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19INFN Sezione di Padova and Università di Padova, Dipartimento di Fisica, Padova, Italy

20INFN Sezione di Roma and Università di Roma “La Sapienza”, Roma, Italy
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The T2K off-axis near detector, ND280, is used to make the first differential cross section mea-
surements of muon neutrino charged current single positive pion production on a water target at
energies ∼0.8 GeV. The differential measurements are presented as a function of the muon and
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pion kinematics, in the restricted phase-space defined by pπ+ > 200 MeV/c, pµ > 200 MeV/c,
cos(θπ+) > 0.3 and cos(θµ) > 0.3. The total flux integrated νµ charged current single pos-
itive pion production cross section on water in the restricted phase-space is measured to be
〈σ〉φ = 4.25 ± 0.48 (stat) ± 1.56 (syst) × 10−40 cm2/nucleon. The total cross section is consistent
with the NEUT prediction (5.03 × 10−40 cm2/nucleon) and 2σ lower than the GENIE prediction
(7.68× 10−40 cm2/nucleon). The differential cross sections are in good agreement with the NEUT
generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates
the overall cross section normalization.

PACS numbers: 14.60.Pq, 14.60.Lm, 25.30.Pt, 29.40.Ka, 29.40.Mc

I. INTRODUCTION

The T2K long baseline neutrino experiment [1] has the
primary goal to precisely measure neutrino oscillation pa-
rameters through measurements of νe appearance and νµ
disappearance from a νµ beam. As neutrinos are charge-
less and color-less, neutrino oscillation experiments rely
on the detection of charged particles coming from charged
current (CC) and neutral current (NC) interactions to in-
fer neutrino properties, e.g. CC quasi-elastic (QE) inter-
actions allow the calculation of the neutrino energy from
the lepton kinematics. The knowledge of νµ and νe in-
teraction cross sections is then fundamental to infer neu-
trino properties correctly. νµ CC resonant interactions
are part of the signal and sometimes of the background
of oscillation experiments, and a better understanding of
this channel could be beneficial not only to T2K, but to
the neutrino community in general, as there are discrep-
ancies between models and experimental data.

Both the MiniBooNE [2] and MINERvA [3] collab-
orations provided measurements of the CC single pos-
itive pion production (CC1π+) cross sections in min-
eral oil and plastic scintillator, respectively. The CC1π+

cross section is described by the particles leaving the nu-
cleus, i.e. one muon, one positive pion and any number
of nucleons. There are large discrepancies between the
MiniBooNE and MINERvA experiments, and the his-
toric ANL [4] and BNL [5] bubble chamber results, which
could be due to nuclear effects that if not modelled cor-
rectly can modify the effective measured cross-section.
The MiniBooNE and MINERvA results show also sig-
nificant normalization and shape discrepancies between
each other [3], and currently no theoretical model can
explain all the pion production data available. Addi-
tional pion production data can help to constrain the
pion production models and give valuable information
on the nucleon-∆ axial form factor [6, 7].
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We present the first CC1π+ differential cross section
measurements on water. A CC1π+ measurement on wa-
ter will have a strong impact on the T2K oscillation anal-
ysis, as current results suffer from large cross section sys-
tematic uncertainties related to the differences in targets
between near and far detectors (carbon versus water) [8].
These data will also be beneficial to future atmospheric
and long-baseline experiments, that plan to use a water
targer, such as the Hyper-Kamiokande experiment [9].

II. T2K EXPERIMENT

The T2K long baseline neutrino experiment uses the
J-PARC facility in Tokai, Japan, to produce 30 GeV pro-
tons, which produce charged pions by colliding with a
graphite target and consequently result in a high purity
νµ beam. The beam center axis is directed 2.5o off-axis
towards Super-Kamiokande [10] at 295 km from J-PARC.
Two near detectors are located at 280 m from the target,
the on-axis near detector (INGRID [11]) and the off-axis
near detector (ND280).
Neutrino Beam Flux—The predicted neutrino beam

flux [12] peaks at 0.6 GeV and its fractional composi-
tion is 92.6% νµ, 6.2% νµ, 1.1% νe, 0.1% νe. The proton
interactions with the graphite target are simulated with
the FLUKA2008 package [13], The propagation of sec-
ondary and tertiary pions and kaons and their decays to
neutrinos is simulated with GEANT3 [14]. The hadron
interactions are modeled with GCALOR [15] and tuned
to hadron production data from external experiments,
such as the CERN NA61/SHINE experiment [16, 17].
Neutrino Interaction Model—Based on the prediction

of the neutrino flux, the NEUT [18] (version 5.1.4.2)
event generator is used to simulate neutrino interactions
in ND280.

For Changed Current Quasi Elastic (CCQE) and Neu-
tral Current Quasi Elastic (NCQE) interactions, NEUT
uses the Llewellyn Smith model [19] integrated with the
relativistic Fermi gas (RFG) model by Smith and Mo-
niz to describe the nucleons within the nucleus [20]. The
outgoing nucleon is also required to have larger momen-
tum than the Fermi surface momentum (Pauli blocking),
which is 217 MeV/c for carbon and 225 MeV/c oxygen.

NEUT uses the Rein-Sehgal model for resonant inter-
actions [21], considering 18 resonances with masses below
2 GeV/c 2 and their interference terms. In addition 20%
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of the ∆ resonances undergo pion-less ∆ decay, in which
the ∆ is absorbed by the nuclear medium without emit-
ting any pions: ∆+N → N ′+N ′′. The NEUT pion pro-
duction model is tuned using neutrino interaction data
from the MiniBooNE experiments [2, 22], as explained in
Ref [8]. In particular, the axial mass for resonant CC1π+

interactions is set to 1.41 GeV, and the overall CC1π+

normalization for energies less than 2.5 GeV is further in-
creased by 15% compared to predictions when the axial
mass is set to 1.41 GeV.

Coherent pion production is simulated for both NC
and CC interactions using the Rein-Sehgal model [23],
including the PCAC (Partially Conserved Axial vector
Current) lepton mass correction for CC interactions [24].

DIS (deep inelastic scattering) processes are simulated
using GRV98 parton distribution functions [25] and cor-
rections following the Bodek and Yang model [26] to im-
prove the agreement with experiments in the low-Q2 re-
gion. To avoid double counting with the single pion reso-
nant production, only multiple pion production processes
are considered for the invariant mass of the recoiling
hadron system W < 2 GeV/c2. PYTHIA/JETSET [27]
is used for hadronisation at energies above 2 GeV, and an
internal NEUT method is used at lower energies.

After the simulation of the initial neutrino-nucleon in-
teraction, final state interactions are simulated with the
cascade model [28]. Each particle is propagated inside
the nucleus with steps determined by the mean free path.
The mean free path depends on the position inside the
nucleus and the momentum of the particle. At each
step, an interaction is generated according to the prob-
ability calculated from each cross section such as charge
exchange, absorption or scattering. If an interaction oc-
curs, the resulting particles are used for stepping through
the rest of the nucleus. This process continues until all
particles are either absorbed in the nucleus or escape it.
Data from several pion scattering experiments are used
to tune this model [8].

Additional information on the models used to simulate
the neutrino interactions and the hadron transport in the
nuclear medium can be found in references [8, 18].

The results in this paper are also compared to the GE-
NIE generator [29], as it provides a general framework
valid over a large range of experiments, targets and neu-
trino energy. GENIE uses essentially the same models
as NEUT for the neutrino interactions simulation, but
they differ in the implementation and value of some of
the parameters, such as MRES

A which is set to 1.12 GeV.
Single pion production (before final state interactions)
comes from resonant and coherent processes in NEUT,
whereas GENIE also considers DIS contributions to it.
Although GENIE considers a lower value of MRES

A , the
predicted single positive pion production cross-section is
larger than in NEUT, because DIS processes are allowed
to contribute to this state.

Near detector—ND280 is a complex of different subde-
tectors enclosed in the refurbished UA1/NOMAD mag-
net. The origin of the ND280 coordinate system is at

the center of the magnet and the 0.2 T magnetic field is
along the +x direction. The z axis is along the nominal
neutrino beam axis, and x and y axes are horizontal and
vertical, respectively.

The ND280 Tracker region contains two fine-grained
detectors (FGDs [30]) which are used as the neutrino in-
teraction target, sandwiched between three gaseous time
projection chambers (TPCs [31]) which are used to track
charged particles. The most upstream FGD (FGD1) pri-
marily consists of polystyrene scintillator bars with lay-
ers oriented alternately in the x and y directions allow-
ing 3D tracking of charged particles. The downstream
FGD (FGD2) has a similar structure, but the polystyrene
bars are interleaved with water layers, creating a mod-
ular structure of water layer + x layer + y layer + wa-
ter layer, and so on (see Figure 1). The areal density
of an xy module and a water module are respectively
2146.3 ± 14.4 mg/cm2 and 2792.6 ± 13.4 mg/cm2. This
structure allows the measurement of neutrino interac-
tions on water.

The electromagnetic calorimeters (ECals [32]), made of
layers of lead and scintillator bars, surround the Tracker
region (Barrel-ECals) with one module downstream of it
(Ds-ECal). Upstream of the Tracker there is a π0 detec-
tor (PØD [33]), consisting of scintillator, water and brass
layers.

Magnet return yokes surround the entire detector to
make the magnetic field uniform and contain it inside
the detector. Plastic scintillators in the yoke form the
side muon range detectors (SMRDs [34]).

The analysis here presented uses FGD2 as the ac-
tive interaction target, where in a signal event the neu-
trino interacts with a nucleus in the water layer, and the
charged lepton coming from a CC interaction is tracked
in the downstream scintillator layers. These results are
based on data taken from November 2010 to May 2013.
The good quality data collected during this period cor-
responds to 5.6× 1020 protons on target (p.o.t.).

III. SELECTION OF νµ CC1π+ INTERACTIONS
IN WATER

Muon neutrino interactions are selected by using the
highest momentum negative track starting in the fidu-
cial volume (FV) of the FGD2. The FGD2 FV begins
58 mm inward from the lateral edges of the FGD2 and
7.5 mm inward from the upstream FGD2 edge (as shown
in Figure 1). These tracks are required to enter the TPC3
(located immediately downstream of FGD2) and deposit
energy compatible with a muon-like track. Additional
tracks matched between the FDG and TPC associated
with the same muon candidate vertex are tagged as either
protons or positive, negative or neutral pions by looking
at the trajectory and energy deposit in the TPCs, and
at electromagnetic showers in the ECals. More details
on the νµ CC inclusive and multi-pion selections can be
found in References [8, 35], respectively, where the only
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FIG. 1. Schematic view of FGD2 and its fiducial volume
(FV) delimited by the red line. The first upstream scintillator
layer is not included in the FV.

differences are that in this analysis interactions in FGD2
are selected, rather than in FGD1, and the ECals are
used to tag neutral pions. CC1π+-like events are selected
by requiring one muon, one positive pion, no other addi-
tional pions and any number of nucleons.

Because of the structure of the FGD2 (see Figure 1),
interaction vertices occuring in a water module will be
reconstructed in the x layer downstream of it. A water-
enhanced sample can be selected by requiring the vertex
to be in the x layer, whilst a scintillator sample can be
selected by requiring the reconstructed vertex to be in
the y layer.

The signal sample of this analysis is composed of 1402
selected CC1π+ water-enhanced events in the full phase-
space, with 30.9% purity of true νµ CC1π+ interactions
on water. To avoid relying on the simulation to describe
regions of efficiency < 0.1, the analysis presented re-
stricts the kinematic phase-space to the region defined
by pµ > 200 MeV/c, pπ+ > 200 MeV/c, cos(θµ) > 0.3 and
cos(θπ+) > 0.3. With these restrictions in the phase-
space of the signal definition, the signal efficiency goes
from 13.3% to 30.7%.

The signal sample is selected with a purity of 39.9 %
in the restricted phase-space. Multi-pion interactions
can be mis-identified as CC1π+ interactions when one
or more pions are absorbed by the detector or simply not
reconstructed; 29.2% of the signal sample is composed
of this background. CC0π interactions (3.9%) come into
the selection when the proton is mis-identified as a π+.
The total background from CC1π+ interactions occuring

TABLE I. Percentage of true NEUT topologies (CC1π+ and
CCnon1π+) in the restricted phase-space, and number of data
events in different modules of the FGD2 for the signal (CC1π+

water-enhanced) and two external samples (CC1π+ scintilla-
tor and CC1π+nπ water-enhanced).

Selected samples
CC1π+ CC1π+ CC1π+nπ

True NEUT topology water scintillator water
CC1π+ water 39.9 % 5.9 % 7.7 %
CC1π+ scint 25.7 % 54.6 % 4.8 %

CC non1π+ water 18.5 % 8.3 % 49.0 %
CC non1π+ scint 14.6 % 28.7 % 36.5 %

non νµ CC 0.6 % 0.9 % 1.2 %
Out of FV 0.5 % 1.7 % 0.9 %

Data in reduced phase-space 1275 431 885
Data in full phase-space 1402 491 944

in the scintillator amounts to 25.7% of the signal sam-
ple, including interactions occuring in the y layer whose
vertex is reconstructed in the x layer. Non-νµ CC inter-
actions (0.6%) include both NC and CC interactions due
to the ν and νe components in the beam. They mainly
come into the selection when a π− from a NC interaction
is mis-identified as the muon candidate.

These backgrounds are constrained with two external
samples. A sample of selected νµ CC events with one
π+ and at least one, but maximum 3, negative or neu-
tral pions (CC1π+nπ water-enhanced sample) is used to
constrain the non-CC1π+ interactions, which include the
CC non1π+, non νµ CC and out of FV backgrounds. A
sample of selected νµ CC1π+ events in the y layers of the
FGD2 (CC1π+ scintillator sample) is used to constrain
the background coming from the interactions in the scin-
tillator. Table I shows the composition of the signal and
external samples according to the NEUT generator. Dis-
tributions of the pion kinematics (pπ+ and cos(θπ+)), the
muon kinematics (pµ and cos(θµ)), the cosine of the angle
between the muon and the pion (cos(θ(µ,π+))) and recon-
structed neutrino energy (Erecν ) in the selected sample
are shown in Figure 2. The reconstructed neutrino en-
ergy is found by applying 4-momentum conservation and
assuming the target nucleon is at rest and the remaining
final-state particle is a nucleon:

Erecν =
m2
µ +m2

π − 2mNEf + 2(pµ · pπ)

(2Ef − pµ cos(θµ)− pπ cos(θπ+)−mN )
(1)

where mµ, mπ and mN are the masses of the muon, the
pion and the nucleon respectively; Ef = Eµ + Eπ; px,
px and θx are the 4-momentum, 3-momentum and an-
gle with the neutrino direction of the particle considered
(x = µ, π+). Distributions of the pion momentum in the
external samples are found in Figure 3.

Systematic uncertainties—The TPC and FGD detec-
tor systematic uncertainties are the same as the ones de-
scribed in References [8, 35]. The ECal particle identi-
fication systematic uncertainties are evaluated with high
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FIG. 2. Reconstructed pion kinematics (top), muon kinematics (middle), cos(θ(µ,π+)) (bottom left) and neutrino energy (bottom

right) distributions of the events in the νµ CC1π+ water-enhanced sample. The NEUT Monte Carlo prediction is separated into
the νµ CC1π+ interactions in water, νµ CC1π+ interactions in scintillator, νµ CCnon1π+ interactions in water, νµ CCnon1π+

interactions in scintillator, non νµ CC interactions, and interactions outside of the FGD2 FV. The last bin in the pπ+ , pµ and
Erecν distributions contains all the over-flow events.

purity samples of electrons and muons, as explained in
Reference [36].

The isolated ECal reconstruction systematic uncer-
tainty is evaluated with a control sample of both iso-
lated and non-isolated ECal objects, due to the difficul-
ties of finding a control sample with just isolated ECal
objects. The efficiency is found to be 0.303 ± 0.003 in
simulation and 0.315±0.009 in data for the Barrel-ECal,
and 0.826± 0.002 in simulation and 0.839± 0.007 for the
Ds-ECal. These efficiencies are used to correct the sim-

ulation efficiency for tagging isolated-ECal objects only,
which is 0.352 for the Barrel-ECal and 0.163 for the Ds-
ECal.

The FGD water modules mass uncertainty is 0.55%.
The FGD layer migration uncertainties have been eval-
uated in detail for this analysis. These migrations are
divided into forward (i.e. when the reconstructed vertex
is a layer downstream of the true vertex) and backward
migrations (i.e. when the reconstructed vertex is a layer
upstream of the true vertex). The forward migrations



7

 / GeVπp
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
um

be
r 

of
 e

ve
nt

s 
/ 0

.0
5 

G
eV

0

10

20

30

40

50
Data

 water+π CC1µν
 scintillator+π CC1µν

 water+π CCnon1µν
 scintillator+π CCnon1µν

 CCµνnon 

Out of FV

Data

 water+π CC1µν
 scintillator+π CC1µν

 water+π CCnon1µν
 scintillator+π CCnon1µν

 CCµνnon 

Out of FV

 / GeVπp
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
um

be
r 

of
 e

ve
nt

s 
/ 0

.0
5 

G
eV

0

10

20

30

40

50

60

70

80
Data

 water+π CC1µν
 scintillator+π CC1µν

 water+π CCnon1µν
 scintillator+π CCnon1µν

 CCµνnon 

Out of FV

Data

 water+π CC1µν
 scintillator+π CC1µν

 water+π CCnon1µν
 scintillator+π CCnon1µν

 CCµνnon 

Out of FV

FIG. 3. Reconstructed pion momentum distributions of the events in the two external samples: CC1π+ scintillator (left) and
CC1π+nπ water-enhanced (right). The last bin contains all the over-flow events.

come from a hit reconstruction inefficiency. Their overall
uncertainty is estimated to be 3.3% with a control sample
of cosmic muons passing through both FGDs. The back-
ward migrations come from low energy backward going
particles that are fitted with the muon track and move
the vertex one or more layers upstream. These latter
migrations are estimated using the CC0π and CC multi-
pion samples in FGD2: a normalization uncertainty of
30% is assigned to them.

The flux uncertainties are evaluated with beamline and
hadron production measurements. The hadron produc-
tion uncertainties dominate the neutrino flux uncertain-
ties, with a smaller contribution from the neutrino beam
direction and proton beam uncertainties. The systematic
uncertainty for the νµ flux at ND280 varies from 10% and
15% depending on the neutrino energy [12].

The uncertainties related to the cross section model
(final state interactions, CCQE model, pion production
model and nuclear model) are constrained using external
data and comparisons between different existing models.
A summary of these uncertainties can be found in Refer-
ence [8].

IV. UNFOLDING METHOD

The Bayesian unfolding technique by d’Agostini [37]
has been successfully used by past T2K cross section
measurements to extract the cross sections (see Refer-
ences [35, 38]). The first estimate of the true distribu-
tion is found by applying the unsmearing matrix P (tj |ri)
(found with Bayes’ theorem) to the data distribution:

N̂tj =
1

εj

∑
i

P (tj |ri)(Nri −
all backgrounds∑

k

αkBri,k) , (2)

where tj (ri) indicates the true (reconstructed) bin for
each observable, Nri is the number of reconstructed
events in bin ri, Bri,k is the number of predicted events

in bin ri of background type k, αk is a normalization
constant derived from the external samples, and εj is the
true efficiency in bin tj .

Eq. 2 uses a background subtraction where the coef-
ficients αk are 1 if that part of the background is not
constrained by any external sample, or otherwise calcu-
lated as:

αk =
Cdata,k

CMC,k
, (3)

where Cdata,k is the total number of events in external
sample k in data and CMC,k is the total number of events
in external sample k in MC. In this analysis the back-
ground is divided into 2 groups: the CC1π+ interactions
in scintillator or in the scintillator-like component of the
water modules, that are constrained with the CC1π+

scintillator sample; the non CC1π+ background which is
constrained with the CC1π+nπ water-enhanced sample.

The FGD2 water modules are composed of oxygen
(73.83%), carbon (15.05%), hydrogen (10.48%), silicon
(0.39%), and magnesium (0.25%). The carbon, sili-
cium and magnesium come from the polycarbonate struc-
ture that enclose the liquid water. They compose the
scintillator-like component of the water-modules and can
be subtracted out with the x-layer as they have similar
composition.

The effect of the systematic uncertainties on the cross
section measurements is evaluated by using pseudo-
experiments for each error source to calculate the covari-
ance matrix:

V sij =
1

N

N∑
sn=1

(σsni − σ
nom
i )(σsnj − σ

nom
j ) , (4)

where σsni is the differential cross section in bin i eval-
uated with throw n of the uncertainty s, and σnomi is
the nominal differential cross section in bin i. Statistical
and systematic uncertainties are evaluated by varying the
contents of each bin according to Poisson and Gaussian
statistics, respectively.
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FIG. 4. Unfolded νµ CC1π+ differential cross sections as a function of pion kinematics (top), muon kinematics (center),
cos(θ(µ,π+)) (bottom left) and Erecν (bottom right) in the reduced phase-space of pπ+ > 200 MeV/c, pµ > 200 MeV/c, cos(θπ+) >
0.3 and cos(θµ) > 0.3. For the Erecν , the σ(E) is presented as a model dependent result. The inner (outer) error bars show the
statistical (total) uncertainty on the data. The dashed (solid) line shows the NEUT, version 5.1.4.2, (GENIE, version 2.6.4)
prediction.

V. CROSS-SECTION RESULTS

For a given variable X, the flux integrated differential
cross section for bin tk is defined as:〈

∂σ

∂X

〉
tk

=
Nunfolded
tk

TΦ∆Xtk

, (5)

where Nunfolded
tk

is the estimated number of events in
bin tk (as given by Eq. 2), T is the number of target

nucleons, Φ is the νµ flux per unit area and integrated
over neutrino energy (as detailed in Reference [12]), and
∆Xtk is the width of bin tk. Even though single pion
resonant production has a threshold at 480 MeV, no cut
is applied to the νµ flux, as the CC1π+ signal definition
includes processes with different thresholds as well.

The number of target nucleons is computed considering
only the oxygen and hydrogen in the FGD2 water mod-
ules, as the carbon, silicium and magnesium components
are removed by the Bayesian unfolding with background
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subtraction. The total number of target nucleons is found
to be:

T = NA · VFV · ρ
∑

a=O,H

fa
Aa
Ma

= 2.55 · 1029 ,

where NA = 6.022 · 1023mol−1 is the Avogadro number,
VFV is the volume of the modules considered inside the
FV, ρ = ρarea/∆z is the total density of the water mod-
ules of the FGD2 (ρarea = 2798.7 ± 5.4 mg/cm2 is the
total areal density and ∆z = 2.79 cm is the width of each
water module); a runs over the elements present in the
water modules; fa is the mass fraction; Aa represents the
averaged number of nucleons per nucleus; and Ma is the
atomic mass.

Figure 4 shows the differential cross section as a func-
tion of pion kinematics (top), muon kinematics (center),
cos(θ(µ,π+)) (bottom left), and Erecν (bottom right). For
the Erecν the σ(E) is presented as a model dependent re-
sult, as the Erecν is unfolded to the true neutrino energy
as predicted by NEUT. The NEUT and GENIE (version
2.6.4 [29]) predictions are also shown in the plots. The
differential cross sections obtained are compatible with
the NEUT prediction, but a small suppression is seen at
0.5 < pπ+ < 0.7 GeV and cos(θπ+) > 0.95. This might
be linked to the model for CC coherent interactions used
in NEUT: NEUT greatly over-estimates the amount of
coherent interactions especially at low Eπ+ [39]. The
GENIE simulation reproduces well the shapes of the dis-
tributions, but over-estimates the overall cross section
normalization.

The total flux integrated cross section is computed as:

〈σ〉Φ =
Ntotal

T · Φ
. (6)

The total flux integrated νµ CC single positive pion
production cross section on water in the restricted
phase-space is measured to be 〈σ〉φ = 4.25 ±
0.48 (stat) ± 1.56 (syst) × 10−40 cm2/nucleon. This re-
sult is compatible with the NEUT prediction of 5.03 ×
10−40 cm2/nucleon, and about 2σ away from the GE-
NIE prediction 7.68×10−40 cm2/nucleon. The dominant
systematic uncertainties on this result are those related
to the cross section model (23.9%) and flux parameters
(25.5%). The flux uncertainties are larger than the initial
uncertainty size because of the background subtraction
procedure. Final state interactions and detector system-
atic uncertainties contribute with 5.3% and 10.8%, re-
spectively. The data and MC statistical errors are esti-
mated as 10.7% and 3.3%, respectively. Figure 5 shows
the total νµ CC1π+ cross section on water in the re-
duced phase-space of pπ+ > 200 MeV/c, pµ > 200 MeV/c,
cos(θπ+) > 0.3 and cos(θµ) > 0.3, with the T2K νµ flux
and the NEUT and GENIE predictions.

The data related to this measurement can be found to-
gether with the cross section results obtained when un-
folding the muon kinematics and neutrino energy distri-
butions in Reference [40].
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FIG. 5. Total νµ CC1π+ cross section on water in the
reduced phase-space of pπ+ > 200 MeV/c, pµ > 200 MeV/c,
cos(θπ+) > 0.3 and cos(θµ) > 0.3. The T2K data point is
placed at the νµ flux mean energy. The vertical error repre-
sents the total uncertainty, and the horizontal bar represents
68% of the flux each side of the mean. The T2K flux dis-
tribution is shown in gray. The NEUT (version 5.1.4.2) and
GENIE (version 2.6.4) predictions are the total νµ CC1π+

predictions as a function of neutrino energy. The NEUT and
GENIE averages are the flux-averaged predictions.

Conclusion—The T2K off-axis near detector ND280
is used to extract the first νµ CC1π+ differential cross
sections on water as a function of the pion kinemat-
ics and muon-pion angle. These results will be ben-
eficial to the T2K experiment and the neutrino com-
munity in general, as a better understanding of neu-
trino induced pion production on water at energy be-
low 2 GeV would result in a higher sensitivity to the
measurement of oscillation parameters. The cross sec-
tion is evaluated in the restricted phase-space defined
by pµ > 200 MeV/c, pπ+ > 200 MeV/c, cos(θµ) > 0.3
and cos(θπ+) > 0.3. The results are in good agreement
with the NEUT generator and a general suppression is
seen compared to the GENIE generator. The total νµ
CC1π+ cross section on water is found to be 〈σ〉φ =
4.25±0.48 (stat)±1.56 (syst)×10−40 cm2/nucleon, which
is in good agreement with the NEUT prediction and is
2σ lower than the GENIE prediction.
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