Speciation and lability of Ag-, AgCl-, and Ag<inf>2</inf>S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films

Sekine, R. and Brunetti, G. and Donner, E. and Khaksar, M. and Vasilev, K. and Jämting, Å. K. and Scheckel, Kirk G. and Kappen, P. and Zhang, Hao and Lombi, Enzo (2015) Speciation and lability of Ag-, AgCl-, and Ag<inf>2</inf>S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films. Environmental Science and Technology, 49 (2). pp. 897-905. ISSN 0013-936X

Full text not available from this repository.

Abstract

Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-), and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed “nano” Diffusive Gradients in Thin Films (DGT) devices. These nano-DGT devices were designed specifically to avoid confounding effects when measuring element lability in the presence of nanoparticles. The aging profile and stabilities of the three nanoparticles and AgNO3 (ionic Ag) in soil were examined at three different soil pH values over a period of up to 7 months. Transformation of ionic Ag, Ag-NP and AgCl-NPs were dependent on pH. AgCl formation and persistence was observed under acidic conditions, whereas sulfur-bound forms of Ag dominated in neutral to alkaline soils. Ag2S-NPs were found to be very stable under all conditions tested and remained sulfur bound after 7 months of incubation. Ag lability was characteristically low in soils containing Ag2S-NPs. Other forms of Ag were linked to higher DGT-determined lability, and this varied as a function of aging and related speciation changes as determined by XAS. These results clearly indicate that Ag2S-NPs, which are the most environmentally relevant form of Ag that enter soils, are chemically stable and have profoundly low Ag lability over extended periods. This may minimize the long-term risks of Ag toxicity in the soil environment.

Item Type:
Journal Article
Journal or Publication Title:
Environmental Science and Technology
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1600
Subjects:
?? ENVIRONMENTAL CHEMISTRYCHEMISTRY(ALL) ??
ID Code:
82379
Deposited By:
Deposited On:
24 Oct 2016 10:38
Refereed?:
Yes
Published?:
Published
Last Modified:
18 Sep 2023 01:06