Title: Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium

Article Type: Research Paper

Keywords: Bioremediation; phenanthrene (PHE); Copper; Sphingobium; PAH-RHD\(\alpha\) gene; C23O gene

Corresponding Author: Prof. Chunling Luo, Ph.D

Corresponding Author's Institution: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences

First Author: Mengke Song, Ph.D

Order of Authors: Mengke Song, Ph.D; Ying Yang; Longfei Jiang, Ph.D; Qing Hong, Ph.D; Dayi Zhang; Zhenguo Shen, Ph.D; Hua Yin; Chunling Luo, Ph.D

Abstract: A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, ahdAlb-1 encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD\(\alpha\)) and xyLE encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of xylE and ahdAlb-1 genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHD\(\alpha\) and C23O genes during PHE degradation. Applying Sphingomonas PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with ryegrass.
Dear Prof. Xing,

Thank you very much for the processing and considering our manuscript entitled “Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium” (ENVPOL-D-16-01549) to Journal of Environmental Pollution for possible publication after a major revision. We have seriously considered the reviewers’ comments and made the responsive correction/modification according to the reviewers’ and editor’s comments, and the response was seen in the following. The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see:

http://www.textcheck.com/certificate/NeUUhK

The present study investigated a newly isolated bacterium exhibiting high PHE biodegradability and copper tolerance, and the potential application in bioremediation of PHE-copper-co-contaminated soil. The genes encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDa) and catechol-2,3-dioxygenase (C23O), and the PAH-RHD gene cluster involved in the
PHE degradation by strain PHE-1 were identified. The expression of PAH-RHDα and C23O genes has been reported to be stimulated by copper at a high concentration for the first time. When strain PHE-1 was applied to PHE-contaminated soil, the activity of C23O gene was improved by the planting of ryegrass and the presence of copper. The best performance of PHE degradation and the highest number of C23O gene copies occurred in PHE-copper-co-contaminated soil planted with ryegrass. The findings expand our knowledge on the microbial resource for bioremediation, and will be of interest for a wide range of researchers of environmental microbiology.

I would be very grateful if you could let me know the results of the review process in the near future. Thank you very much for your help. I am looking forward to hearing from you soon.

Responses to reviewers and editor:

Editor:

Comment:

Please see below the referees' comments on your manuscript. As you can see, the reviewers have major concerns about your manuscript, for example, more experiments need to be designed to verify the conclusion that PHE-1 possessed powerful PHE biodegradability, even better than that reported by other researchers; some major reviews on biodegradation of PAHs need to be referred and included; the data discussion needs to be strengthened; and the language in this manuscript needs to be significantly improved.

I concur with the reviewers. Your manuscript is not suitable for publication in its present form. It needs to be carefully revised and likely reviewed again before a final decision can be made on its suitability for publication in Environmental Pollution.

Response:

The authors would like to thank the efforts of the editor on the comments and have tried the best to correct the mistakes and modify the whole manuscript. The language
has been checked by at least two professional editors, both native speakers of English. All the corrections in accordance with reviewers’ and editor’s comments are marked with yellow color. For a certificate, please see: http://www.textcheck.com/certificate/NeUUhK

Reviewer #1:

Comment:
Reviewer #1: There are some innovation points in this study. Firstly, although many species of PAH-degrading bacteria have been isolated from different environments, but in most of these species, only their PAH-degrading ability was revealed, and little is known about whether they can degrade PAHs when heavy metals are also present. This study firstly found that high level Cu2+ can promote the expression of PAH-RHDα and C23O genes. Secondly, in previous studies, the combination of ryegrass and microorganisms performed well in the biodegradation of soil PAHs. However, limited information is available on the influence of ryegrass planting in the microbial degradation of organic pollutants when heavy metals are also present. This research gave answers for above questions. However, there are some details that needed to affirm. For example, the researcher said that they found a new bacterium, but 16S rRNA gene sequencing showed 99% identity with the nucleotide sequences of the Sphingobium abikonense strain NBRC 16140 (NR258 113839.1) and so on. We know that if 16S rRNA gene sequencing showed 95% or lower identity with the nucleotide sequences of known strains, so that we cannot call the bacterium in this study a "new" bacterium. Then, the results indicate that PHE-1 possessed powerful PHE biodegradability, even better than other researchers. I think the statement is not rigorous, for example, in those studies, the conditions of culture are different. More experiments should be designed to verify the conclusion.

Response:
Thank you for the comments. We are sorry for the mis-presentation and this strain is a newly isolated bacterium from the active sludge. We have revised the first point of
highlight according to the comment, please see highlights in the manuscript.

The sentences about the PHE biodegradability of the isolated *Sphingomonas* PHE-1 were revised according to the comments. Its PHE biodegradability was compared with other strains with the similar conditions of culture. Besides, we also tested its ability in the artificial PHE-copper co-contaminated soils. Please see Lines 281-288.

Specific comments:

Comment:

1. L22: the "a" is not suitable here, please check.

Response:

Thank you for the comments, the "a" has been deleted from the sentence. Please see Line 25 in the abstract.

Comment:

2. L25: "has" needs to be revised to "have", please check.

Response:

Thank you for the comments. The "has" is revised to "have" and we have also improved the language quality by editing services. Please see Lines 26-29.

Comment:

3. L146: "first" need to revised to "firstly" , some words of the same category in this issue should pay attention to also.

Response:

Thank you for the comments. The author has changed "first" to “firstly”, and the words of the same category are also revised according to the comments, please see Lines 165-174 in the manuscript.

Comment:

4. L149: the punctuation "," is not suitable here, please check the whole manuscript.

Response:
Thanks a lot for the comments. The authors have checked the whole manuscript and all the punctuation "," in similar situation are deleted in accordance with the comments.

Comment:
5. L173: as per the manufacturer's instructions? Please use right expression.

Response:
The sentence is revised as “16S rRNA genes were amplified following the manufacturer’s instructions”. Please see Lines 188-189 in the manuscript.

Comment:
6. When refer to heavy metal copper, writing it like "Cu", it not very standard.

Response:
Thank you for the comments. We have checked the whole manuscript, all the "Cu" were modified to Cu(II) to express copper.

Comment:
7. Line211-216, why only xylE was analyzed in soil, ahdA1b-1 analysis was not conducted in soil experiment.

Response:
One of the key challenges in soil bioaugmentation is to encourage the growth and activities of the allochthonous strains, and this work tested the activities of strain PHE-1 in soils by analyzing the xylE gene because of its higher specificity than ahdA1b-1 gene. The results of this study showed that xylE and ahdA1b-1 of strain PHE-1 share 95% and 99% similarity with the known genes in nucleotide sequence level respectively. The author has modified the manuscript to clarify this point, please see Lines 466-468 in the manuscript.

Comment:
8. Line214 please indicate what kind of plasmid was used.
Response:
Thank you for the comments. The plasmid was constructed with the vector pEASY-T1 and xylE fragment. The author has revised the sentence for a better expression. See Lines 232-233 in the manuscript.

Comment:
9. L359: the "a" is not suitable here, please check.
Response:
Thank you for the comments. The "a" has been changed to “the”. See line 379.

Comment:
10. Fig 2A, the caption of the Fig is wrong, it should be the effect of incubation time on the xylE transcription. The same for Fig 4A.
Response:
Thank you for the comments. We have revised the captions of the two figures according to the review’s comments. Please see Fig 2A and Fig 4A.

Comment:
11. Line 167-171, the cultivation experiment should be introduced separately, but not in section of 2.2.3; on the contrary, analysis method of qPCR should be introduce in an other section.
Response:
Thank you for the comments. The cultivation experiment and the analysis method of qPCR were separated according to the comments. The expression about the cultivation experiment was moved in Lines 132-138 and the analysis of qPCR was moved in Lines 186-204, respectively.

Comment:
12. line299-320 should be put after line346; lin388-408 should be moved to before line349.
Response:
Thank you for the comments. The author modified these sections, and the overall structure of the manuscript was revised according to the comments. Please see Lines 358-374 and Lines 405-438 in the revised version.

Comment:
13. line 321-323, the meaning of the sentence is not clear.
Response:
It was often observed that the transcription of some functional genes was induced by the addition of specific substance. Here, we aimed to investigate how the transcription of C23O gene was affected by the addition of PHE. Thus the copies of xylE gene in samples with PHE as the sole carbon source were analyzed, compared to the samples using glucose only as control, to test the inductivity of xylE transcription by PHE addition. The author has revised the sentence for clearer expression. Please see Lines 328-331 in the manuscript.

Comment:
14. The reason why Cu was selected should be further explained and mechanism should be further illustrated.
Response:
Thanks for the comments. The manuscript has been carefully modified to illustrate the reason copper was selected both in introduction, results and discussion, besides, the mechanism of copper on bacteria and gene expression was also elucidated in the discussion section. Please see Lines 48-52, 299-304 and 344-352 in the manuscript.

Comment:
15. Line409, it should be 3.5
Response:
Thanks for the comments and it was fixed in the revised version.
Comment:
16. Statistic analysis results should be marked in the respective figs

Response:
For all the relevant figures, small letters (a–e), standing for statistical significance at the 0.05 level with the LSD test, were used to illustrate the statistical analysis results between treatments, please see the figures.

Comment:
17. Fig 3 in the fig P1 should be changed to P2.

Response:
Sorry for the mistake, and we have changed P1 to P2 in the revised version, please see Figure 3.

Comment:
18. in Fig 7, the reason of the effect of ryegrass planting on xylE copies should further discussed.

Thanks for the comments. We have carefully revised the manuscript, with more discussion on the explanation about the effect of ryegrass planting on xylE copies according to the comments, please see Lines 463-465 and 473-487 in the manuscript.

Reviewer #2:
Comment:
1. There are spelling and grammatical mistakes at many places (e.g. replace 'highly' by 'high'; correct spelling of biodegradability in highlight 1; Line 25-replace 'has' by 'have'; line 53-hs repeated full stops; line 55-replace 'potential' by 'potentially'; line 86 has repeated full stops; line 287- 'benz' to be replaced by 'benzo'; line 409- 3.4 be replaced by 3.5 etc.). Please check it thoroughly correct such mistakes.

Response:
Thank you for the comments. The authors have carefully checked the whole manuscript and corrected the spelling and grammatical mistakes according to the comments. The language quality in this manuscript has been checked by at least two professional editors, both native speakers of English, and the certificate can be found
Comment:
2. Citation of reference for more than two authors be written as et al. (in italics), and not in regular straight case, throughout the manuscript.

Response:
Thank you for the comments. The reference style was revised according to the requirement of Environmental Pollution.

Comment:
3. Table S1 and S2 are cited in the text, but given as supplementary material. Tables may be included in manuscript, or may be removed from the text.

Response:
Tables S1 and S2 provided detailed information about primer name and sequence, which are essential material for this research. Since Environmental Pollution has the limitation for the number of figures and tables in the main text, we have to put them into the supplementary material as reference.

Comment:
4. The SI units for kilo is 'K' and not 'k', please correct.

Response:
Thanks for the comments. All the 'k' representing kilo was changed to 'K' being consistent with the comment.

Comment:
5. The authors have mentioned that Sokhn et al., 2001 mentioned improvement in PH E degradation with increasing concentration of Cu (upto 4.01 mM); whereas authors report it to be upto 4.03 mM which is almost the same concentration as observed by Sokhn et al., 2001 (line 272-276). Why do the authors claim it to be 'firstly reported high
level Cu to promote PHE degradation' (as given in highlight 2)? Please clarify.

Response:

Sorry for the mistake. We have carefully checked this reference and in Sokhn’s study, the mixed flora derived from a soil suspension did not significantly change the ability of PHE degradation with Cu(II) addition when the Cu(II) concentration was no more than 0.43 mM, which is ten times lower than the copper concentration of our study. The authors have revised the second point of highlight and the related content in the manuscript. Please see Lines 295-297 in the manuscript.

Comment:

6. Why do the authors attempt characterization of PAH-RHD gene only (and not for C23O), whereas the experiments mention analysis of xyLE gene too (in text and figures). Include the characterization of xyLE gene too.

Response:

Thank you for the comments. The characterization of *xylE* was included in the manuscript according to the comments, please see Lines 320-327.

Comment:

7. Line 277-297 is a mention of other studies and appears to be long. It should be cut short.

Response:

The Lines 277-297 were revised in concise sentences in accordance with the review’s comments. Please see Lines 305-318 in the manuscript.

Comment:

8. Line 311-313 is repeated at 311-315; 315-316 repeated at 318-319. Correct the same and avoid repetition of text.

Response:

Sorry for the mistake, the author has corrected the main text according to the comments. Please see Lines 370-374 in the manuscript.
Comment:
9. Line 406-408: 'To our......(Siunova et al., 2007)'- the meaning of this sentence is not clear. Please clarify/delete.

Response:
Siunova et al reported that the addition of nickel promoted the expression of the genes responsible for naphthalene degradation in a *Pseudomonas* strain, but no study prior to our work showed that the transcription of PAH-degrading genes was promoted by the addition of high level Cu(II). The author has revised the related sentences for audience’s better understanding. Please see Lines 401-404 in the manuscript.

Comment:
10. Line 431: 'as found in previous study'-should be followed by a valid reference. Include the reference.

Response:
Thanks for the comments. The reference has been included in the revised version, please see Line 462.

Comment:
11. Some major reviews on biodegradation of PAHs (Cerniglia, 1992; Haritash & Kausik, 2009) may be referred and included.

Response:
Thank you for the comments. We referred some major reviews on the biodegradation of PAHs, as well as the effect of heavy metals on the expression of functional genes responsible for PAHs degradation and the influence of plants on the PAHs dissipation and PAHs degraders in soils. Some deeper analysis and discussion was represented in the revised version. Please see the modified content in Lines 282-287, 299-304, 345-350 and 480-487 in the manuscript.
Best wishes,

Sincerely yours,

Chunling Luo
Responses to reviewers:

The authors would like to thank the efforts of the editors and reviewers on the comments and have tried the best to correct the mistakes and modify the whole manuscript. All the corrections in accordance with reviewer’s comments are marked with yellow color.

Reviewer #1:

Comment:
Reviewer #1: There are some innovation points in this study. Firstly, although many species of PAH-degrading bacteria have been isolated from different environments, but in most of these species, only their PAH-degrading ability was revealed, and little is known about whether they can degrade PAHs when heavy metals are also present. This study firstly found that high level Cu2+ can promote the expression of PAH-RHDo and C23O genes. Secondly, in previous studies, the combination of ryegrass and microorganisms performed well in the biodegradation of soil PAHs. However, limited information is available on the influence of ryegrass planting in the microbial degradation of organic pollutants when heavy metals are also present. This research gave answers for above questions. However, there are some details that needed to affirm. For example, the researcher said that they found a new bacterium, but 16S rRNA gene sequencing showed 99% identity with the nucleotide sequences of the Sphingobium abikonense strain NBRC 16140 (NR258 113839.1) and so on. We know that if 16S rRNA gene sequencing showed 95% or lower identity with the nucleotide sequences of known strains, so that we cannot call the bacterium in this study a "new" bacterium. Then, the results indicate that PHE-1 possessed powerful PHE biodegradability, even better than other researchers. I think the statement is not rigorous, for example, in those studies, the conditions of culture are different. More experiments should be designed to verify the conclusion.

Response:
Thank you for the comments. We are sorry for the mis-presentation and this strain is a newly isolated bacterium from the active sludge. We have revised the first point of highlight according to the comment, please see highlights in the manuscript.
The sentences about the PHE biodegradability of the isolated *Sphingomonas* PHE-1 were revised according to the comments. Its PHE biodegradability was compared with other strains with the similar conditions of culture. Besides, we also tested its ability in the artificial PHE-copper co-contaminated soils. Please see Lines 281-288.

Specific comments:

Comment:
1. L22: the "a" is not suitable here, please check.

Response:
Thank you for the comments, the "a" has been deleted from the sentence. Please see Line 25 in the abstract.

Comment:
2. L25: "has" needs to be revised to "have", please check.

Response:
Thank you for the comments. The "has" is revised to "have" and we have also improved the language quality by editing services. Please see Lines 26-29.

Comment:
3. L146: "first" need to revised to "firstly" some words of the same category in this issue should pay attention to also.

Response:
Thank you for the comments. The author has changed "first" to “firstly”, and the words of the same category are also revised according to the comments, please see Lines 165-174 in the manuscript.

Comment:
4. L149: the punctuation "," is not suitable here, please check the whole manuscript.

Response:

Thanks a lot for the comments. The authors have checked the whole manuscript and all the punctuation "," in similar situation are deleted in accordance with the comments.

Comment:

5. L173: as per the manufacturer's instructions? Please use right expression.

Response:

The sentence is revised as “16S rRNA genes were amplified following the manufacturer’s instructions”. Please see Lines 188-189 in the manuscript.

Comment:

6. When refer to heavy metal copper, writing it like "Cu", it not very standard.

Response:

Thank you for the comments. We have checked the whole manuscript, all the "Cu" were modified to Cu(II) to express copper.

Comment:

7. Line211-216, why only xylE was analyzed in soil, ahdA1b-l analysis was not conducted in soil experiment.

Response:

One of the key challenges in soil bioaugmentation is to encourage the growth and activities of the allochthonous strains, and this work tested the activities of strain PHE-1 in soils by analyzing the xylE gene because of its higher specificity than ahdA1b-l gene. The results of this study showed that xylE and ahdA1b-l of strain PHE-1 share 95% and 99% similarity with the known genes in nucleotide sequence level respectively. The author has modified the manuscript to clarify this point, please see Lines 466-468 in the manuscript.
Comment:
8. Line214 please indicate what kind of plasmid was used.

Response:
Thank you for the comments. The plasmid was constructed with the vector pEASY-T1 and xylE fragment. The author has revised the sentence for a better expression. See Lines 232-233 in the manuscript.

Comment:
9. L359: the "a" is not suitable here, please check.

Response:
Thank you for the comments. The "a" has been changed to “the”. See line 379.

Comment:
10. Fig 2A, the caption of the Fig is wrong, it should be the effect of incubation time on the xylE transcription. The same for Fig 4A.

Response:
Thank you for the comments. We have revised the captions of the two figures according to the review’s comments. Please see Fig 2A and Fig 4A.

Comment:
11. Line 167-171, the cultivation experiment should be introduced separately, but not in section of 2.2.3; on the contrary, analysis method of qPCR should be introduce in another section.

Response:
Thank you for the comments. The cultivation experiment and the analysis method of qPCR were separated according to the comments. The expression about the cultivation experiment was moved in Lines 132-138 and the analysis of qPCR was moved in Lines 186-204, respectively.
12. line 299-320 should be put after line 346; line 388-408 should be moved to before line 349.

Response:
Thank you for the comments. The author modified these sections, and the overall structure of the manuscript was revised according to the comments. Please see Lines 358-374 and Lines 405-438 in the revised version.

Comment:
13. line 321-323, the meaning of the sentence is not clear.

Response:
It was often observed that the transcription of some functional genes was induced by the addition of specific substance. Here, we aimed to investigate how the transcription of C230 gene was affected by the addition of PHE. Thus the copies of xylE gene in samples with PHE as the sole carbon source were analyzed, compared to the samples using glucose only as control, to test the inductivity of xylE transcription by PHE addition. The author has revised the sentence for clearer expression. Please see Lines 328-331 in the manuscript.

Comment:
14. The reason why Cu was selected should be further explained and mechanism should be further illustrated.

Response:
Thanks for the comments. The manuscript has been carefully modified to illustrate the reason copper was selected both in introduction, results and discussion, besides, the mechanism of copper on bacteria and gene expression was also elucidated in the discussion section. Please see Lines 48-52, 299-304 and 344-352 in the manuscript.

Comment:
15. Line 409, it should be 3.5

Response:
Thanks for the comments and it was fixed in the revised version.

Comment:
16. Statistic analysis results should be marked in the respective figs

Response:
For all the relevant figures, small letters (a–e), standing for statistical significance at the 0.05 level with the LSD test, were used to illustrate the statistical analysis results between treatments, please see the figures.

Comment:
17. Fig 3 in the fig P1 should be changed to P2.

Response:
Sorry for the mistake, and we have changed P1 to P2 in the revised version, please see Figure 3.

Comment:
18. in Fig 7, the reason of the effect of ryegrass planting on xylE copies should further discussed.

Thanks for the comments. We have carefully revised the manuscript, with more discussion on the explanation about the effect of ryegrass planting on xylE copies according to the comments, please see Lines 463-465 and 473-487 in the manuscript.

Reviewer #2:

Comment:
1. There are spelling and grammatical mistakes at many places (e.g. replace 'highly' by 'high'; correct spelling of biodegradability in highlight 1; Line 25-replace 'has' by 'have'; line 53-has repeated full stops; line 55-replace 'potential' by 'potentially'; line 86 has repeated full stops; line 287- 'benz' to be replaced by 'benzo'; line 409- 3.4 be replaced by 3.5 etc.). Please check it thoroughly correct such mistakes.

Response:
Thank you for the comments. The authors have carefully checked the whole
manuscript and corrected the spelling and grammatical mistakes according to the comments. The language quality in this manuscript has been checked by at least two professional editors, both native speakers of English, and the certificate can be found at:
http://www.textcheck.com/certificate/NeUUhK

Comment:
2. Citation of reference for more than two authors be written as et al. (in italics), and not in regular straight case, throughout the manuscript.

Response:
Thank you for the comments. The reference style was revised according to the requirement of Environmental Pollution.

Comment:
3. Table S1 and S2 are cited in the text, but given as supplementary material. Tables may be included in manuscript, or may be removed from the text.

Response:
Tables S1 and S2 provided detailed information about primer name and sequence, which are essential material for this research. Since Environmental Pollution has the limitation for the number of figures and tables in the main text, we have to put them into the supplementary material as reference.

Comment:
4. The SI units for kilo is 'K' and not 'k’, please correct.

Response:
Thanks for the comments. All the 'k' representing kilo was changed to 'K’ being consistent with the comment.

Comment:
5. The authors have mentioned that Sokhn et al., 2001 mentioned improvement in PH
E degradation with increasing concentration of Cu (upto 4.01 mM); whereas authors report it to be upto 4.03 mM which is almost the same concentration as observed by Sokhn et al., 2001 (line 272-276). Why do the authors claim it to be 'firstly reported high level Cu to promote PHE degradation' (as given in highlight 2)? Please clarify.

Response:
Sorry for the mistake. We have carefully checked this reference and in Sokhn’s study, the mixed flora derived from a soil suspension did not significantly change the ability of PHE degradation with Cu(II) addition when the Cu(II) concentration was no more than 0.43 mM, which is ten times lower than the copper concentration of our study. The authors have revised the second point of highlight and the related content in the manuscript. Please see Lines 295-297 in the manuscript.

Comment:
6. Why do the authors attempt characterization of PAH-RHD gene only (and not for C 23O), whereas the experiments mention analysis of xyLE gene too (in text and figures). Include the characterization of xyLE gene too.

Response:
Thank you for the comments. The characterization of xyLE was included in the manuscript according to the comments, please see Lines 320-327.

Comment:
7. Line 277-297 is a mention of other studies and appears to be long. It should be cut short.

Response:
The Lines 277-297 were revised in concise sentences in accordance with the review’s comments. Please see Lines 305-318 in the manuscript.

Comment:
8. Line 311-313 is repeated at 311-315; 315-316 repeated at 318-319. Correct the same and avoid repetition of text.
Response:
Sorry for the mistake, the author has corrected the main text according to the comments. Please see Lines 370-374 in the manuscript.

Comment:
9. Line 406-408: 'To our......(Siunova et al., 2007)'- the meaning of this sentence is not clear. Please clarify/delete.

Response:
Siunova et al reported that the addition of nickel promoted the expression of the genes responsible for naphthalene degradation in a Pseudomonas strain, but no study prior to our work showed that the transcription of PAH-degrading genes was promoted by the addition of high level Cu(II). The author has revised the related sentences for audience’s better understanding. Please see Lines 401-404 in the manuscript

Comment:
10. Line 431: 'as found in previous study'-should be followed by a valid reference. Include the reference.

Response:
Thanks for the comments. The reference has been included in the revised version, please see Line 462.

Comment:
11. Some major reviews on biodegradation of PAHs (Cerniglia, 1992; Haritash & Kau shik, 2009) may be referred and included.

Response:
Thank you for the comments. We referred some major reviews on the biodegradation of PAHs, as well as the effect of heavy metals on the expression of functional genes responsible for PAHs degradation and the influence of plants on the PAHs dissipation and PAHs degraders in soils. Some deeper analysis and discussion was represented in the revised version. Please see the modified content in Lines 282-287, 299-304,
345-350 and 480-487 in the manuscript.
Graphical Abstract

Colony of strain PHE-1

- **The relative content of xyLE gene cluster of strain PHE-1**

- **xyLE copies in soil (1*10^9 g^-1)**

- **ahdA1b gene cluster of strain PHE-1**
Highlights

✧ A newly isolated bacterium possesses high PHE biodegradability and Cu-tolerance.
✧ High level Cu was reported to promote PAH-RHDa and C23O genes expression.
✧ Structure of PAH-RHD gene cluster has high similarity to other *Sphingobium* strains.
✧ Ryegrass and Cu enhanced PHE degradation and abundance of *Sphingobium* PHE-1.
Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium

Mengke Songa, Ying Yangb, Longfei Jiangb, Qing Hongb, Dayi Zhangc, Zhenguo Shenb, Hua Yind, Chunling Luoa,*

a Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
b College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
c Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
d College of Environment and Energy, South China University of Technology, Guangzhou 510006, China

*Corresponding author: Dr. Chunling Luo
E-mail: cllu@gig.ac.cn; Phone: +86-20-85290290; Fax: +86-20-85290706
Abstract

A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain *Sphingobium* sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, *ahdA1b-1* encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHĐa) and *xyLE* encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of *Sphingomonas* sp. P2. Our results indicated the induced transcription of *xylE* and *ahdA1b-1* genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHĐa and C23O genes during PHE degradation. Applying *Sphingomonas* PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of *xylE* gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of *xylE* genes occurred in PHE-copper co-contaminated soils planted with ryegrass.

Keywords: Bioremediation; phenanthrene (PHE); Copper; *Sphingobium*; PAH-RHĐa gene; C23O gene

Capsule: The PHE biodegradability and expression of PHE degradation genes in a newly isolated bacterium strain were enhanced by high level copper.
1. Introduction

Soil contamination by organic pollutants and heavy metals is a global environmental issue due to rapid industrialisation and urbanisation. Polycyclic aromatic hydrocarbons (PAHs), among the most widespread organic pollutants in the environment, are of great concern for their persistence, chronic toxicity and accumulation throughout the food web (Gondek et al., 2008; Macek et al., 2000). Different to PAHs, heavy metals including copper are non-degradable, stay stabilized in soils for long-term, accumulate in vegetables, harm microbes by interfering with enzymes and DNA at high concentration, and often co-exist with organic contaminants in various environmental media (Guzik et al., 2010; Sokhn et al., 2001). It is even worse when PAHs and heavy metals co-exist, leaving the higher potential risks to human health and ecosystems. However, the establishment of effective methods to reduce the levels of these pollutants is a major challenge. Bioremediation, the introduction of allochthonous strains (called bioaugmentation) to degrade organic pollutants (Peng et al., 2008), has received increasing attentions because of its high potential for in situ or on-site treatments, which is low cost, high safety and no requirements for secondary waste treatment.

The success of biodegradation depends greatly on the characteristics of allochthonous bacteria. Heavy metals can inhibit the biodegradation of organic pollutants by impacting both the physiology and ecology of degrading microorganisms (Ibarrolaza et al., 2009; Sandrin and Maier, 2003; Shen et al., 2006; Thavamani et al., 2012a; Thavamani et al., 2012b, c). For example, the activity of catechol dioxygenase is inhibited in the presence of some heavy metals (Guzik et al., 2010). Bioaugmentation with bacteria exhibiting heavy metal tolerance and PAHs degrading capability is suggested as a potentially cost-effective strategy for the remediation of PAHs-metal co-contaminated soil (Thavamani et al., 2011). To date, more than 40 species of PAHs-degrading bacteria have been isolated from different environments (Gan et al., 2009; Zhang et al., 2004), e.g. *Acinetobacter calcoaceticus* (Zhao and Wong, 2009), *Sphingomonas* sp. (Gou et al., 2008), *Pseudomonas* sp.
(Kazunga and Aitken, 2000), Mycobacterium sp. (Dandie et al., 2004; Zeng et al., 2010), Rhodococcus sp. (Song et al., 2011), Achromobacter xylosoxidans (Al-Thani et al., 2009), Microbacterium sp. (Sheng et al., 2009) and Alcaligenes faecalis (Xiao et al., 2010). However, only PAHs-degrading abilities are revealed for most of these strains and little is known about whether their PAHs degrading performance can be maintained or encouraged in the presence of heavy metals (Wang et al., 2011).

Some key PAH dioxygenase genes in bacteria involved in PAHs metabolism are typically used as indicators, attributing to their substrate-specificity, high conservation, and direct link to the functions of PAHs biodegradation (Baldwin et al., 2003). Microorganisms can adapt to the stress of organic pollutants by regulating the expression of degradation-related genes, and the degradation efficiency depends largely on the activities of enzymes encoded by the functional genes. The initial PAHs dioxygenase (PAH-RHD) and catechol-2,3-oxygenase (C23O) have been identified as the two key PAHs-degrading enzymes. They participate in the initial step of PAHs metabolism via the incorporation of molecular oxygen into the aromatic nucleus and the complete cleavage of the aromatic ring of the intermediate metabolites, respectively. Therefore, identifying the catabolic genes encoding these enzymes would significantly contribute to understanding the mechanism and mediating bacteria involved in the service of improving the degradation efficiency (Mrozik et al., 2003).

The activities of PAHs-degrading bacteria and the functional genes are often promoted in rhizospheric soils due to the root exudates and root deposition (Lin et al., 2006). In turn, the growth of bacteria in the rhizosphere can increase host plant tolerance to abiotic stress by improving nutritional status, inhibiting plant disease, and degrading toxic xenobiotic substances (Peng et al., 2015). Ryegrass is usually selected as the model plant for treating hydrocarbon-contaminated soils for its fibrous root system with a large surface area near the soil surface (Xu et al., 2013). In previous studies, the combination of ryegrass and microorganisms performed well in the biodegradation of soil PAHs, petroleum and pesticides (Rezek et al., 2008; Tang et al., 2010; Xie et al., 2012). However, limited information is available on the influence of
ryegrass planting on the microbial degradation of organic pollutants in the co-presence of heavy metals (Sandrin and Maier, 2003).

In the present study, phenanthrene (PHE) was selected as a model PAHs given its ubiquity in nature and typical characteristics of PAHs, such as K region and bend structure. This work involved three objectives: (1) to test the Cu(II) tolerance and PHE-degrading ability of bacterial strain isolated from a wastewater treatment plant; (2) to characterise the phylotype and expression of PAH-RHD and C23O genes of the newly isolated strain; and (3) to study its potential in the remediation of PHE-copper co-contaminated soils with ryegrass planting.

2. Materials and methods

2.1 Enrichment, isolation and PHE degradation test of PHE-degrading bacteria

Activated sludge (20 g) from a wastewater treatment plant was added to an Erlenmeyer flask with 200 mL of sterile deionised water and shaken for 30 min at 180 rpm and 30°C. Five millilitres of this suspension was transferred into 95 mL of mineral salt medium (MSM) with 100 mg/L PHE as the sole carbon source and subsequently incubated on a rotary shaker (180 rpm) for 4 days at 30°C. The following enrichment cycles were performed by transferring 5 mL of the enrichment culture from the preceding enrichment cycle into fresh MSM supplemented with 100 mg/L PHE every 4 days. After isolating the pure PHE-degrading microorganisms by spreading serially diluted enrichment culture samples onto MSM agar plates containing 100 mg/L PHE, high-performance liquid chromatography (HPLC) analysis was applied to evaluate PHE degradation rate in liquid culture medium. Among all the isolated bacterial strains, one strain was selected for further study because of its high PHE-degrading ability.

The PHE-degrading ability of the isolated strain was tested by incubation in fresh MSM with initial PHE concentration of 0, 300, 500, 600, 700, 800 and 900 mg/L, respectively. The effect of copper on PHE degradation was investigated by incubating the strain in fresh MSM containing 100 mg/L PHE and Cu(II) (as CuCl₂) concentration of 0, 0.81, 1.61, 2.42, 3.22, 4.03, 4.84, or 5.64 mM. Culture without inoculum was used as a sterile control to assess the abiotic loss of PHE. The residual
PHE was analysed by HPLC immediately after sampling.

For the treatments assessing the transcription of PAH-RHD and C23O genes, the isolated strain was inoculated in the MSM with 100 mg/L PHE and Cu(II) concentration of 0, 0.81, 2.42 and 4.03 mM for 24 h, or with 100 mg/L PHE only for 12, 18, 24 and 48 h, respectively. MSM supplemented with glucose (no PHE) was used as the blank control. For each treatment, 3% (v/v) (OD₆₀₀ ≈2.0) inocula were inoculated initially in triplicates. All the incubations were conducted on a rotary shaker (180 rpm) at 30°C without light.

2.2 Characteristics of the isolated strain

2.2.1 Identification of isolated strain, and PAH-RHD and C23O genes

The isolated strain was identified by 16S rRNA sequencing. After DNA extraction with the PowerSoil kit (MO BIO Laboratories, USA), the 16S rRNA genes were amplified in accordance with the procedures described previously (Song et al., 2015). The purified polymerase chain reaction (PCR) products were ligated into vector pEASY-T1 and transformed into Escherichia coli DH5α. Plasmids were extracted and sequenced as described previously (Jiang et al., 2015). Sequence similarity searches and alignments were performed using the Basic Local Alignment Search Tool (BLAST) algorithm (National Center for Biotechnology Information) and Molecular Evolutionary Genetics Analysis (MEGA 5.1). Sharing 99% identity with the nucleotide sequences of Sphingobium abikonense NBRC 16140, the isolated strain was named as Sphingobium PHE-1.

The PAH-RHD and the C23O genes were amplified using the primers listed in Table S1 with genomic DNA of Sphingobium PHE-1 as the template. The primers were designed based on the previously reported PAH-RHDα and C23O genes. DNA amplification was performed by the following PCR program: 95°C for 2 min; 30 cycles at 94°C for 30 s, 60°C for 30 s and 72°C for 60 s; and final extension at 72°C for 10 min. The PCR products were checked by agarose gel electrophoresis (1.2%). The amplicons were further cloned, sequenced and subjected to phylogenetic analysis as mentioned above.
2.2.2 Analysis of the PAH-RHD gene cluster

The PAH-RHD gene cluster of Sphingobium PHE-1 was obtained by self-formed adaptor PCR (SEFA-PCR) as described previously (Wang et al., 2007). The primers used in this study were presented in Table S1. SEFA-PCR was conducted by the following procedures. Firstly, a single cycle with primer SP3 and the genomic DNA of Sphingobium PHE-1 as template was carried out as follows: 95°C for 1 min, 94°C for 30 s, 30°C for 3 min, 70°C for 5 min and 72°C for 5 min. The 30-μL PCR mixture was prepared with 15 μL of 2×GC buffer I, 4 μL of dNTP (2.5 mM), 1 μL of SP3 (5 μM), 0.3 μL of LA-Taq and 1 μL of template (about 50 ng/μL). Secondly, 1 μL of primer SP1 (25 μM) was added to the reaction mixture and 25 cycles of PCR were performed as follows: 94°C for 30 s and 70°C for 5 min. Thirdly, eight cycles of thermal asymmetric PCR were carried out with the following program: one cycle of 94°C for 30 s, 50°C for 30 s and 70°C for 5 min; followed by two cycles of 94°C for 30 s and 70°C for 5 min. Fourthly, 1 μL of the products were diluted 1000 times and used as the template for another PCR in a 30-μL mixture containing 15 μL of 2×GC buffer I, 4 μL of dNTP (2.5 mM), 2 μL of SP2 (5 μM), 0.3 μL of LA-Taq and 1 μL of template. Then, the PCR was carried out by the following program: 95°C for 2 min, followed by 30 cycles of 94°C for 30 s and 70°C for 5 min, with final extension at 72°C for 10 min. The presence of final PCR products was checked by agarose gel electrophoresis, followed by purification, ligation to vector pMD19-T and sequence. After assembly, the 9.1-kb DNA fragment containing the PAH-RHD gene was analysed using the online Open Reading Frame (ORF) Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and the Blastx programme (http://www.blast.ncbi.nlm.nih.gov).

2.2.3. Transcriptional analysis of PAH-RHD and C23O genes

Quantitative reverse transcription PCR (qRT-PCR) was used to analyse the transcriptional levels of PAH-RHD and C23O genes as follows. Total RNA was extracted from each sample with a Bacterial RNA Extraction Kit (CWBIO, Beijing, China) following the manufacturer’s instructions. After removing genomic DNA with RNase-Free DNase (Qiagen, Hilden, Germany), cDNA was synthesised from RNA
template using the QuantiTect reverse transcription kit (CWBIO, Beijing, China) according to the manufacturer’s instructions. Primers used to amplify PAH-RHD, C23O, and 16S rRNA genes were designed based on the sequence of genomic DNA of *Sphingobium* PHE-1, respectively (Table S2). qRT-PCR was performed on an ABI Prism 7500 real-time PCR detection system using TransStart Top Green qPCR SuperMix as follows: 95°C for 30 s, followed by 40 cycles of 95°C for 5 s and 60°C for 34 s. Melting curves were obtained by slow heating from 60°C to 90°C at 0.1°C/s and continuous monitoring of the fluorescence signal (Singleton et al., 2009). Three replicates were performed for each sample. The quantities of PAH-RHD and C23O gene transcripts for each sample were determined by relative quantification using the 2\(^{-\Delta\Delta Ct}\) method (Livak and Schmittgen, 2001). Standard curves for the quantification of PAH-RHD, C23O, and 16S rRNA genes were created by performing qPCR with serial dilutions of the standard plasmid containing the target DNA sequence by the 2\(^{-\Delta\Delta Ct}\) method.

2.3 Pot experiment with copper–PHE-co-contaminated soil

2.3.1 Set-up of pot experiment

Soil without detectable PAHs and copper was collected from an agricultural field in Jiangning District, Nanjing, China. After transferred to the laboratory, the soil was air-dried and sieved through a 2-mm mesh. The physiochemical properties of the soil were as follows: pH 7.10, total organic matter 2.92%, total nitrogen 0.68 g/Kg and total phosphorus 1.03 g/Kg.

To prepare the soils contaminated with 500 mg/Kg PHE, the PHE (purity > 96%; Sigma-Aldrich, Germany) dissolved in methanol was spiked into 5% (w/w) of the total soil. After the evaporation of methanol in a fume-hood, this contaminated soil was thoroughly mixed with the remaining soil (Brinch et al., 2002). For PHE-copper co-contaminated soil, copper (as CuCO\(_3\)) was added to the PAH-spiked soil at a final concentration of 500 mg/Kg. Next, 1 Kg of contaminated soil was placed in a ceramic pot. Following four dry-wet cycles within 4 weeks, the soil was planted with ryegrass seeds and inoculated with pre-cultivated strain *Sphingobium* PHE-1 at a density of 1.5×10\(^7\) cells/g. In total, the four treatments included: PHE-1 inoculation, ryegrass
planting, ryegrass planting with *Sphingobium* PHE-1 inoculation, and soil without ryegrass or PHE-1. The pots were watered daily with deionised water to maintain the moisture content at approximately 60% of the water-holding capacity of the soils. After 56 days of cultivation in a glasshouse at 20-30°C under natural light, the soils in the pots were collected, mixed, sieved through a 2-mm mesh, and stored at -20°C for DNA extraction and PHE analysis.

2.3.2 Quantitation of C23O gene in soil

Microbial genomic DNA was extracted from soil using the FastDNA Spin kit (MoBIO, USA) in accordance with the manufacturer’s instruction and then used as template to perform qPCR to quantify C23O gene named *xylE*. The standard curve for absolute quantitation of *xylE* gene was established by SYBR Green fluorescence quantitative PCR with a template obtained by a series of 10-fold dilutions of the plasmid constructed with vector pEASY-T1 and *xylE* fragment.

2.4 PHE extraction and analysis

During strain isolation and cultivation, the PHE was collected by liquid–liquid extraction. Briefly, the liquid culture was mixed with methylene chloride (1:1 v/v) by vigorous shaking and then held for 2 h at room temperature. After drying with anhydrous sodium sulphate, the resulting extract was then concentrated to 1 mL with a gentle stream of N2 for HPLC analysis (Thavamani et al., 2012c).

PHE in soil samples were collected by ultrasonic extraction. After freeze-drying, 5 g of soil was placed in a glass tube, to which 10 mL of dichloromethane was added. The suspension was ultrasonicated for 30 min with occasional stirring to prevent its adherence to the bottom of the tube. The mixture was then centrifuged at 4000 rpm, and the supernatant was discarded. The above procedure was repeated three times. All the supernatants were pooled and concentrated to ~0.5 mL after solvent exchange to hexane. The soil extracts were purified in a multilayer silica gel/alumina column (8 mm i.d.) filled (from top to bottom) with anhydrous Na2SO4 (1 cm), neutral silica gel (3 cm, 3% w/w; deactivated) and neutral alumina (3 cm, 3% w/w; deactivated) via elution with 15 mL of hexane/dichloromethane (1:1, v/v). After concentrating with a
gentle stream of N\textsubscript{2}, the residue was dissolved in methane with a final volume of 1.0 mL for HPLC analysis (Chigbo et al., 2013).

PHE was detected on a HPLC (Waters 600) equipped with an 18C reversed-phase column (4.6 mm × 25 cm) and a photo diode-array detector. Methanol:water (90:10, v/v) at a flow rate of 0.8 mL/min was used as the mobile phase. HPLC analysis was performed at a wavelength of 254 nm, and a 20-μL sample or standard PHE compounds were injected into the chromatograph under standardised conditions. An external standard method was used for quantitation in terms of peak areas (Dong et al., 2008).

2.5 Statistical analysis

Statistical analysis was performed using SPSS 17.0. The statistical significance of differences (p-value <0.05) in PHE concentration, abundance of ahdA1b-1 and xyLE genes, and the biomass of dry ryegrass among the different treatments was analysed using one-way analysis of variance (ANOVA) and the least significant difference (LSD) test.

3. Results and discussion

3.1 Characterisation of PHE-degrading bacteria

After incubation in Luria–Bertani medium for 48 h, the colony of the isolated strain was observed to be yellow, with a diameter of 3–4 mm, translucent and glossy, with a smooth surface and neat edges (Figure 1A-a). The images of cells obtained by transmission electronic microscopy showed that the strain was rod-shaped (0.5-0.7 μm × 1.2-1.7 μm) with flagella (Figure 1A-b). The results of 16S rRNA sequence showed its 99% identity with the nucleotide sequences of the Sphingobium abikonense strain NBRC 16140 (NR 113839.1), Sphingobium abikonense strain IAM 12404 (NR 112079.1) and Sphingobium lactosutens strain DS20 (NR 116408.1) (Figure 1B). The strain was therefore classified as a Sphingobium strain within the genus Sphingomonas, family Sphingomonadaceae, class Alphaproteobacteria, and named as Sphingobium PHE-1.

3.2 Impacts of Cu(II) on PHE degradation by Sphingobium PHE-1
Figure S1 showed the PHE removal efficiency in MSM at 24 h with different concentrations of PHE as the sole carbon source. PHE was completely degraded when its initial concentration was less than 600 mg/L. Above this level, the removal efficiency decreased with the increasing initial PHE concentration. The results indicated that *Sphingobium* PHE-1 possesses powerful PHE biodegradability, better than *Sphingobium chlorophenolicum* C3R metabolizing ~60% of the PHE in 2 days with an initial concentration of 300 mg/L in liquid culture similar to this work (Colombo et al., 2011) and a *Sphingobium* strain utilizing more than 200 mg/L PHE within 24 h in liquid culture (Prakash and Lal, 2006). Besides, it was observed that ~50% of the added PHE was degraded owing to the inoculation of strain *Sphingobium* PHE-1 in PHE-copper co-contaminated soils.

To study the influence of Cu(II) on PHE degradation by strain *Sphingobium* PHE-1, the removal efficiency of PHE was tested in the presence of different concentrations of Cu(II). Figure S2 showed that PHE was almost completely degraded when Cu(II) was less than 3.22 mM. The removal efficiency maintained 88.2% even when the Cu concentration rose to 4.03 mM and then decreased with the increasing Cu(II). The similar behaviour was also observed for the mixed flora derived from soil suspensions, the PHE degradation ability of which was not significantly affected when the Cu(II) concentration was no more than 0.43 mM. Previous study showed the declining microbial respiration in the presence of Cu(II), and the higher the Cu(II) concentration, the more pronounced the inhibition (Sokhn et al., 2001). The limited impact caused by high level Cu(II) in this work might be explained by the little influence of Cu(II) on the enzymatic activity of dioxygenase related to PAHs degradation. It was reported replacement of the iron at the active site of iron-containing 2,3-dioxygenase with copper weakly affects its activity owing to the stability of the metal complexes (Gopal et al., 2005; Guzik et al., 2013).

Sphingomonas species have long been known for degrading a wide range of PAHs in contaminated soils and are often detected in copper-contaminated media, such as copper-exposed groundwater treatment plants and soils near copper mines (Stolz, 2009). *Sphingobium*, comprising 25 recognised species, is the main subgenus of the
Sphingomonas genus with the capacity of PAHs degradation (Kertesz and Kawasaki, 2010). It was demonstrated that Sphingobium chlorophenolicum strain C3R significantly improves the biodegradation rate of PHE in PAHs-contaminated soils in the presence of both cadmium and arsenic (Colombo et al., 2011). Some other Sphingobium strains with the ability to degrade PAHs and substituted PAHs were also isolated from a river, a pentachlorophenol-contaminated industrial site and freshwater sediment, a polluted stream and 2,4-dichloroprop-pretreated soils (Kertesz and Kawasaki, 2010). Furthermore, the enzymes involved in the catabolic pathways and the corresponding genes in Sphingobium strains have also been well studied (Leys et al., 2004; Pinyakong et al., 2003a; Story et al., 2000).

3.3 The effect of PHE and Cu(II) on C23O gene transcription

In this work, we successfully amplified a C23O gene from strain Sphingobium PHE-1 by using the primers designed in accordance with known ones. The phylogenetic information in Figure S3 showed that the xylE gene of Sphingobium PHE-1 was closely related to the genus Sphingobium, sharing 95%, 92% and 92% similarity with the nucleotide sequences of S. strain ZP1, S. yanoikuyae strain B1 and S. strain P2, which was consistent with 16s rRNA results. The copies of xylE gene were then analysed by qRT-PCR using the primers designed according to the nucleic sequences of acquired xylE gene.

To test the effect of PHE addition on the expression of xylE gene and evaluate its change with time, the copy numbers of xyLE gene of Sphingobium PHE-1 in the presence of PHE were compared to the control (PHE replaced by glucose), as illustrated in Figure 2A. It was clear that the copies of xyLE kept increasing in the first 24 h and then decreased from 24 to 48 h. Comparison with the constant copy numbers of xyLE gene in the control yielded the inference that xyLE gene is induced by PHE.

In the treatment with an initial concentration of 100 mg/Kg PHE, the expression of xyLE gene peaked when all PHE had been consumed. The same results were also observed in an ex situ system, in which xyLE gene was initially present at high PAHs concentration, but disappeared with a substantial decrease of PAHs after 1 week (Wikstrom et al., 1996). This is also consistent with the results of Zhao et al. (Zhao et
al., 2011), who described that the expression of C23O gene in PHE-degrader *Pseudomonas sp.* ZP1 increased during the PHE degradation, but dramatically dropped off when PHE ran out. Figure 2B showed the expression of *xyLE* gene against different concentrations of Cu(II) with 100 mg/L PHE as the sole carbon source after 24 h. An unexpected promotion of *xyLE* expression was observed when Cu(II) was added, compared to the control (no Cu(II)), and its expression level increased with the rise of Cu(II). This indicated that *Sphingobium* PHE-1 would probably resist the damage caused by Cu(II) via encouraging *xyLE* expression for PHE metabolism and catabolism, generating more energy to enhance the expression of genes related to the oxidative stress response, DNA and protein repair, metal transport and other processes (Baker-Austin et al., 2005; Gu et al., 2016). Generally, heavy metals inhibit the microbial degradation of organic compounds via disrupting general enzymes or functional genes responsible for PAHs degradation (Sokhn et al., 2001). The exception involved a metal-tolerant and phenol-degrading strain, for which cadmium was reported to increase its C23O activity (Hupert-Kocurek et al., 2013). It is interesting that a high level of Cu(II) promoted the expression of the C23O gene in *Sphingobium* PHE-1 in the present study, which should be useful for the bioremediation of copper-PAHs co-contaminated soils.

The degradation of PHE by bacteria is driven by enzymes and is dependent on the levels of enzymatic activity. Two key enzymes are involved in the PHE-degradation process: ring-hydroxylating dioxygenase (PAH-RHD) and aromatic ring-cleavage dioxygenase. PAH-RHD controls the incorporation of molecular oxygen into the aromatic nucleus to form *cis*-dihydrodiol in the initial step of PAHs metabolism. Thereafter, the dihydroxylated *cis*-dihydrodiol intermediates are cleaved by dioxygenase via *ortho*-cleavage or *meta*-cleavage pathways. C23O protein acting as a ring-cleavage enzyme in the *meta*-cleavage pathways seems to consist of a superfamily of enzymes (Boldt et al., 1995). C23O genes have been found in strains *Sphingomonas* ZP1 (Zhao et al., 2011), *Pseudomonas stutzeri* AN10, *Pseudomonas putida* G7, and *Pseudomonas putida* NCIB9816 (Habe and Omori, 2003), and their
gene sequences in these bacteria with the ability to degrade different PAHs have been uncovered. Thus, C23O genes are potentially good indicators in monitoring the bacterial subpopulations involved in the ring cleavage of aromatics and the final steps of the degradation of some PAHs. For example, it was reported that C23O genes were successfully used to monitor the subpopulations of PAHs-degrading microbes in different types of soils (Wikstrom et al., 1996).

3.4 Sequence analysis of PAH-RHD gene clusters and the effects of PHE and Cu(II) on its transcription

By amplifying the PAH-RHDα gene from the total DNA of Sphingobium PHE-1 with the designed primers (Table S1), a DNA fragment of 1490 bp was obtained. The nucleotide sequence of the fragment exhibits 99% and 97% similarity with the ahdA1b operon affiliated to Sphingomonas sp. ZP1 (EU082776) and Sphingomonas sp. P2 (AB091693), respectively, which is then named as ahdA1b-1 (Figure S4).

The effects of PHE and Cu(II) on ahdA1b-1 transcription were investigated using the primers designed according to the nucleic sequences of ahdA1b-1, as illustrated in Figure 4. It was clear that the ahdA1b-1 gene held a similar expression pattern as xyLE gene, rapidly increasing over time before 24 h but slowed down from 24 to 48 h with the exhaustion of PHE in the medium. Meanwhile, the expression of ahdA1b-1 gene in the control (glucose instead of PHE) was significantly lower than those supplemented with PHE (p<0.05) and had tiny fluctuation throughout the experiment.

It was proposed that the expression of ahdA1b-1 gene was induced by PHE and reached a plateau when the PHE was used up. The same results were also obtained by Pinyakong et al., who found the inducible genes encoding terminal oxygenase in Sphingobium sp. strain P2 (Pinyakong et al., 2003b). Preliminary study on the response of Sphingomonas aromaticivorans strain F199 to various aromatic compounds demonstrated that its aromatic catabolic activity was induced after exposure to naphthalene (Pinyakong et al., 2003b). Additionally, Cu(II) significantly affected the expression of ahdA1b-1 gene in Sphingobium PHE-1, from the higher expressed copy numbers of ahdA1b-1 gene copies in Cu(II) amended treatments than that in samples without copper, even when the Cu(II) concentration was increased to
4.03 mM \((p<0.05) \). The results indicated that \(ahdA1b-1 \) expression is promoted by Cu(II), consistent with the influence of Cu(II) on the expression of \(xyLE \) gene. Although previous research showed that the expression of the genes responsible for naphthalene degradation in a \textit{Pseudomonas} strain is enhanced by nickel (Siunova et al., 2007), no work prior to this study reported the transcription of PAHs-degrading genes is promoted by high level of Cu(II).

In the first step of PHE metabolism, the aromatic nucleus is attacked by molecular oxygen forming cis-dihydrodiol with the function of PAH-RHD. PAH-RHD is composed of an iron-sulphur flavoprotein reductase, an iron–sulphur ferredoxin and a terminal dioxygenase. The terminal dioxygenase consists of large \(\alpha \) and small \(\beta \) subunits, and two conserved regions exist in \(\alpha \) subunit (RHD\(\alpha \)) (Kauppi et al., 1998). Primers based on these conserved regions have been designed and successfully applied to amplify the target \(pahAc \)-like, \(phnAc \)-like and \(nagAc \)-like genes (Cebron et al., 2008). Besides, genes encoding degrading proteins are frequently found in grouping together in a cluster (Qiu et al., 2013). SEFA-PCR was therefore performed to obtain the flanking DNA sequences of \(ahdA1b-1 \) in this study. A 6.6-kb upstream and a 2.1-kb downstream DNA fragments were amplified with three pairs of primers (Table S1). After cloning and sequencing, it is noted that the 6.6-kb upstream DNA fragment contains a small subunit and a large subunit belonging to the PAH-RHD gene, and the 2.1-kb downstream DNA fragment has a small subunit affiliated to the PAH-RHD gene. The 1490-bp core fragment was assembled with the flanking fragments to generate a 9.1-kb DNA fragment, which shows 96% similarity to the PAHs-degrading gene cluster affiliated to \textit{Sphingomonas} sp. P2 and \textit{Sphingobium yanoikuyae} strain B1. As shown in Figure 3, the analysis of nucleotides and the deduced amino acid sequences of the 9.1-kb DNA fragment using the online ORF Finder and Blastx programme revealed that six consecutive ORFs exhibited 99%, 96%, 93%, 97%, 99% and 96% nucleotide sequence identities with \(xylA \), \(xylM \), \(ahdA2b \), \(ahdA1b \), \(ahdA2a \) and \(ahdA1a \), respectively, which are located in the PAHs-degrading gene cluster of \textit{Sphingomonas} sp. P2 (AB091693) and \textit{S. yanoikuyae} strain B1 (EF151283) (referred to as \(xylA \), \(xylM \), \(bphA2b \), \(bphA1b \),
bphA2a and bphA1a) (Pinyakong et al., 2000, 2003a). The clusters from xylA to
ahdA1a/bphA1a in the three strains were assembled in the same order and
transcriptional direction (Figure 3), indicating the high conservation of the functional
genes encoding PAH-RHD in strains affiliated to the Sphingomonas genus. It was also
reported that the aromatic-degrading genes from the Sphingobium sp. B1,
Sphingobium sp. Q1 and Novosphingobium aromaticivorans F199 exhibited high
homology (Pinyakong et al., 2003a; Pinyakong et al., 2003b). For example, in
Sphingomonas, the degrading genes encoding arene cis-dihydrodiol dioxygenase and
the enzymes responsible for the conversion of 1,2-dihydroxynaphthalene to salicylate
were reported to be similar in sequence (Waigi et al., 2015).

3.5 The application of Sphingobium PHE-1 coupled with ryegrass in the
remediation of PHE-copper co-contaminated soils

The inoculation of Sphingobium PHE-1 significantly improved the growth of
ryegrass (Figure 5). Interestingly, the growth of ryegrass was also found to be greatly
improved by Cu(II), with plants grown in PHE-copper co-contaminated soils having
higher biomass than those grown in soils with PHE contamination only (Figure 5),
which was consistent with the trends of ahdA1b-1 and xyLE gene transcription in
MSM (Figure 2B and Figure 4B). This improvement in ryegrass growth was
attributed to the increasing activities of Sphingobium PHE-1 in the presence of Cu(II).

It was reported that some heavy metal-resistant bacteria could promote the growth of
host plants. Examples included a copper-resistant plant growth-promoting bacterial
(PGPB) strain, Ax10, which was isolated from a copper mine soil and facilitated
Brassica juncea growth and Cu(II) uptake (Ma et al., 2009). Besides, the
nickel-resistant strain PGPB SRS8 was also found to be capable of stimulating plant
growth and nickel accumulation in the crops Ricinus communis and Helianthus
annuus (Ma et al., 2011).

The residual PHE concentrations in soils subjected to different treatments on day
56 were presented in Figure 6. The results clearly illustrated that more PHE was
removed from soils inoculated with Sphingobium PHE-1, compared to the
inoculated treatments, and ryegrass planting also resulted in lower residual PHE.
The best performance in terms of PHE reduction occurred in the treatment with both ryegrass and *Sphingobium* PHE-1. This optimal PHE removal was explained by microbial degradation and, to some extent, by enhanced adsorption to roots and accumulation in ryegrass shoots, as found in our previous study (Wang et al., 2012). Besides, the bioavailability of PAHs, which often limits the biodegradation of these compounds, may be increased with the aid of some components in the root exudation (An et al., 2010; Cerniglia, 1993; Gao et al., 2010).

The abundance of *xylE* genes in soils was also studied to monitor the effect of ryegrass on the growth and degrading activities of *Sphingobium* PHE-1, attributing to its higher specificity than *ahdA1b-1* and 16s rRNA genes. A higher abundance of *xylE* gene in soils with ryegrass was found than that in soils without ryegrass (Figure 7, p<0.05), which proved that ryegrass could encourage the abundance of *Sphingobium* PHE-1. Additionally, the copy numbers of *xylE* gene in soil was also enhanced by the Cu(II) addition, which was in agreement with the transcription of *xylE* in *Sphingobium* PHE-1 (Figure 2B). The increase of *xylE* abundance in soils planting with ryegrass was attributed to the positive influence of rhizospheric effect on microbes. The fibrous root of ryegrass observed in this work provided microbial attachment sites and enhanced soil aeration, and the vegetation cover created favourable environmental conditions such as temperature and soil moisture. More importantly, the root exudates as the ecological driver in the rhizosphere supply microorganisms with a relatively constant source of nutrients, such as water soluble carbon, nitrogen and phosphorus, especially in poor soils. The rhizosphere therefore improves the microbial growth, activities and the abundance of functional genes (Haritash and Kaushik, 2009). Besides, many secondary plant metabolites in root exudation with similar structure to aromatic hydrocarbons may stimulate the metabolic pathways of PAHs degraders (Martin et al., 2014). It was observed that more microbes, enhanced activities and increased abundance of PAHs-degrading genes in planted versus unplanted soils occurred in PAHs contaminated soils (Haritash and Kaushik, 2009; Thomas and Cebron, 2016).

In the present study, the growth of ryegrass was improved by *Sphingobium*
In turn, the ryegrass provided abundant nutrients to Sphingobium PHE-1 and promoted its colonization in the rhizosphere, which enhanced the dissipation of PHE. It was proved that PHE and pyrene (PYR) dissipation with the aid of microbes in soils was improved by planting ryegrass and the levels of PHE and PYR increased with the distance from the root surface (Gao et al., 2013). A similar phenomenon was also observed in another study, in which the growth of ryegrass significantly increased soil peroxidase activities, leading to enhanced dissipation of PHE and PYR in, and additionally, the interactions of ryegrass with the two microbes further improved the dissipation of PHE and PYR (Yu et al., 2011). In the present study, the growth of ryegrass was improved by inoculation with Sphingobium PHE-1, further benefitting bacterial growth by rhizospheric effect and improving PHE dissipation as well. The capacity of strain Sphingobium PHE-1 to exhibit Cu(II) tolerance and degrade PHE suggests its feasibility in the remediation of PAHs-heavy metal co-contaminated soils and sediments.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 41322008 & 41673111), the Joint Funds of the National Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province, China (U15012345), and the Doctoral Scientific Research Foundation of Guangdong Province (No. 2016A030310118).

References

by multiplex and real-time PCR. Applied and Environmental Microbiology 69, 3350-3358.

Gopal, B., Madan, L.L., Betz, S.F., Kossiakoff, A.A., 2005. The crystal structure of a quercetin 2,3-dioxygenase from Bacillus subtilis suggests modulation of enzyme activity by a change in the metal ion at the active site(s). Biochemistry 44, 193-201.

bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia

Legends of tables and figures

Fig. 1. A: Colonies (a) and transmission electronic microscopy image (b) of *Sphingobium* PHE-1. B: Phylogenetic tree derived from the 16S rRNA genes of *Sphingobium* PHE-1 and related species by the neighbor-joining method using MEGA 5.1.

Fig. 2. The expression of *xylE* gene at different incubation time (A) or Cu(II) concentration (B). The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level with the LSD test.

Fig. 3. Comparison of PAH-RHD cluster structure between *Sphingomonas* sp. strain P2, *Sphingobium* sp. strain PHE-1 and *Sphingobium yanoikuyae* strain B1. The open reading frames (ORFs) are indicated by arrows. The scale is in bases.

Fig. 4. The expression of *ahdA1b-1* gene at different incubation time (A) or Cu(II) concentration (B). The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level with the LSD test.

Fig. 5. Biomass of dry ryegrass in different treatments. Control: soil amended with PHE. PHE-1: soil amended with PHE and *Sphingobium* PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–c) represent the statistical significance at the 0.05 level with the LSD test.

Fig. 6. Residual PHE concentration in soils from different treatments. Control: soil amended with PHE. PHE-1: soil amended with PHE and *Sphingobium* PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level with the LSD test.

Fig. 7. The abundance of *xylE* gene in soils from different treatments. Control: soil
amended with PHE. PHE-1: soil amended with PHE and *Sphingobium* PHE-1.

Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–e) represent the statistical significance at the 0.05 level with the LSD test.
Supporting information

Table S1 Primers used in this study

Table S2 Primers used for transcriptional analysis of PAH-RHD and C23O genes

Fig. S1. Effects of initial PHE concentration on PHE degradation efficiency by *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a-d) represent the statistical significance at the 0.05 level with the LSD test.

Fig. S2. Effects of Cu(II) concentration on the PHE degradation efficiency by *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a-e) represent the statistical significance at the 0.05 level with the LSD test.

Fig. S3. Phylogenetic tree of catechol 2,3-dioxygenase gene (*xyLE*) from *Sphingobium* PHE-1 along with the closest matches in GenBank, constructed with MEGA 5.1 using the neighbor-joining method.

Fig. S4. Phylogenetic tree of aromatic compounds-catabolic gene (*ahdA1b-1*) from *Sphingobium* PHE-1 along with the closest matches in GenBank, constructed with MEGA 5.1 using the neighbor-joining method.

Fig. S5. Gel electrophoresis image of the flanking DNA fragments of *ahdA1b-1* by SEFA-PCR. M: λDNA/HindIII marker; 1: *ahdA1b* upstream SEFA-PCR products; 2: *ahdA1b* downstream SEFA-PCR products. The arrows show the bands of target fragments.
Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium

Mengke Songa, Ying Yangb, Longfei Jiangb, Qing Hongb, Dayi Zhangc, Zhenguo Shenb, Hua Yind, Chunling Luoa,*

a Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

b College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China

c Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom

d College of Environment and Energy, South China University of Technology, Guangzhou 510006, China

*Corresponding author: Dr. Chunling Luo

E-mail: clluo@gig.ac.cn; Phone: +86-20-85290290; Fax: +86-20-85290706
Abstract

A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain *Sphingobium* sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, *ahdA1b-1* encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDα) and *xyle* encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of *Sphingomonas* sp. P2. Our results indicated the induced transcription of *xyle* and *ahdA1b-1* genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHDα and C23O genes during PHE degradation. Applying *Sphingomonas* PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of *xyle* gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of *xyle* genes occurred in PHE-copper co-contaminated soils planted with ryegrass.

Keywords: Bioremediation; phenanthrene (PHE); Copper; *Sphingobium*; PAH-RHDα gene; C23O gene

Capsule: The PHE biodegradability and expression of PHE degradation genes in a newly isolated bacterium strain were enhanced by high level copper.
1. Introduction

Soil contamination by organic pollutants and heavy metals is a global environmental issue due to rapid industrialisation and urbanisation. Polycyclic aromatic hydrocarbons (PAHs), among the most widespread organic pollutants in the environment, are of great concern for their persistence, chronic toxicity and accumulation throughout the food web (Gondek et al., 2008; Macek et al., 2000). Different to PAHs, heavy metals including copper are non-degradable, stay stabilized in soils for long-term, accumulate in vegetables, harm microbes by interfering with enzymes and DNA at high concentration, and often co-exist with organic contaminants in various environmental media (Guzik et al., 2010; Sokhn et al., 2001). It is even worse when PAHs and heavy metals co-exist, leaving the higher potential risks to human health and ecosystems. However, the establishment of effective methods to reduce the levels of these pollutants is a major challenge. Bioremediation, the introduction of allochthonous strains (called bioaugmentation) to degrade organic pollutants (Peng et al., 2008), has received increasing attentions because of its high potential for in situ or on-site treatments, which is low cost, high safety and no requirements for secondary waste treatment.

The success of biodegradation depends greatly on the characteristics of allochthonous bacteria. Heavy metals can inhibit the biodegradation of organic pollutants by impacting both the physiology and ecology of degrading microorganisms (Ibarrolaza et al., 2009; Sandrin and Maier, 2003; Shen et al., 2006; Thavamani et al., 2012a; Thavamani et al., 2012b, c). For example, the activity of catechol dioxygenase is inhibited in the presence of some heavy metals (Guzik et al., 2010). Bioaugmentation with bacteria exhibiting heavy metal tolerance and PAHs degrading capability is suggested as a potentially cost-effective strategy for the remediation of PAHs-metal co-contaminated soil (Thavamani et al., 2011). To date, more than 40 species of PAHs-degrading bacteria have been isolated from different environments (Gan et al., 2009; Zhang et al., 2004), e.g. *Acinetobacter calcoaceticus* (Zhao and Wong, 2009), *Sphingomonas* sp. (Gou et al., 2008), *Pseudomonas* sp.
(Kazunga and Aitken, 2000), *Mycobacterium* sp. (Dandie et al., 2004; Zeng et al., 2010), *Rhodococcus* sp. (Song et al., 2011), *Achromobacter xylosoxidans* (Al-Thani et al., 2009), *Microbacterium* sp. (Sheng et al., 2009) and *Alcaligenes faecalis* (Xiao et al., 2010). However, only PAHs-degrading abilities are revealed for most of these strains and little is known about whether their PAHs degrading performance can be maintained or encouraged in the presence of heavy metals (Wang et al., 2011).

Some key PAH dioxygenase genes in bacteria involved in PAHs metabolism are typically used as indicators, attributing to their substrate-specificity, high conservation, and direct link to the functions of PAHs biodegradation (Baldwin et al., 2003). Microorganisms can adapt to the stress of organic pollutants by regulating the expression of degradation-related genes, and the degradation efficiency depends largely on the activities of enzymes encoded by the functional genes. The initial PAHs dioxygenase (PAH-RHD) and catechol-2,3-oxygenase (C23O) have been identified as the two key PAHs-degrading enzymes. They participate in the initial step of PAHs metabolism via the incorporation of molecular oxygen into the aromatic nucleus and the complete cleavage of the aromatic ring of the intermediate metabolites, respectively. Therefore, identifying the catabolic genes encoding these enzymes would significantly contribute to understanding the mechanism and mediating bacteria involved in the service of improving the degradation efficiency (Mrozik et al., 2003).

The activities of PAHs-degrading bacteria and the functional genes are often promoted in rhizospheric soils due to the root exudates and root deposition (Lin et al., 2006). In turn, the growth of bacteria in the rhizosphere can increase host plant tolerance to abiotic stress by improving nutritional status, inhibiting plant disease, and degrading toxic xenobiotic substances (Peng et al., 2015). Ryegrass is usually selected as the model plant for treating hydrocarbon-contaminated soils for its fibrous root system with a large surface area near the soil surface (Xu et al., 2013). In previous studies, the combination of ryegrass and microorganisms performed well in the biodegradation of soil PAHs, petroleum and pesticides (Rezek et al., 2008; Tang et al., 2010; Xie et al., 2012). However, limited information is available on the influence of
ryegrass planting on the microbial degradation of organic pollutants in the co-presence of heavy metals (Sandrin and Maier, 2003).

In the present study, phenanthrene (PHE) was selected as a model PAHs given its ubiquity in nature and typical characteristics of PAHs, such as K region and bend structure. This work involved three objectives: (1) to test the Cu(II) tolerance and PHE-degrading ability of bacterial strain isolated from a wastewater treatment plant; (2) to characterise the phylotype and expression of PAH-RHD and C23O genes of the newly isolated strain; and (3) to study its potential in the remediation of PHE-copper co-contaminated soils with ryegrass planting.

2. Materials and methods

2.1 Enrichment, isolation and PHE degradation test of PHE-degrading bacteria

Activated sludge (20 g) from a wastewater treatment plant was added to an Erlenmeyer flask with 200 mL of sterile deionised water and shaken for 30 min at 180 rpm and 30°C. Five millilitres of this suspension was transferred into 95 mL of mineral salt medium (MSM) with 100 mg/L PHE as the sole carbon source and subsequently incubated on a rotary shaker (180 rpm) for 4 days at 30°C. The following enrichment cycles were performed by transferring 5 mL of the enrichment culture from the preceding enrichment cycle into fresh MSM supplemented with 100 mg/L PHE every 4 days. After isolating the pure PHE-degrading microorganisms by spreading serially diluted enrichment culture samples onto MSM agar plates containing 100 mg/L PHE, high-performance liquid chromatography (HPLC) analysis was applied to evaluate PHE degradation rate in liquid culture medium. Among all the isolated bacterial strains, one strain was selected for further study because of its high PHE-degrading ability.

The PHE-degrading ability of the isolated strain was tested by incubation in fresh MSM with initial PHE concentration of 0, 300, 500, 600, 700, 800 and 900 mg/L, respectively. The effect of copper on PHE degradation was investigated by incubating the strain in fresh MSM containing 100 mg/L PHE and Cu(II) (as CuCl₂) concentration of 0, 0.81, 1.61, 2.42, 3.22, 4.03, 4.84, or 5.64 mM. Culture without inoculum was used as a sterile control to assess the abiotic loss of PHE. The residual
PHE was analysed by HPLC immediately after sampling.

For the treatments assessing the transcription of PAH-RHD and C23O genes, the isolated strain was inoculated in the MSM with 100 mg/L PHE and Cu(II) concentration of 0, 0.81, 2.42 and 4.03 mM for 24 h, or with 100 mg/L PHE only for 12, 18, 24 and 48 h, respectively. MSM supplemented with glucose (no PHE) was used as the blank control. For each treatment, 3% (v/v) (OD$_{600} \approx$2.0) inocula were inoculated initially in triplicates. All the incubations were conducted on a rotary shaker (180 rpm) at 30°C without light.

2.2 Characteristics of the isolated strain

2.2.1 Identification of isolated strain, and PAH-RHD and C23O genes

The isolated strain was identified by 16S rRNA sequencing. After DNA extraction with the PowerSoil kit (MO BIO Laboratories, USA), the 16S rRNA genes were amplified in accordance with the procedures described previously (Song et al., 2015). The purified polymerase chain reaction (PCR) products were ligated into vector pEASY-T1 and transformed into Escherichia coli DH5α. Plasmids were extracted and sequenced as described previously (Jiang et al., 2015). Sequence similarity searches and alignments were performed using the Basic Local Alignment Search Tool (BLAST) algorithm (National Center for Biotechnology Information) and Molecular Evolutionary Genetics Analysis (MEGA 5.1). Sharing 99% identity with the nucleotide sequences of Sphingobium abikonense NBRC 16140, the isolated strain was named as Sphingobium PHE-1.

The PAH-RHD and the C23O genes were amplified using the primers listed in Table S1 with genomic DNA of Sphingobium PHE-1 as the template. The primers were designed based on the previously reported PAH-RHD and C23O genes. DNA amplification was performed by the following PCR program: 95°C for 2 min; 30 cycles at 94°C for 30 s, 60°C for 30 s and 72°C for 60 s; and final extension at 72°C for 10 min. The PCR products were checked by agarose gel electrophoresis (1.2%). The amplicons were further cloned, sequenced and subjected to phylogenetic analysis as mentioned above.
2.2.2 Analysis of the PAH-RHD gene cluster

The PAH-RHD gene cluster of *Sphingobium* PHE-1 was obtained by self-formed adaptor PCR (SEFA-PCR) as described previously (Wang et al., 2007). The primers used in this study were presented in Table S1. SEFA-PCR was conducted by the following procedures. Firstly, a single cycle with primer SP3 and the genomic DNA of *Sphingobium* PHE-1 as template was carried out as follows: 95°C for 1 min, 94°C for 30 s, 30°C for 3 min, 70°C for 5 min and 72°C for 5 min. The 30-μL PCR mixture was prepared with 15 μL of 2×GC buffer I, 4 μL of dNTP (2.5 mM), 1 μL of SP3 (5 μM), 0.3 μL of LA-Taq and 1 μL of template (about 50 ng/μL). Secondly, 1 μL of primer SP1 (25 μM) was added to the reaction mixture and 25 cycles of PCR were performed as follows: 94°C for 30 s and 70°C for 5 min. Thirdly, eight cycles of thermal asymmetric PCR were carried out with the following program: one cycle of 94°C for 30 s, 50°C for 30 s and 70°C for 5 min; followed by two cycles of 94°C for 30 s and 70°C for 5 min. Fourthly, 1 μL of the products were diluted 1000 times and used as the template for another PCR in a 30-μL mixture containing 15 μL of 2×GC buffer I, 4 μL of dNTP (2.5 mM), 2 μL of SP2 (5 μM), 0.3 μL of LA-Taq and 1 μL of template. Then, the PCR was carried out by the following program: 95°C for 2 min, followed by 30 cycles of 94°C for 30 s and 70°C for 5 min, with final extension at 72°C for 10 min. The presence of final PCR products was checked by agarose gel electrophoresis, followed by purification, ligation to vector pMD19-T and sequence. After assembly, the 9.1-kb DNA fragment containing the PAH-RHD gene was analysed using the online Open Reading Frame (ORF) Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and the Blastx programme (http://www.blast.ncbi.nlm.nih.gov).

2.2.3 Transcriptional analysis of PAH-RHD and C23O genes

Quantitative reverse transcription PCR (qRT-PCR) was used to analyse the transcriptional levels of PAH-RHD and C23O genes as follows. Total RNA was extracted from each sample with a Bacterial RNA Extraction Kit (CWBIO, Beijing, China) following the manufacturer’s instructions. After removing genomic DNA with RNase-Free DNase (Qiagen, Hilden, Germany), cDNA was synthesised from RNA
template using the QuantiTect reverse transcription kit (CWBIO, Beijing, China) according to the manufacturer’s instructions. Primers used to amplify PAH-RHD, C23O, and 16S rRNA genes were designed based on the sequence of genomic DNA of *Sphingobium* PHE-1, respectively (Table S2). qRT-PCR was performed on an ABI Prism 7500 real-time PCR detection system using TransStart Top Green qPCR SuperMix as follows: 95°C for 30 s, followed by 40 cycles of 95°C for 5 s and 60°C for 34 s. Melting curves were obtained by slow heating from 60°C to 90°C at 0.1°C/s and continuous monitoring of the fluorescence signal (Singleton et al., 2009). Three replicates were performed for each sample. The quantities of PAH-RHD and C23O gene transcripts for each sample were determined by relative quantification using the \(2^{-\Delta\Delta Ct}\) method (Livak and Schmittgen, 2001). Standard curves for the quantification of PAH-RHD, C23O, and 16S rRNA genes were created by performing qPCR with serial dilutions of the standard plasmid containing the target DNA sequence by the \(2^{-\Delta\Delta Ct}\) method.

2.3 Pot experiment with copper–PHE-co-contaminated soil

2.3.1 Set-up of pot experiment

Soil without detectable PAHs and copper was collected from an agricultural field in Jiangning District, Nanjing, China. After transferred to the laboratory, the soil was air-dried and sieved through a 2-mm mesh. The physiochemical properties of the soil were as follows: pH 7.10, total organic matter 2.92%, total nitrogen 0.68 g/Kg and total phosphorus 1.03 g/Kg.

To prepare the soils contaminated with 500 mg/Kg PHE, the PHE (purity > 96%; Sigma-Aldrich, Germany) dissolved in methanol was spiked into 5% (w/w) of the total soil. After the evaporation of methanol in a fume-hood, this contaminated soil was thoroughly mixed with the remaining soil (Brinch et al., 2002). For PHE-copper co-contaminated soil, copper (as CuCO₃) was added to the PAH-spiked soil at a final concentration of 500 mg/Kg. Next, 1 Kg of contaminated soil was placed in a ceramic pot. Following four dry-wet cycles within 4 weeks, the soil was planted with ryegrass seeds and inoculated with pre-cultivated strain *Sphingobium* PHE-1 at a density of 1.5×10⁷ cells/g. In total, the four treatments included: PHE-1 inoculation, ryegrass
planting, ryegrass planting with *Sphingobium* PHE-1 inoculation, and soil without ryegrass or PHE-1. The pots were watered daily with deionised water to maintain the moisture content at approximately 60% of the water-holding capacity of the soils. After 56 days of cultivation in a glasshouse at 20-30°C under natural light, the soils in the pots were collected, mixed, sieved through a 2-mm mesh, and stored at -20°C for DNA extraction and PHE analysis.

2.3.2 Quantitation of C23O gene in soil

Microbial genomic DNA was extracted from soil using the FastDNA Spin kit (MoBIO, USA) in accordance with the manufacturer’s instruction and then used as template to perform qPCR to quantify C23O gene named *xylE*. The standard curve for absolute quantitation of *xylE* gene was established by SYBR Green fluorescence quantitative PCR with a template obtained by a series of 10-fold dilutions of the plasmid constructed with vector pEASY-T1 and *xylE* fragment.

2.4 PHE extraction and analysis

During strain isolation and cultivation, the PHE was collected by liquid–liquid extraction. Briefly, the liquid culture was mixed with methylene chloride (1:1 v/v) by vigorous shaking and then held for 2 h at room temperature. After drying with anhydrous sodium sulphate, the resulting extract was then concentrated to 1 mL with a gentle stream of N₂ for HPLC analysis (Thavamani et al., 2012c).

PHE in soil samples were collected by ultrasonic extraction. After freeze-drying, 5 g of soil was placed in a glass tube, to which 10 mL of dichloromethane was added. The suspension was ultrasonicated for 30 min with occasional stirring to prevent its adherence to the bottom of the tube. The mixture was then centrifuged at 4000 rpm, and the supernatant was discarded. The above procedure was repeated three times. All the supernatants were pooled and concentrated to ~0.5 mL after solvent exchange to hexane. The soil extracts were purified in a multilayer silica gel/alumina column (8 mm i.d.) filled (from top to bottom) with anhydrous Na₂SO₄ (1 cm), neutral silica gel (3 cm, 3% w/w; deactivated) and neutral alumina (3 cm, 3% w/w; deactivated) via elution with 15 mL of hexane/dichloromethane (1:1, v/v). After concentrating with a
gentle stream of N\textsubscript{2}, the residue was dissolved in methane with a final volume of 1.0 mL for HPLC analysis (Chigbo et al., 2013).

PHE was detected on a HPLC (Waters 600) equipped with an 18C reversed-phase column (4.6 mm × 25 cm) and a photo diode-array detector. Methanol:water (90:10, v/v) at a flow rate of 0.8 mL/min was used as the mobile phase. HPLC analysis was performed at a wavelength of 254 nm, and a 20-µL sample or standard PHE compounds were injected into the chromatograph under standardised conditions. An external standard method was used for quantitation in terms of peak areas (Dong et al., 2008).

2.5 Statistical analysis

Statistical analysis was performed using SPSS 17.0. The statistical significance of differences (p-value <0.05) in PHE concentration, abundance of \textit{ahdA1b-1} and \textit{xyL}E genes, and the biomass of dry ryegrass among the different treatments was analysed using one-way analysis of variance (ANOVA) and the least significant difference (LSD) test.

3. Results and discussion

3.1 Characterisation of PHE-degrading bacteria

After incubation in Luria–Bertani medium for 48 h, the colony of the isolated strain was observed to be yellow, with a diameter of 3–4 mm, translucent and glossy, with a smooth surface and neat edges (Figure 1A-a). The images of cells obtained by transmission electronic microscopy showed that the strain was rod-shaped (0.5-0.7 µm × 1.2-1.7 µm) with flagella (Figure 1A-b). The results of 16S rRNA sequence showed its 99% identity with the nucleotide sequences of the \textit{Sphingobium abikonense} strain NBRC 16140 (NR 113839.1), \textit{Sphingobium abikonense} strain IAM 12404 (NR 112079.1) and \textit{Sphingobium lactosutens} strain DS20 (NR 116408.1) (Figure 1B). The strain was therefore classified as a \textit{Sphingobium} strain within the genus \textit{Sphingomonas}, family \textit{Sphingomonadaceae}, class \textit{Alphaproteobacteria}, and named as \textit{Sphingobium} PHE-1.

3.2 Impacts of Cu(II) on PHE degradation by \textit{Sphingobium} PHE-1
Figure S1 showed the PHE removal efficiency in MSM at 24 h with different concentrations of PHE as the sole carbon source. PHE was completely degraded when its initial concentration was less than 600 mg/L. Above this level, the removal efficiency decreased with the increasing initial PHE concentration. The results indicated that Sphingobium PHE-1 possesses powerful PHE biodegradability, better than Sphingobium chlorophenolicum C3R metabolizing ~60% of the PHE in 2 days with an initial concentration of 300 mg/L in liquid culture similar to this work (Colombo et al., 2011) and a Sphingobium strain utilizing more than 200 mg/L PHE within 24 h in liquid culture (Prakash and Lal, 2006). Besides, it was observed that ~50% of the added PHE was degraded owing to the inoculation of strain Sphingobium PHE-1 in PHE-copper co-contaminated soils.

To study the influence of Cu(II) on PHE degradation by strain Sphingobium PHE-1, the removal efficiency of PHE was tested in the presence of different concentrations of Cu(II). Figure S2 showed that PHE was almost completely degraded when Cu(II) was less than 3.22 mM. The removal efficiency maintained 88.2% even when the Cu concentration rose to 4.03 mM and then decreased with the increasing Cu(II). The similar behaviour was also observed for the mixed flora derived from soil suspensions, the PHE degradation ability of which was not significantly affected when the Cu(II) concentration was no more than 0.43 mM. Previous study showed the declining microbial respiration in the presence of Cu(II), and the higher the Cu(II) concentration, the more pronounced the inhibition (Sokhn et al., 2001). The limited impact caused by high level Cu(II) in this work might be explained by the little influence of Cu(II) on the enzymatic activity of dioxygenase related to PAHs degradation. It was reported replacement of the iron at the active site of iron-containing 2,3-dioxygenase with copper weakly affects its activity owing to the stability of the metal complexes (Gopal et al., 2005; Guzik et al., 2013).

Sphingomonas species have long been known for degrading a wide range of PAHs in contaminated soils and are often detected in copper-contaminated media, such as copper-exposed groundwater treatment plants and soils near copper mines (Stolz, 2009). Sphingobium, comprising 25 recognised species, is the main subgenus of the
Sphingomonas genus with the capacity of PAHs degradation (Kertesz and Kawasaki, 2010). It was demonstrated that Sphingobium chlorophenolicum strain C3R significantly improves the biodegradation rate of PHE in PAHs-contaminated soils in the presence of both cadmium and arsenic (Colombo et al., 2011). Some other Sphingobium strains with the ability to degrade PAHs and substituted PAHs were also isolated from a river, a pentachlorophenol-contaminated industrial site and freshwater sediment, a polluted stream and 2,4-dichloroprop-pretreated soils (Kertesz and Kawasaki, 2010). Furthermore, the enzymes involved in the catabolic pathways and the corresponding genes in Sphingobium strains have also been well studied (Leys et al., 2004; Pinyakong et al., 2003a; Story et al., 2000).

3.3 The effect of PHE and Cu(II) on C23O gene transcription

In this work, we successfully amplified a C23O gene from strain Sphingobium PHE-1 by using the primers designed in accordance with known ones. The phylogenetic information in Figure S3 showed that the xylE gene of Sphingobium PHE-1 was closely related to the genus Sphingobium, sharing 95%, 92% and 92% similarity with the nucleotide sequences of S. strain ZP1, S. yanoikuyae strain B1 and S. strain P2, which was consistent with 16s rRNA results. The copies of xylE gene were then analysed by qRT-PCR using the primers designed according to the nucleic sequences of acquired xylE gene.

To test the effect of PHE addition on the expression of xylE gene and evaluate its change with time, the copy numbers of xyle gene of Sphingobium PHE-1 in the presence of PHE were compared to the control (PHE replaced by glucose), as illustrated in Figure 2A. It was clear that the copies of xyle kept increasing in the first 24 h and then decreased from 24 to 48 h. Comparison with the constant copy numbers of xyle gene in the control yielded the inference that xyle gene is induced by PHE. In the treatment with an initial concentration of 100 mg/Kg PHE, the expression of xyle gene peaked when all PHE had been consumed. The same results were also observed in an ex situ system, in which xyle gene was initially present at high PAHs concentration, but disappeared with a substantial decrease of PAHs after 1 week (Wikstrom et al., 1996). This is also consistent with the results of Zhao et al. (Zhao et
al., 2011), who described that the expression of C23O gene in PHE-degrader
Pseudomonas sp. ZP1 increased during the PHE degradation, but dramatically
dropped off when PHE ran out.

Figure 2B showed the expression of *xyLE* gene against different concentrations
of Cu(II) with 100 mg/L PHE as the sole carbon source after 24 h. An unexpected
promotion of *xyLE* expression was observed when Cu(II) was added, compared to the
control (no Cu(II)), and its expression level increased with the rise of Cu(II). This
indicated that *Sphingobium* PHE-1 would probably resist the damage caused by Cu(II)
via encouraging *xyLE* expression for PHE metabolism and catabolism, generating
more energy to enhance the expression of genes related to the oxidative stress
response, DNA and protein repair, metal transport and other processes (Baker-Austin
et al., 2005; Gu et al., 2016). Generally, heavy metals inhibit the microbial
degradation of organic compounds via disrupting general enzymes or functional genes
responsible for PAHs degradation (Sokhn et al., 2001). The exception involved a
metal-tolerant and phenol-degrading strain, for which cadmium was reported to
increase its C23O activity (Hupert-Kocurek et al., 2013). It is interesting that a high
level of Cu(II) promoted the expression of the C23O gene in *Sphingobium* PHE-1 in
the present study, which should be useful for the bioremediation of copper-PAHs
co-contaminated soils.

The degradation of PHE by bacteria is driven by enzymes and is dependent on
the levels of enzymatic activity. Two key enzymes are involved in the
PHE-degradation process: ring-hydroxylating dioxygenase (PAH-RHD) and aromatic
ring-cleavage dioxygenase. PAH-RHD controls the incorporation of molecular
oxygen into the aromatic nucleus to form cis-dihydrodiol in the initial step of PAHs
metabolism. Thereafter, the dihydroxylated cis-dihydrodiol intermediates are cleaved
by dioxygenase via ortho-cleavage or meta-cleavage pathways. C23O protein acting
as a ring-cleavage enzyme in the meta-cleavage pathways seems to consist of a
superfamily of enzymes (Boldt et al., 1995). C23O genes have been found in strains
Sphingomonas ZP1 (Zhao et al., 2011), *Pseudomonas stutzeri* AN10, *Pseudomonas
putida* G7, and *Pseudomonas putida* NCIB9816 (Habe and Omori, 2003), and their
gene sequences in these bacteria with the ability to degrade different PAHs have been uncovered. Thus, C23O genes are potentially good indicators in monitoring the bacterial subpopulations involved in the ring cleavage of aromatics and the final steps of the degradation of some PAHs. For example, it was reported that C23O genes were successfully used to monitor the subpopulations of PAHs-degrading microbes in different types of soils (Wikstrom et al., 1996).

3.4 Sequence analysis of PAH-RHD gene clusters and the effects of PHE and Cu(II) on its transcription

By amplifying the PAH-RHDα gene from the total DNA of Sphingobium PHE-1 with the designed primers (Table S1), a DNA fragment of 1490 bp was obtained. The nucleotide sequence of the fragment exhibits 99% and 97% similarity with the ahdA1b operon affiliated to Sphingomonas sp. ZP1 (EU082776) and Sphingomonas sp. P2 (AB091693), respectively, which is then named as ahdA1b-1 (Figure S4).

The effects of PHE and Cu(II) on ahdA1b-1 transcription were investigated using the primers designed according to the nucleic sequences of ahdA1b-1, as illustrated in Figure 4. It was clear that the ahdA1b-1 gene held a similar expression pattern as xyLE gene, rapidly increasing over time before 24 h but slowed down from 24 to 48 h with the exhaustion of PHE in the medium. Meanwhile, the expression of ahdA1b-1 gene in the control (glucose instead of PHE) was significantly lower than those supplemented with PHE ($p<0.05$) and had tiny fluctuation throughout the experiment. It was proposed that the expression of ahdA1b-1 gene was induced by PHE and reached a plateau when the PHE was used up. The same results were also obtained by Pinyakong et al., who found the inducible genes encoding terminal oxygenase in Sphingobium sp. strain P2 (Pinyakong et al., 2003b). Preliminary study on the response of Sphingomonas aromaticivorans strain F199 to various aromatic compounds demonstrated that its aromatic catabolic activity was induced after exposure to naphthalene (Pinyakong et al., 2003b). Additionally, Cu(II) significantly affected the expression of ahdA1b-1 gene in Sphingobium PHE-1, from the higher expressed copy numbers of ahdA1b-1 gene copies in Cu(II) amended treatments than that in samples without copper, even when the Cu(II) concentration was increased to
4.03 mM (p<0.05). The results indicated that ahdA1b-1 expression is promoted by Cu(II), consistent with the influence of Cu(II) on the expression of xyLE gene. Although previous research showed that the expression of the genes responsible for naphthalene degradation in a Pseudomonas strain is enhanced by nickel (Siunova et al., 2007), no work prior to this study reported the transcription of PAHs-degrading genes is promoted by high level of Cu(II).

In the first step of PHE metabolism, the aromatic nucleus is attacked by molecular oxygen forming cis-dihydrodiol with the function of PAH-RHD. PAH-RHD is composed of an iron–sulphur flavoprotein reductase, an iron–sulphur ferredoxin and a terminal dioxygenase. The terminal dioxygenase consists of large α and small β subunits, and two conserved regions exist in α subunit (RHDα) (Kauppi et al., 1998). Primers based on these conserved regions have been designed and successfully applied to amplify the target pahAc-like, phnAc-like and nagAc-like genes (Cebron et al., 2008). Besides, genes encoding degrading proteins are frequently found in grouping together in a cluster (Qiu et al., 2013). SEFA-PCR was therefore performed to obtain the flanking DNA sequences of ahdA1b-1 in this study. A 6.6-kb upstream and a 2.1-kb downstream DNA fragments were amplified with three pairs of primers (Table S1). After cloning and sequencing, it is noted that the 6.6-kb upstream DNA fragment contains a small subunit and a large subunit belonging to the PAH-RHD gene, and the 2.1-kb downstream DNA fragment has a small subunit affiliated to the PAH-RHD gene. The 1490-bp core fragment was assembled with the flanking fragments to generate a 9.1-kb DNA fragment, which shows 96% similarity to the PAHs-degrading gene cluster affiliated to Sphingomonas sp. P2 and Sphingobium yanoikuyae strain B1. As shown in Figure 3, the analysis of nucleotides and the deduced amino acid sequences of the 9.1-kb DNA fragment using the online ORF Finder and Blastx programme revealed that six consecutive ORFs exhibited 99%, 96%, 93%, 97%, 99% and 96% nucleotide sequence identities with xylA, xylM, ahdA2b, ahdA1b, ahdA2a and ahdA1a, respectively, which are located in the PAHs-degrading gene cluster of Sphingomonas sp. P2 (AB091693) and S. yanoikuyae strain B1 (EF151283) (referred to as xylA, xylM, bphA2b, bphA1b,
bphA2a and bphA1a) (Pinyakong et al., 2000, 2003a). The clusters from xylA to ahdA1a/bphA1a in the three strains were assembled in the same order and transcriptional direction (Figure 3), indicating the high conservation of the functional genes encoding PAH-RHD in strains affiliated to the Sphingomonas genus. It was also reported that the aromatic-degrading genes from the Sphingobium sp. B1, Sphingobium sp. Q1 and Novosphingobium aromaticivorans F199 exhibited high homology (Pinyakong et al., 2003a; Pinyakong et al., 2003b). For example, in Sphingomonas, the degrading genes encoding arene cis-dihydrodiol dioxygenase and the enzymes responsible for the conversion of 1,2-dihydroxynaphthalene to salicylate were reported to be similar in sequence (Waigi et al., 2015).

3.5 The application of Sphingobium PHE-1 coupled with ryegrass in the remediation of PHE-copper co-contaminated soils

The inoculation of Sphingobium PHE-1 significantly improved the growth of ryegrass (Figure 5). Interestingly, the growth of ryegrass was also found to be greatly stimulated by Cu(II), with plants grown in PHE-copper co-contaminated soils having higher biomass than those grown in soils with PHE contamination only (Figure 5), which was consistent with the trends of ahdA1b-1 and xyLE gene transcription in MSM (Figure 2B and Figure 4B). This improvement in ryegrass growth was attributed to the increasing activities of Sphingobium PHE-1 in the presence of Cu(II).

It was reported that some heavy metal-resistant bacteria could promote the growth of host plants. Examples included a copper-resistant plant growth-promoting bacterial (PGPB) strain, Ax10, which was isolated from a copper mine soil and facilitated Brassica juncea growth and Cu(II) uptake (Ma et al., 2009). Besides, the nickel-resistant strain PGPB SRS8 was also found to be capable of stimulating plant growth and nickel accumulation in the crops Ricinus communis and Helianthus annuus (Ma et al., 2011).

The residual PHE concentrations in soils subjected to different treatments on day 56 were presented in Figure 6. The results clearly illustrated that more PHE was removed from soils inoculated with Sphingobium PHE-1, compared to the uninoculated treatments, and ryegrass planting also resulted in lower residual PHE.
The best performance in terms of PHE reduction occurred in the treatment with both ryegrass and *Sphingobium* PHE-1. This optimal PHE removal was explained by microbial degradation and, to some extent, by enhanced adsorption to roots and accumulation in ryegrass shoots, as found in our previous study (Wang et al., 2012). Besides, the bioavailability of PAHs, which often limits the biodegradation of these compounds, may be increased with the aid of some components in the root exudation (An et al., 2010; Cerniglia, 1993; Gao et al., 2010).

The abundance of *xylE* genes in soils was also studied to monitor the effect of ryegrass on the growth and degrading activities of *Sphingobium* PHE-1, attributing to its higher specificity than *ahdA1b-1* and 16s rRNA genes. A higher abundance of *xylE* gene in soils with ryegrass was found than that in soils without ryegrass (Figure 7, \(p<0.05\)), which proved that ryegrass could encourage the abundance of *Sphingobium* PHE-1. Additionally, the copy numbers of *xylE* gene in soil was also enhanced by the Cu(II) addition, which was in agreement with the transcription of *xylE* in *Sphingobium* PHE-1 (Figure 2B). The increase of *xylE* abundance in soils planting with ryegrass was attributed to the positive influence of rhizospheric effect on microbes. The fibrous root of ryegrass observed in this work provided microbial attachment sites and enhanced soil aeration, and the vegetation cover created favourable environmental conditions such as temperature and soil moisture. More importantly, the root exudates as the ecological driver in the rhizosphere supply microorganisms with a relatively constant source of nutrients, such as water soluble carbon, nitrogen and phosphorus, especially in poor soils. The rhizosphere therefore improves the microbial growth, activities and the abundance of functional genes (Haritash and Kaushik, 2009). Besides, many secondary plant metabolites in root exudation with similar structure to aromatic hydrocarbons may stimulate the metabolic pathways of PAHs degraders (Martin et al., 2014). It was observed that more microbes, enhanced activities and increased abundance of PAHs-degrading genes in planted versus unplanted soils occurred in PAHs contaminated soils (Haritash and Kaushik, 2009; Thomas and Cebron, 2016).

In the present study, the growth of ryegrass was improved by *Sphingobium*
PHE-1. In turn, the ryegrass provided abundant nutrients to *Sphingobium* PHE-1 and
promoted its colonisation in the rhizosphere, which enhanced the dissipation of PHE.
It was proved that PHE and pyrene (PYR) dissipation with the aid of microbes in soils
was improved by planting ryegrass and the levels of PHE and PYR increased with the
distance from the root surface (Gao et al., 2013). A similar phenomenon was also
observed in another study, in which the growth of ryegrass significantly increased soil
peroxidase activities, leading to enhanced dissipation of PHE and PYR in, and
additionally, the interactions of ryegrass with the two microbes further improved the
dissipation of PHE and PYR (Yu et al., 2011). In the present study, the growth of
ryegrass was improved by inoculation with *Sphingobium* PHE-1, further benefiting
bacterial growth by rhizospheric effect and improving PHE dissipation as well. The
capacity of strain *Sphingobium* PHE-1 to exhibit Cu(II) tolerance and degrade PHE
suggests its feasibility in the remediation of PAHs-heavy metal co-contaminated soils
and sediments.

Acknowledgments

This study was supported by the National Natural Science Foundation of China
(Nos. 41322008 & 41673111), the Joint Funds of the National Natural Science
Foundation of China and the Natural Science Foundation of Guangdong Province,
China (U15012345), and the Doctoral Scientific Research Foundation of Guangdong
Province (No. 2016A030310118).

References

polyaromatic hydrocarbons-degrading bacteria from different Qatari soils. African Journal of
Microbiology Research 3, 761-766.

and pH on the behaviors of pyrene in soil-water system. Chemosphere 81, 1423-1429.

extreme copper resistance in the extremophilic archaeon ‘Ferroplasma acidarmanus’ Fer1.
Microbiology-Sgm 151, 2637-2646.

by multiplex and real-time PCR. Applied and Environmental Microbiology 69, 3350-3358.

Gopal, B., Madan, L.L., Betz, S.F., Kossiakoff, A.A., 2005. The crystal structure of a quercetin 2,3-dioxygenase from Bacillus subtilis suggests modulation of enzyme activity by a change in the metal ion at the active site(s). Biochemistry 44, 193-201.

Guzik, U., Hupert-Kocurek, K., Salek, K., Wojcieszynska, D., 2013. Influence of metal ions on...

Legends of tables and figures

Fig. 1. A: Colonies (a) and transmission electronic microscopy image (b) of *Sphingobium* PHE-1. B: Phylogenetic tree derived from the 16S rRNA genes of *Sphingobium* PHE-1 and related species by the neighbor-joining method using MEGA 5.1.

Fig. 2. The expression of *xylE* gene at different incubation time (A) or Cu(II) concentration (B). The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level with the LSD test.

Fig. 3. Comparison of PAH-RHD cluster structure between *Sphingomonas* sp. strain P2, *Sphingobium* sp. strain PHE-1 and *Sphingobium yanoikuyae* strain B1. The open reading frames (ORFs) are indicated by arrows. The scale is in bases.

Fig. 4. The expression of *ahdA1b-1* gene at different incubation time (A) or Cu(II) concentration (B). The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level with the LSD test.

Fig. 5. Biomass of dry ryegrass in different treatments. Control: soil amended with PHE. PHE-1: soil amended with PHE and *Sphingobium* PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–c) represent the statistical significance at the 0.05 level with the LSD test.

Fig. 6. Residual PHE concentration in soils from different treatments. Control: soil amended with PHE. PHE-1: soil amended with PHE and *Sphingobium* PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level with the LSD test.

Fig. 7. The abundance of *xylE* gene in soils from different treatments. Control: soil
amended with PHE. PHE-1: soil amended with PHE and *Sphingobium* PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–e) represent the statistical significance at the 0.05 level with the LSD test.
Supporting information

Table S1 Primers used in this study

Table S2 Primers used for transcriptional analysis of PAH-RHD and C23O genes

Fig. S1. Effects of initial PHE concentration on PHE degradation efficiency by Sphingobium PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a-d) represent the statistical significance at the 0.05 level with the LSD test.

Fig. S2. Effects of Cu(II) concentration on the PHE degradation efficiency by Sphingobium PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a-e) represent the statistical significance at the 0.05 level with the LSD test.

Fig. S3. Phylogenetic tree of catechol 2,3-dioxygenase gene (xyLE) from Sphingobium PHE-1 along with the closest matches in GenBank, constructed with MEGA 5.1 using the neighbor-joining method.

Fig. S4. Phylogenetic tree of aromatic compounds-catabolic gene (ahdA1b-1) from Sphingobium PHE-1 along with the closest matches in GenBank, constructed with MEGA 5.1 using the neighbor-joining method.

Fig. S5. Gel electrophoresis image of the flanking DNA fragments of ahdA1b-1 by SEFA-PCR. M: λDNA/HindIII marker; 1: ahdA1b upstream SEFA-PCR products; 2: ahdA1b downstream SEFA-PCR products. The arrows show the bands of target fragments.
Fig. 1. A: Colonies (a) and transmission electronic microscopy image (b) of *Sphingobium* PHE-1. B: Phylogenetic tree derived from the 16S rRNA genes of *Sphingobium* PHE-1 and related species by the neighbor-joining method using MEGA 5.1.
Fig. 2. The expression of xylE gene at different incubation time (A) or Cu(II) concentration (B). The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level with the LSD test.
Fig. 3. Comparison of PAH-RHD cluster structure between *Sphingomonas* sp. strain P2, *Sphingobium* sp. strain PHE-1 and *Sphingobium yanoikuyae* strain B1. The open reading frames (ORFs) are indicated by arrows. The scale is in bases.
Fig. 4. The expression of *ahdA1b-l* gene at different incubation time (A) or Cu(II) concentration (B). The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level with the LSD test.
Fig. 5. Biomass of dry rye grass in different treatments. Control: soil amended with PHE. PHE-1: soil amended with PHE and *Sphingobium* PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–c) represent the statistical significance at the 0.05 level with the LSD test.
Fig. 6. Residual PHE concentration in soils from different treatments. Control: soil amended with PHE. PHE-1: soil amended with PHE and *Sphingobium* PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level with the LSD test.
Fig. 7. The abundance of *xylE* gene in soils from different treatments. Control: soil amended with PHE. PHE-1: soil amended with PHE and *Sphingobium* PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and *Sphingobium* PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters (a–e) represent the statistical significance at the 0.05 level with the LSD test.