-level as against the traditional
pixel-level BS methods. An iterative self-adaptive
mechanism is presented that allows automated
learning of the distribution of the model parame-
ters. The results for the CBS SαS algorithm on
real video sequences show improvement compared
with a CBS using a Gaussian mixture model.

1 Introduction

Detection is an inherent part of any efficient
tracking algorithm. The detection process helps
identifying and localising moving objects within
any scene. The simplest way of accomplishing
detection is through building a representation
of the background and comparing each new
frame with this representation. This procedure
is known as background subtraction (BS) [3].
Some of the popular techniques for BS include
mixture of Gaussians [24], kernel density estima-

tion [7], colour and gradient cues [9], high level
region analysis [21], Kalman filtering [23], hidden
Markov models [20], and Markov random fields
[14]. The general idea behind the aforementioned
probabilistic techniques is to consider each pixel
as a random variable and to represent each pixel
of the image by means of its probability density
function (PDF). A pixel from a new image is
classified as background depending on the pixel
PDF. In the last several years, a number of
different BS techniques have been proposed in
the literature. The very basic BS techniques are
detecting the foreground objects as the difference
between two subsequent video frames, operate at
a pixel level and are applicable to static back-
grounds. If the PDF of the pixel is bigger than
a threshold, the pixel is classified as a background.

Though the generic BS method is simple to
understand and implement, the disadvantages
of the frame difference BS is that it does not
provide a mechanism for choosing the parameters,
such as the detection threshold, and its inability
to cope with multi-modal backgrounds. In an
attempt to address the inadequacies of the basic
methods, the idea of modeling the background
as the average or median of pixels from the
previous frames was proposed in [11]. Though
these techniques were more robust than the basic
methods, the problems of choosing threshold and
multi-modal distributions remained.
One of the important techniques proposed to
cope with multi-model background distribution
and to update the detection threshold was based
on Gaussian mixture models (GMMs). The
model proposed by [24, 15] describes each pixel
as a mixture of Gaussians and relies on an
on-line distribution to update this model. The
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larger Gaussian components correspond to the
background and this is used to generate the
background model. In [1] a cluster-based GMM is
developed and its better performance compared
with the pixel-level GMM [24] is demonstrated.

In contrast to the GMM, kernel density es-
timators (KDEs) [7, 6] evaluate the histogram of
the n most recent pixel values, each smoothed
with a Gaussian kernel, and represent the back-
ground PDF in this way. A disadvantage of this
approach is that it has high memory requirements
(proportional to the number of pixels times the
size of a frame). The KDE of Elgammal et
al. [7] relies on a Gaussian kernel function
which requires N Gaussian components where
typically N is between 50 and 100. This requires
more computations compared with the GMM
of Stauffer and Grimpson [19] which relies on a
small number of components (typically between
three and five).

Some of the other recently developed BS tech-
niques include the mean-shift estimators. The
mean-shift estimators [8] are gradient methods.
Their standard iterative implementation is slow
and with high memory requirements. Some im-
provements include computational optimisations,
or using it only for detecting the background PDF
modes at the initialisation step. However, most
of these techniques have limitations and cannot
handle dynamic changes of the background, e.g.,
gradual or sudden (e.g., moving clouds), motion
changes including camera oscillations and high
frequency background objects (tree branches,
sea waves, etc.) and changes in the background
geometry (such as parked cars) [3].

An algorithm for background modeling and
subtraction based on Cauchy statistical distri-
bution is presented in [13]. It is shown that
the Cauchy distribution with its heavier tail is
able to represent the tails of the histogram in
a better way in comparison with the Gaussian
distribution. The model has been shown to be
robust and adaptive to dynamic changes of the
background scene such as moving trees, rain,
camera motion and local/global illumination
changes.

In this paper, we propose a novel technique of
cluster BS based on symmetric alpha stable (CBS-
SαS) distributions. Whilst the cluster back-
ground subtraction (CBS) method helps reduc-
ing the clutter, the symmetric alpha stable (SαS)
distributions help handling dynamic illumination

changes in a scene and model moving backgrounds
in a better way due to the heavy tail. It is also im-
portant to note that results of modeling the back-
ground of a moving image sequence can be best
obtained while operating with arbitrary values of
the characteristic exponent parameter of the SαS
distribution, rather than fixed values such as the
Gaussian or Cauchy case. By automatically es-
timating the parameters of the alpha stable dis-
tribution, the PDF of clusters of pixels can be
faithfully represented and a reliable model of the
background can be obtained.
The remaining part of the paper is organised as
follows. Section 2 presents the Bayesian formu-
lation of BS problem. A description of different
distributions in the context of BS is given in the
subsequent section of the paper. Experimental
results are given in Section 4. Comparative re-
sults obtained with a cluster-based GMM BS are
presented. Finally, we present some conclusive re-
marks and directions of future work in Section 5.

2 Problem Formulation

The problem of cluster background subtraction
(CBS) involves a decision whether a cluster of pix-
els belongs to the background (bG) or foreground
(fG) object based on the ratio of probability den-
sity functions:

p(bG|ci
k)

p(fG|ci
k)

=
p(ci

k|bG)p(bG)
p(ci

k|fG)p(fG)
, (1)

where, the vector ci
k = (ci

1,k, . . . , ci
`,k) charac-

terises the i-th cluster (0 ≤ i ≤ q) at time in-
stant k (and current image), containing ` num-
ber of pixels such that [Im]k =

[
c1

k, . . . , cq
k

]
is the

whole image; p(bG|ci
k) is the PDF of the back-

ground, subtracted using a certain feature (typi-
cally colour or edges) of the cluster ci

k; p(fG|ci
k)

is the PDF of the foreground on the same cluster
ci

k; p(ci
k|bG) refers to the PDF model of the back-

ground and p(ci
k|fG) is the appearance model of

the foreground object. In our cluster BS technique
the decision that a cluster belongs to a background
is made if:

p(ci
k|bG) > threshold

(
=

p(ci
k|fG)p(fG)
p(bG)

)
.

(2)
Since the threshold is a scalar, the decision in (2)
is made from the average of the distributions of
all pixels within the cluster ci

k.



3 Background Modeling

Most of the existing BS techniques such as
[7, 24, 19, 3] operate at pixel level in contract to
the algorithm proposed here, which operates at
cluster level. The appearance of the foreground,
characterised by the PDF p(ci

k|fG), is assumed
uniform. The background model represented
as p(ci

k|bG) is estimated from a training set <
which is a rolling collection of images over a
specific update time T . The time T is crucial
since its update determines the model ability
to adapt to illumination changes and to handle
appearances and disappearances of objects in
a scene. If the frame rate is known, the time
period T can be adapted: T = N

fps , e.g., as a
ratio between the number N of frames obtained
through the online process and the frame rate,
fps, frames per second. At time instant k we
have <k =

{
ci

k, ..., ci
k−T

}
.

Every cluster ci
k, (0 ≤ i ≤ q) at time in-

stant k is generated using a colour clustering
mechanism of the nearest neighbour approach
[22], although other techniques can be used. The
aim of the clustering process is to separate data
according to certain similarities. Clustering is
carried out based on the hue, value, saturation
(HSV) colour model due to its inherent ability to
cope with illumination changes. Constraints such
as spatial distance, hue difference and brightness
changes are imposed on the model.

3.1 The Proposed CBS-SαS Model

We assume that a SαS distribution represents the
PDF of the foreground and background. The im-
age is clustered according to the nearest neighbour
approach [5]. For each cluster the parameters of
the SαS distribution are evaluated with an itera-
tive technique. Then a decision is taken whether
a cluster belongs to the background or to the fore-
ground based on the colour histogram of the clus-
ter. In the subsection below, we describe in detail
the algorithm for cluster background update using
the parameters of the SαS distribution.

3.1.1 Alpha Stable Distribution

The appeal for SαS distributions as a statisti-
cal model for signals derives from some impor-
tant theoretical and empirical reasons. Generally,
there is no a closed-form expression for the PDF
of SαS distributions. Hence, the most convenient
way of defining them is by means of their charac-
teristic function

ϕ(c) = exp(jδc− γ|c|α), (3)

where

• α is the characteristic exponent parameter,
with values 0 < α ≤ 2. It is arguably the
most important parameter as it determines
the shape of the distribution. It controls the
heaviness of the tails of the density func-
tion. A small positive value of α indicates
severe impulsiveness, and thus tails are heav-
ier, while a value of α close to 2 indicates
more Gaussian type of behaviour. A value of
α = 1 corresponds to Cauchy distribution.

• δ is the location parameter (−∞ < δ < ∞).
It corresponds to the mean for 1 < α ≤ 2,
and to the median for 0 < α ≤ 1.

• γ is the dispersion parameter (γ > 0), which
determines the spread of the density around
the location parameter. It behaves in a simi-
lar way to the variance of the Gaussian den-
sity, and it is, in fact, equal to half of the
variance when α = 2, for the Gaussian case.

A SαS distribution characterised by the above
three parameters is denoted as S(α, γ, δ).

3.1.2 Gaussian Distribution

The case α = 2 corresponds to the Gaussian dis-
tribution. The PDF has the form

fα=2(γ, δ; c) =
1√
4πγ

exp

{
− (c− δ)2

4γ

}
, (4)

3.1.3 Cauchy Distribution

The case where α = 1 corresponds to the Cauchy
distribution. The PDF is given by

fα=1(γ, δ; c) =
γ

π[γ2 + (c− δ)2]
. (5)

The smaller the characteristic exponent α is, the
heavier the tails of the symmetric α stable den-
sity. This implies that random variables following
symmetric α stable distributions with small char-
acteristic exponents are highly impulsive. In fact,
no closed-form expressions for the general sym-
metric α stable PDF are known except for the
Gaussian and the Cauchy members. General α-
stable density members do not possess finite sec-
ond or higher moments [17]. In particular, the
dispersion of the stable distribution with α < 2



does not exist, making it meaningless as a mea-
sure of dispersion. However, the dispersion of a
stable random variable plays an analogous role to
the variance. The larger the dispersion of an α-
stable variable is, the more spread it is around its
location parameter [18].
The BS schemes based on Cauchy distributions
have more advantages than the Gaussian distri-
bution based methods. The heavier tails of the
Cauchy distribution represent in a better way the
tails of the histograms than the Gaussian case.
Additionally, the Cauchy without exponential op-
eration is more cost effective in comparison to the
Gaussians.

3.1.4 Iterative Parameter Estimation

The most important parameters of a SαS distri-
bution are the characteristic exponent α and the
dispersion parameter γ. The location parameter δ
can often be assumed to be zero, i.e., the measure-
ments are normalised with respect to the origin.
Several methods for estimating these parameters
have been introduced [12, 10].
In this paper, we employ an iterative SαS distri-
bution parameter estimation technique. At any
time instant k, let < denote all the existing ` pix-
els under consideration (actually < is the rolling
set of the considered images). The update of the
parameter estimates α(1,k),α(2,k), ..., α(M,k)

and γ(1,k), γ(2,k), ..., γ(M,k) at time in-
stant k is performed from the esti-
mates α(1,k−1),α(2,k−1), ..., α(M,k−1) and
γ(1,k−1), γ(2,k−1), ..., γ(M,k−1) at previous time
instant k − 1.
If < is a real SαS random variable, i.e., if < is
assumed as a SαS time series of dependent or in-
dependent samples, then its p-th order moment
satisfies the following relation. This implies that
V = log |<| corresponds to a log | SαS | process
with µ and σ representing the mean and variance
of the < samples. The estimates of the mean and
the variances, µ̃1,k, ..., µ̃M,k and σ̃2

1,k, ..., σ̃2
M,k, re-

spectively of the < samples can be represented as
in [25] using the following update equations,

w̃m,k+1 = w̃m,k +
1
Tk

(om,k − w̃m,k), (6)

µ̃m,k+1 = µ̃m,k + om,k

(
1

Tkw̃m,k

)
δm,k, (7)

σ̃2
m,k+1 = σ̃2

m,k +om,k(
1

Tkw̃m,k
)(δ′m,kδm,k−σ2

m,k),

(8)

where δm,k = ci
k− µ̃m,k, ′ denotes transpose, and

om,k refers to the ownership of the new cluster and
defines the closeness of this cluster to a particular
SαS component, and m = 1, . . . , M . The disper-
sion parameter γm,k at any time instant k can be
updated iteratively by the equations [12]

log γm,k

αm,k
= k−1

k

(
Ce(1−αm,k−1)+log γm,k−1

αm,k−1

)

+µm,k

k + Ce

(
1− 1

αm,k

)
(9)

and similarly the characteristic exponent αk at
time instant k can be updated as in [12] using,

π2

6

(
1

α2
m,k

+
1
2

)
=

k − 1
k2

(
Ce (1−αm,k−1) + log γm,k−1

αm,k−1
−µm,k

)2

+

π2 (k − 1)
6k

(
1

α2
m,k−1

+
1
2

)
+

1
k

σm,k,

(10)

where Ce = 0.57721566... is the Euler constant.
It is important to note that the accuracy of this
parameter estimation technique increases with
the increase in sample size. The ownership of any
new cluster is set to 1 for “close” components and
the others are set to zero. A cluster is close to a
component iff the Mahalanobis distance between
the component and the cluster centre is, e.g., less
than 3. If there exist no “close” components, a
component is generated with w̃m+1,k = 1/Tk,
with an initial mean µ̃0 and variance σ̃2

0 .

The model presents clustering of components
and the background is approximated with the B
largest components,

p̃(ci
k|<k, bG) ∼

B∑
m=1

w̃m,kϕ(αm,k,γm,k), (11)

B = argmin
b

(
b∑

m=1

w̃m,k > (1− cf )), (12)

where b is a variable defining the number of con-
sidered clusters, cf is the proportion of the data
that belong to foreground objects without influ-
encing the background model. The proportional-
ity between the pixels belonging to the foreground
to the pixels from the background is assumed con-
stant in most adaptive models [24]. This assump-
tion does not hold true when videos of objects



are captured from a close proximity. In such cir-
cumstances, the proportion of pixels belonging to
the objects of interest, i.e., the foreground pix-
els, are much higher than the background pixels.
This ratio defining the percentage of foreground
and background pixels can be updated from the
training set as follows:

cf =
p̃(ci

k|<k, fG)
p̃(ci

k|<k, bG)
. (13)

4 Results and Analysis

The performance of the proposed symmetric al-
pha stable CBS (CBS-SαS) technique will be
illustrated over real video sequences from [16]
and compared with the cluster-level GMM (CBS-

(a: Results from the CBS-GMM)

(b: Results from the CBS-SαS)
Figure 1: Results from the (a) CBS-GMM [1] and
(b) proposed CBS-SαS model on sequence 1

GMM) [1].

(a: Results from the CBS-GMM)

(b: Results from the CBS-SαS)
Figure 2: Results from the (a) CBS-GMM [1] and
(b) proposed CBS-SαS model on sequence 2

It is evident from the results above, that the pro-
posed CBS-SαS technique gives results with less
clutter than the CBS-GMM method. The tech-
niques are also compared using quantitative mea-
surements such as recall and precision. Recall and
precision measures quantify how well an algorithm
matches the ground truth [2]. Recall [4] is cal-
culated as the ratio of the number of foreground
pixels correctly identified to the number of fore-
ground pixels in the ground truth and precision
is computed as the ratio of the number of fore-
ground pixels correctly identified to the number
of foreground pixels detected.
Figures 3 and 4 show that the proposed algorithm
based on SαS distribution has slightly higher level
of precision for the same values of the recall. The
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Figure 3: Recall-Precision curves of the CBS [24]
and proposed CBS-SαS model, for sequence 1.

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Recall

P
re

ci
si

o
n

Recall − Precision Curves on Baseball Sequence

 

 
CBS−GMM
CBS−SAS

Figure 4: Recall-Precision curves of the CBS [24]
and proposed CBS-SαS model, for sequence 2.

precision values directly relate to the number of
correctly classified foreground pixels [4], and are
inversely proportional to the misclassified fore-
ground pixels. It is evident that compared with
the pixel-based GMM [24] the proposed model
maximises the proportion of correctly classified
pixels and minimises the misclassification.

5 Conclusions and Future
Work

This work shows the potential of the symmetric
alpha stable distributions for background model-
ing in video sequences. The alpha stable distri-
butions have the ability to handle heavy tails and
thereby model movements in the background more
efficiently than the models based on Gaussian as-
sumptions.
The current research is focussed on the investiga-
tion of automatic detection of multiple people by
using background subtraction with alpha stable
distributions.
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