Supplementary Material for “Convergence of Regression Adjusted Approximate Bayesian Computation”

BY WENTAO LI

School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.

wentao.li@newcastle.ac.uk

AND PAUL FEARNHEAD

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, U.K.

p.fearnhead@lancaster.ac.uk

1. NOTATIONS AND SET-UP

First some limit notations and conventions are given. For two sets \(A \) and \(B \), the sum of integrals \(\int_A f(x) \, dx + \int_B f(x) \, dx \) is written as \((\int_A + \int_B) f(x) \, dx \). For a constant \(d \times p \) matrix \(A \), let the minimum and maximum eigenvalues of \(A^T A \) be \(\lambda_{\min}^2(A) \) and \(\lambda_{\max}^2(A) \) where \(\lambda_{\min}(A) \) and \(\lambda_{\max}(A) \) are non-negative. Obviously, for any \(p \)-dimension vector \(x \), \(\lambda_{\min}(A) \|x\| \leq \|Ax\| \leq \lambda_{\max}(B) \). For two matrices \(A \) and \(B \), we say \(A \) is bounded by \(B \) or \(A \leq B \) if \(\lambda_{\max}(A) \leq \lambda_{\min}(B) \). For a set of matrices \(\{A_i : i \in I\} \) for some index set \(I \), we say it is bounded if \(\max_{i \in I} \lambda_{\max}(A_i) \) are uniformly bounded in \(i \). Denote the identity matrix with dimension \(d \) by \(I_d \). Notations from the main text will also be used.

The following basic asymptotic results (Serfling, 2009) will be used throughout.

Lemma 6. (i) For a series of random variables \(Z_n \), if \(Z_n \rightarrow Z \) in distribution as \(n \rightarrow \infty \), \(Z_n = O_p(1) \). (ii) (Continuous mapping) For a series of continuous function \(g_n(x) \), if \(g_n(x) = O(1) \) almost everywhere, then \(g_n(Z_n) = O_p(1) \), and this also holds if \(O(1) \) and \(O_p(1) \) are replaced by \(\Theta(1) \) and \(\Theta_p(1) \).

Some notations regarding the posterior distribution of approximate Bayesian computation are given. For \(A \subset \mathbb{R}^p \) and a scalar function \(h(\theta, s) \), let

\[
\pi_A(h) = \int_A \int_{\mathbb{R}^d} h(\theta, s) \pi(\theta) f_n(s \mid \theta) K\{\varepsilon_n^{-1}(s - s_{\text{obs}})\} \varepsilon_n^{-d} \, ds \, d\theta,
\]

and

\[
\pi_A(h) = \int_A \int_{\mathbb{R}^d} h(\theta, s) \pi_\delta(\theta) \tilde{f}_n(s \mid \theta) K\{\varepsilon_n^{-1}(s - s_{\text{obs}})\} \varepsilon_n^{-d} \, ds \, d\theta.
\]

Then \(\Pi_\varepsilon(\theta \in A \mid s_{\text{obs}}) = \pi_A(1)/\pi(1) \) and its normal counterpart \(\tilde{\Pi}_\varepsilon(\theta \in A \mid s_{\text{obs}}) = \pi_A(1)/\tilde{\pi}(1) \).

The following results from Li & Fearnhead (2015) will be used throughout.

Lemma 7. Assume Conditions 1–4. Then as \(n \rightarrow \infty \),

(i) if Condition 5 also holds then, for any \(\delta < \delta_0 \), \(\pi_{B_\delta}(1) \) and \(\tilde{\pi}_{B_\delta}(1) \) are \(o_p(1) \), and \(O_p(e^{-a_n c_\delta c_\delta}) \) for some positive constants \(c_\delta \) and \(\alpha_\delta \) depending on \(\delta \).
(ii) \(\pi_{B_δ}(1) = \bar{\pi}_{B_δ}(1)\{1 + O_p(\alpha_n^{-1})\} \) and \(\sup_{A \in B_δ} |\pi_A(1) - \bar{\pi}_A(1)| / \bar{\pi}_{B_δ}(1) = O_p(\alpha_n^{-1}) \);

(iii) if \(\varepsilon_n = o(a_n^{-1/2}) \), \(\pi_{B_δ}(1) \) and \(\pi_{B_δ}(1) \) are \(\Theta_p(a_n^{-d-p}) \), and thus \(\bar{\pi}_p(1) \) and \(\bar{\pi}_p(1) \) are \(\Theta_p(a_n^{-d-p}) \);

(iv) if \(\varepsilon_n = o(a_n^{-1/2}) \) and Condition 5 holds, \(\theta_\varepsilon = \bar{\theta}_\varepsilon + o_p(a_n^{-1/2}) \). If \(\varepsilon_n = o(a_n^{-3/5}) \), \(\theta_\varepsilon = \bar{\theta}_\varepsilon + o_p(a_n^{-1}) \).

Proof. (i) is from Li & Fearnhead (2015, Lemma 3) and a trivial modification of its proof when Condition 5 does not hold; (ii) is from Li & Fearnhead (2015, equation 13 of supplements); (iii) is from Li & Fearnhead (2015, Lemma 5 and equation 13 of supplements); and (iv) is from Li & Fearnhead (2015, Lemma 3 and Lemma 6).

2. PROOF FOR RESULTS IN SECTION 3.1

Proof of Lemma 1. For any fixed \(v \in \mathbb{R}^d \), recall that \(\Pi(\theta \in A \mid s_{\text{obs}} + \varepsilon_n v) \) is the posterior distribution given \(s_{\text{obs}} + \varepsilon_n v \) with prior \(\pi_\delta(\theta) \) and the misspecified model \(f_n(\cdot \mid \theta) \). By Kleijn & van der Vaart (2012), if there exist \(\Delta_{n,0} \) and \(V_{\theta_0} \) such that,

(KV1) for any compact set \(K \subset t(B_δ) \),

\[
\sup_{t \in K} \left| \log \frac{\tilde{f}_n(s_{\text{obs}} + \varepsilon_n v \mid \theta_0 + a_n^{-1} t)}{f_n(s_{\text{obs}} + \varepsilon_n v \mid \theta_0)} - t^T V_{\theta_0} \Delta_{n,0} + \frac{1}{2} t^T V_{\theta_0} t \right| \to 0,
\]

in probability as \(n \to \infty \), and

(KV2) \(E(\Pi(a_n\|\theta - \theta_0\| \mid s_{\text{obs}} + \varepsilon_n v)) \to 0 \) as \(n \to \infty \) for any sequence of constants \(M_n \to \infty \),

then

\[
\sup_{A \in \partial B_p} \left| \Pi(a_n(\theta - \theta_0) \in A \mid s_{\text{obs}} + \varepsilon_n v) - \int_A N(t; \Delta_{n,0}, V_{\theta_0}^{-1}) dt \right| \to 0,
\]

in probability as \(n \to \infty \).

For (KV1), by the definition of \(\tilde{f}_n(s \mid \theta) \),

\[
\log \frac{\tilde{f}_n(s_{\text{obs}} + \varepsilon_n v \mid \theta_0 + a_n^{-1} t)}{f_n(s_{\text{obs}} + \varepsilon_n v \mid \theta_0)} = \log \frac{N(s_{\text{obs}} + \varepsilon_n v; s(\theta_0 + a_n^{-1} t), a_n^{-2} A(\theta_0 + a_n^{-1} t))}{N(s_{\text{obs}} + \varepsilon_n v; s(\theta_0), a_n^{-2} A(\theta_0))}.
\]

As \(x^T A x - y^T B y = x^T (A - B) x + (x - y)^T B (x + y) \), for vectors \(x \) and \(y \) and matrices \(A \) and \(B \), by applying a Taylor expansion on \(s(\theta_0 + x t) \) and \(A(\theta_0 + x t) \) around \(x = 0 \), the right hand side of above equation equals

\[
\{D s(\theta_0 + e_n^{(1)} t) t_j^T A(\theta_0)^{-1} \zeta_n(v, t) - \frac{a_n^{-1}}{2} \zeta_n(v, t)^T \left\{ \sum_{i=1}^p D \theta_i A^{-1}(\theta_0 + e_n^{(1)} t) t_i \right\} \zeta_n(v, t) + \frac{a_n^{-1}}{2} \left\{ D \log A(\theta_0 + e_n^{(3)} t) \right\}^T t,\]

where \(\zeta_n(v, t) = A(\theta_0)^{1/2} W_{\text{obs}} + a_n \varepsilon_n v - \frac{1}{2} D s(\theta_0 + e_n^{(1)} t) t \) and for \(j = 1, 2, 3 \), \(e_n^{(j)} \) is a function of \(t \) satisfying \(|e_n^{(j)}| \leq a_n^{-1} \) which is from the remainder of the Taylor expansions. Since
with the transformation

\[\beta \tilde{v} \]

seen that the expectation under

\[o \]

Then since for any

\[t \]

where

\[\pi \]

For (KV2), let

\[r_n(s \mid \theta_0) = \alpha_n f_n(s \mid \theta_0) - \tilde{f}_n(s \mid \theta_0) \]

Since \(r_n(s \mid \theta_0) \) is bounded by a function integrable in \(\mathbb{R}^d \) by Condition 4,

\[
E \{ \bar{\Pi}(a_n \| \theta - \theta_0 \| > M_n \mid s_{obs} + \varepsilon_n v) \} - \int_{\mathbb{R}^d} \bar{\Pi}(a_n \| \theta - \theta_0 \| > M_n \mid s + \varepsilon_n v) \tilde{f}_n(s \mid \theta_0) \, ds \\
\leq \alpha_n^{-1} \int_{\mathbb{R}^d} \| r_n(s \mid \theta_0) \| \, ds = o(1).
\]

Then it is sufficient for the expectation under \(\tilde{f}_n(s \mid \theta_0) \) to be \(o(1) \). For any constant \(M > 0 \), with the transformation \(\bar{v} = a_n \{ s - s(\theta_0) \} \),

\[
\int_{\mathbb{R}^d} \bar{\Pi}(a_n \| \theta - \theta_0 \| > M_n \mid s + \varepsilon_n v) \tilde{f}_n(s \mid \theta_0) \, ds \\
\leq \int \frac{\int_{\| u \| > M} \pi(t, \bar{v} \mid v) \, dt}{\int_{B_\delta} \pi(t, \bar{v} \mid v) \, dt} N \{ \bar{v}; 0, A(\theta_0) \} \, d\bar{v} + \int_{\| u \| > M} N \{ \bar{v}; 0, A(\theta_0) \} \, d\bar{v},
\]

where \(\bar{\pi}(t, \bar{v} \mid v) = \pi_\delta(\theta_0 + a_n^{-1} t) \tilde{f}_n \{ s(\theta_0) + a_n^{-1} \bar{v} + \varepsilon_n v \mid \theta_0 + a_n^{-1} t \} \). For the first term in the above upper bound, it is bounded by a series which does not depend on \(M \) and is \(o(1) \) as \(M_n \to \infty \), as shown below. Obviously \(\int_{t(B_\delta)} \bar{\pi}(t, \bar{v} \mid v) \, dt \) can be lower bounded for some constant \(m_\delta > 0 \). Choose \(\delta \) small enough such that \(D_s(\theta) \) and \(A(\theta)^{1/2} \) are bounded for \(\theta \in B_\delta \). Let \(\lambda_{\min} \) and \(\lambda_{\max} \) be their common bounds. When \(\| \bar{v} \| < M \) and \(M_n \) is large enough,

\[
\{ t : \| t \| > M_n \} \subset \left\{ t : \sup_{\theta \in B_\delta} \| D_s(\theta) t \| \geq \| a_n \varepsilon_n v + \bar{v} \| \right\}.
\]

Then since for any \(\bar{v} \) satisfying \(\| \bar{v} \| < M \), by a Taylor expansion,

\[
\tilde{f}_n \{ s(\theta_0) + a_n^{-1} \bar{v} + \varepsilon_n v \mid \theta_0 + a_n^{-1} t \} = a_n^d N \{ D_s(\theta_0 + \varepsilon_n(1) t) ; \bar{v} + a_n \varepsilon_n v, A(\theta_0 + a_n^{-1} t) \},
\]

\[
\bar{\pi}(t, \bar{v} \mid v) \leq c N(\lambda_{\max}^{-1} \lambda_{\min} \| t \| / 2; 0, 1),
\]

where \(c \) is some positive constant, for \(t \) in the right hand side of (1). Then

\[
\int \frac{\int_{\| u \| > M} \pi(t, \bar{v} \mid v) \, dt}{\int_{B_\delta} \pi(t, \bar{v} \mid v) \, dt} N \{ \bar{v}; 0, A(\theta_0) \} \, d\bar{v} \leq m_\delta^{-1} c \int_{\| u \| > M_n} N(\lambda_{\max}^{-1} \lambda_{\min} \| t \| / 2; 0, 1) \, dt,
\]

the right hand side of which is \(o(1) \) when \(M_n \to \infty \). Meanwhile by letting \(M \to \infty \), it can be seen that the expectation under \(\tilde{f}_n(s \mid \theta_0) \) is \(o(1) \). Therefore (KV2) holds and the lemma holds. \(\square \)

The following lemma is used for equations

\[
\int_{\mathbb{R}^p} g_n(t, v) \, dt = |A(\theta)|^{-1/2} G_n(v)
\]

and

\[
\int_{\mathbb{R}^p} g(t, v) \, dt = |A(\theta)|^{-1/2} G(v).
\]

Lemma 8. For a rank-\(p \) \(d \times p \) matrix \(A \), a rank-\(d \) \(d \times d \) matrix \(B \) and a \(d \)-dimension vector \(c \),

\[
N(At; Bv + c, I_d) = N \{ t; (A^T A)^{-1} A^T (c + Bv), (A^T A)^{-1} \} g(v; A, B, c),
\]

(2)
where $P = A^T A$, and
\[
g(v; A, B, c) = \frac{1}{(2\pi)^{(d-p)/2}} \exp \left\{ -\frac{1}{2} (c + Bv)^T (I - A(A^T A)^{-1} A^T)(c + Bv) \right\}.
\]

Proof. This can be verified easily by matrix algebra. \qed

The following lemma regarding the continuity of a certain form of integral will be helpful when applying the continuous mapping theorem.

Lemma 9. Let l_1, l_1', l_2, l_2' and l_3 be positive integers satisfying $l_1' \leq l_1$ and $l_2' \leq l_2$. Let A and B be $l_1 \times l_1'$ and $l_2 \times l_2'$ matrices, respectively, satisfying that $A^T A$ and $B^T B$ are positive definite. Let $g_1(\cdot)$, $g_2(\cdot)$ and $g_3(\cdot)$ be functions in \mathbb{R}^{l_1}, \mathbb{R}^{l_2} and \mathbb{R}^{l_3}, respectively, that are integrable and continuous almost everywhere. Assume:

(i) $g_1(\cdot)$ is bounded in \mathbb{R}^{l_1} for $j = 1, 2$;

(ii) $g_j(w)$ depends on w only through $\|w\|$ and is a decreasing function of $\|w\|$, for $j = 1, 2$; and

(iii) there exists a non-negative integer l such that $\int_{\mathbb{R}^{l_3}} \prod_{k=1}^{l_1+l_2+l} w_i g_3(w) \, dw < \infty$ for any coordinates $(w_1, \ldots, w_{l_1' + l_2' + l})$ of w.

Then the function,
\[
\int \int \int P_l(w_1, w_2, w_3) |g_1(Aw_1 + x_1 w_2 + x_2 w_3 + x_3) - g_1(Aw_1)| g_2(Bw_2 + x_4 w_3 + x_5) g_3(w_3) \, dw_3 \, dw_2 \, dw_1,
\]

where $x_1 \in \mathbb{R}^{l_1 \times l_2}$, $x_2 \in \mathbb{R}^{l_1 \times l_3}$, $x_4 \in \mathbb{R}^{l_2 \times l_3}$, $x_3 \in \mathbb{R}^{l_1}$ and $x_5 \in \mathbb{R}^{l_2}$, is continuous almost everywhere.

Proof. Let m_A and m_B be the lower bound of A and B respectively. For any $(x_0, \ldots, x_0) \in \mathbb{R}^{l_1 \times l_2} \times \mathbb{R}^{l_1 \times l_3} \times \mathbb{R}^{l_2 \times l_3} \times \mathbb{R}^{l_1} \times \mathbb{R}^{l_2}$ such that the integrand in the target integral is continuous, consider any sequence (x_n, \ldots, x_n) converging to (x_0, \ldots, x_0). It is sufficient to show the convergence of the target function at (x_0, \ldots, x_0). Let $V_A = \{ w_1 : \|Aw_1\|/2 \geq \sup(x_{n1}x_{n2}x_{n3}) \|x_{n1}w_2 + x_{n2}w_3 + x_{n3}\| \}$, $V_B = \{ w_2 : \|Bw_2\|/2 \geq \sup(x_{n4}x_{n5}) \|x_{n4}w_3 + x_{n5}\| \}$, $U_A = \{ w_1 : \|w_1\| \leq 4m_A^{-1}(\|x_{01}w_2\| + \|x_{02}w_3\| + \|x_{03}\|) \}$ and $U_B = \{ w_2 : \|w_2\| \leq 4m_B^{-1}(\|x_{04}w_3\| + \|x_{05}\|) \}$. We have $V_A \subset U_A$ and $V_B \subset U_B$. Then according to the following upper bounds and condition (iii),
\[
|g_1(Aw_1 + x_1 w_2 + x_2 w_3 + x_3) - g_1(Aw_1)| \leq g_1(Aw_1 + x_1 w_2 + x_2 w_3 + x_3) + g_1(Aw_1),
\]
\[
g_1(Aw_1 + x_1 w_2 + x_2 w_3 + x_3) \leq \bar{g}_1(m_A \|w_1\|/2) \mathbb{1}_{\{w_1 \in U_A\}} + \sup_{w \in \mathbb{R}^{l_1}} g_1(w) \mathbb{1}_{\{w \in U_A\}},
\]
\[
g_2(Bw_2 + x_4 w_3 + x_5) \leq \bar{g}_2(m_B \|w_2\|/2) \mathbb{1}_{\{w_2 \in U_B\}} + \sup_{w \in \mathbb{R}^{l_2}} g_2(w) \mathbb{1}_{\{w \in U_B\}},
\]

where $g_1(w) = \bar{g}_1(\|w\|)$ and $g_2(w) = \bar{g}_2(\|w\|)$, by applying the dominated convergence theorem, the target function at (x_0, \ldots, x_0) converges to its value at (x_0, \ldots, x_0). \qed

Proof of Lemma 2. The first part holds according to Lemma 5 of Li & Fearnhead (2015). For the second part, when $c_\varepsilon = \infty$, by the transformation $v' = v'(v, t)$,
\[
\int_{\mathbb{R}^d} \int_{t(B_\delta)} P_1(v) g_n(t, v) \, dt dv = \int_{\mathbb{R}^d} \int_{t(B_\delta)} P_1 \left\{ D_{\theta_0} t + \frac{1}{a_n \varepsilon_n} v' - \frac{1}{a_n \varepsilon_n} A(\theta_0)^{1/2} W_{obs} \right\} g'(t, v') \, dt dv'.
\]
By applying Lemma 9 and the continuous mapping theorem in Lemma 6 to the right hand side of the above when \(c_\varepsilon = \infty \), and to \(\int_{B_0} \int_{(B_0)} P_t(v) g_n(t, v) \, dt \, dv \) when \(c_\varepsilon < \infty \), and using \(\int_{B_0} g(t, v) \, dt = |A(\theta_0)|^{-1/2} G(v) \), the lemma holds. \(\square \)

Proof of Lemma 3. (a), (b) and the first part of (c) hold immediately by Lemma 7. The second part of (c) is stated in the proof of Theorem 1 of Li & Fearnowhead (2015). \(\square \)

Lemma 10. Assume conditions 1–5.

(i) If \(c_\varepsilon \in (0, \infty) \) then \(\Pi_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} \) and \(\tilde{\Pi}_\varepsilon \{ a_n(\theta - \tilde{\theta}_\varepsilon) \in A \mid s_{\text{obs}} \} \) have the same limit in distribution.

(ii) If \(c_\varepsilon = 0 \) or \(c_\varepsilon = 0 \infty \) then

\[
\sup_{A \in \mathcal{B}_0} \left| \Pi_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} - \tilde{\Pi}_\varepsilon \{ a_n(\theta - \tilde{\theta}_\varepsilon) \in A \mid s_{\text{obs}} \} \right| = o_p(1).
\]

(iii) If Condition 6 holds then

\[
\sup_{A \in \mathcal{B}_0} \left| \Pi_\varepsilon \{ a_n(\theta^* - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} - \tilde{\Pi}_\varepsilon \{ a_n(\theta^* - \tilde{\theta}_\varepsilon) \in A \mid s_{\text{obs}} \} \right| = o_p(1).
\]

Proof. Let \(\lambda_n = a_n(\theta_\varepsilon - \tilde{\theta}_\varepsilon) \), and by Lemma 3(c), \(\lambda_n = o_p(1) \). When \(c_\varepsilon \in (0, \infty) \), for any \(A \in \mathcal{B}_0 \), decompose \(\Pi_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} \) into the following three terms,

\[
\begin{align*}
\left[\Pi_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} - \tilde{\Pi}_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} \right] \\
+ \left[\tilde{\Pi}_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A + \lambda_n \mid s_{\text{obs}} \} - \tilde{\Pi}_\varepsilon \{ a_n(\theta - \tilde{\theta}_\varepsilon) \in A \mid s_{\text{obs}} \} \right] \\
+ \tilde{\Pi}_\varepsilon \{ a_n(\theta - \tilde{\theta}_\varepsilon) \in A \mid s_{\text{obs}} \}.
\end{align*}
\]

For (i) to hold, it is sufficient that the first two terms in the above are \(o_p(1) \). The first term is \(o_p(1) \) by Lemma 3. For the second term to be \(o_p(1) \), given the leading term of \(\tilde{\Pi}_\varepsilon \{ a_n(\theta - \tilde{\theta}_\varepsilon) \in A \mid s_{\text{obs}} \} \) stated in the proof of Proposition 1 in the main text, it is sufficient that

\[
\sup_{v \in \mathcal{B}_0} \left(\int_{A + \lambda_n} - \int_A \right) N\{t; \mu_n(v), I(\theta_0)^{-1}\} \, dt = o_p(1).
\]

This holds by noting that the left hand side of the above is bounded by \((\int_{A + \lambda_n} - \int_A) c \, dt \) for some constant \(c \) and this upper bound is \(o_p(1) \) since \(\lambda_n = o_p(1) \). Therefore (i) holds.

When \(c_\varepsilon = 0 \) or \(\infty \), \(\sup_{A \in \mathcal{B}_0} \left| \Pi_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} - \tilde{\Pi}_\varepsilon \{ a_n(\theta - \tilde{\theta}_\varepsilon) \in A \mid s_{\text{obs}} \} \right| \) is bounded by

\[
\begin{align*}
\sup_{A \in \mathcal{B}_0} \left| \Pi_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} - \tilde{\Pi}_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} \right| \\
\quad + \sup_{A \in \mathcal{B}_0} \left| \Pi_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A + \lambda_n \mid s_{\text{obs}} \} - \int_{A + \lambda_n} \psi(t) \, dt \right| \\
\quad + \sup_{A \in \mathcal{B}_0} \left| \Pi_\varepsilon \{ a_n(\theta - \theta_\varepsilon) \in A \mid s_{\text{obs}} \} - \int_A \psi(t) \, dt \right| \\
\quad + \sup_{A \in \mathcal{B}_0} \left| \int_{A + \lambda_n} \psi(t) \, dt - \int_A \psi(t) \, dt \right| \quad (3).
\end{align*}
\]

With similar arguments as before, the first three terms are \(o_p(1) \). For the fourth term, by transforming \(t \) to \(t + \lambda_n \), it is upper bounded by \(\int_{\mathcal{B}_0} |\psi(t - \lambda_n) - \psi(t)| \, dt \) which is \(o_p(1) \) by the continuous mapping theorem. Therefore (ii) holds.
For (iii), the left hand side of the equation has the decomposed upper bound similar to (3), with \(\theta, \theta_\varepsilon, \theta_\varepsilon \) and \(\psi(t) \) replaced by \(\theta^*, \theta_\varepsilon^*, \theta_\varepsilon^* \) and \(N\{t; 0, I(\theta_0)^{-1}\} \). Then by Lemma 5, using the leading term of \(\Pi_\varepsilon \{ a_n(\theta^* - \theta_\varepsilon^*) \in A \mid s_{\text{obs}} \} \) stated in the proof of Theorem 1, and similar arguments to those used for the fourth term of (3), it can be seen that this upper bound is \(o_p(1) \). Therefore (iii) holds.

\[\square \]

3. PROOF FOR RESULTS IN SECTION 3.2

To prove Lemmas 4 and 5, some notation regarding the regression adjusted approximate Bayesian computation posterior, similar to those defined previously, are needed. Consider transformations \(t = t(\theta) \) and \(v = v(s) \). For \(A \subset \mathbb{R}^p \) and the scalar function \(h(t, v) \) in \(\mathbb{R}^p \times \mathbb{R}^d \), let

\[
\tilde{\pi}_{A, tv}(h) = \int_{\Omega(A)} \pi_{A, tv}(t, v) \, dv.
\]

Proof of Lemma 4. Since \(\beta_\varepsilon = \text{cov} \pi_{\varepsilon} \text{var}_\varepsilon(s)^{-1} \), to evaluate the covariance matrices, we need to evaluate \(\pi_{\beta_\varepsilon} \{ (\theta - \theta_0)^{k_1} (s - s_{\text{obs}})^{k_2} \} / \pi_{\beta_\varepsilon}(1) \) for \((k_1, k_2) = (0, 0), (1, 0), (1, 1), (0, 1) \) and \((0, 2) \).

First of all, we show that \(\pi_{\beta_\varepsilon} \{ (\theta - \theta_0)^{k_1} (s - s_{\text{obs}})^{k_2} \} \) is ignorable for any \(\delta < \delta_0 \) by showing that it is \(O_p(e^{-a_{\beta_\varepsilon} c_\delta}) \) for some positive constants \(c_\delta \) and \(a_\delta \). By dividing \(\mathbb{R}^d \) into \(\{ v : \|\varepsilon_n v\| \leq \delta'/3 \} \) and its complement,

\[
\sup_{\varepsilon_n \in B_\delta} \int_{\mathbb{R}^d} (s - s_{\text{obs}})^{k_2} f_n(s \mid \theta) K \left(\frac{s - s_{\text{obs}}}{\varepsilon_n} \right) \varepsilon_n^{-d} ds
\]

\[
\leq \sup_{\varepsilon_n \in B_\delta} \left\{ \sup_{\|s - s_{\text{obs}}\| \leq \delta'/3} f_n(s \mid \theta) \int_{\mathbb{R}^d} (s - s_{\text{obs}})^{k_2} K \left(\frac{s - s_{\text{obs}}}{\varepsilon_n} \right) \varepsilon_n^{-d} ds \right\}
\]

\[
+ \mathcal{K} \left(\lambda_{\min} A \varepsilon_n^{-1} \delta'/3 \right) \varepsilon_n^{-d} \int_{\mathbb{R}^d} (s - s_{\text{obs}})^{k_2} f_n(s \mid \theta) ds.
\]

By Condition 2(ii), Condition 6 and following the arguments in the proof of Lemma 3 of Li & Fearnhead (2015), the right hand side of (4) is \(O_p(e^{-a_{\beta_\varepsilon} c_\delta}) \), which is sufficient for \(\pi_{\beta_\varepsilon} \{ (\theta - \theta_0)^{k_1} (s - s_{\text{obs}})^{k_2} \} \) to be \(O_p(e^{-a_{\beta_\varepsilon} c_\delta}) \).

For the integration over \(B_\delta \), by Lemma 7 (ii),

\[
\pi_{\beta_\varepsilon} \{ (\theta - \theta_0)^{k_1} (s - s_{\text{obs}})^{k_2} \} \bigg/ \pi_{\beta_\varepsilon}(1) = a_{n, \varepsilon, c_\delta} \left\{ \frac{\tilde{\pi}_{\beta, tv}(t^{k_1} v^{k_2})}{\tilde{\pi}_{\beta, tv}(1)} + \frac{1}{\pi_{\beta_\varepsilon}(1)} \right\}
\]

where \(r_n(s \mid \theta) \) is the scaled remainder \(\alpha_n \{ f_n(s \mid \theta) - \tilde{f}_n(s \mid \theta) \} \). In the above, the second term in the first brackets is \(O_p(\alpha_n^{-1}) \) by the proof of Lemma 6 of Li & Fearnhead (2015). Then

\[
\frac{\pi_{\beta_\varepsilon} \{ (\theta - \theta_0)^{k_1} (s - s_{\text{obs}})^{k_2} \} \bigg/ \pi_{\beta_\varepsilon}(1)} = a_{n, \varepsilon, c_\delta} \left\{ \frac{\tilde{\pi}_{\beta, tv}(t^{k_1} v^{k_2})}{\tilde{\pi}_{\beta, tv}(1)} + O_p(\alpha_n^{-1}) \right\} ,
\]

and the moments \(\tilde{\pi}_{\beta, tv}(t^{k_1} v^{k_2}) / \tilde{\pi}_{\beta, tv}(1) \) need to be evaluated. Theorem 1 of Li & Fearnhead (2015) gives the value of \(\tilde{\pi}_{\beta, tv}(t) / \tilde{\pi}_{\beta, tv}(1) \), and this is obtained by substituting the leading term of \(\tilde{\pi}_{\varepsilon, tv}(t, v) \), that is \(\pi(\theta_0) g_\mu(t, v) \) as stated in Lemma 2, into the integrands. The other
moments can be evaluated similarly, and give
\[
\tilde{\pi}_{B_k,t}(k_1;v_{k_2}) = \begin{cases}
 b_n^{-1} \beta_0 \{ A(\theta_0)^{1/2} W_{obs} + a_n \epsilon_n E_{G_n}(v) \}, & (k_1, k_2) = (1, 0), \\
 b_n^{-1} \beta_0 \{ A(\theta_0)^{1/2} W_{obs} E_{G_n}(v) + a_n \epsilon_n E_{G_n}(vv^T) \}, & (k_1, k_2) = (1, 1), \\
 E_{G_n}(v), & (k_1, k_2) = (0, 1), \\
 E_{G_n}(vv^T), & (k_1, k_2) = (0, 2), \\
+ O_p(a_n^{-1}) + O_p(a_n^2 \epsilon_n^4),
\end{cases}
\]
(5)
where \(b_n = 1 \) when \(\epsilon_n < \infty \), and \(a_n \epsilon_n \) when \(\epsilon_n = \infty \). By Lemma 2, \(E_{G_n}(vv^T) = \Theta_p(1) \). Since
\[
a_n^{-1} = o(a_n^{-2/5}), \quad \text{cov}_\epsilon(\theta, s) = \epsilon_n^2 \beta_0 \text{var}_{\epsilon_n}(v) + o_p(a_n^{-2/5} \epsilon_n^2) \quad \text{and} \quad \text{var}_\epsilon(s) = \epsilon_n^2 \text{var}_{\epsilon_n}(v)\{1 + o_p(a_n^{-2/5})\}.
\]
Thus
\[
\beta_\epsilon = \beta_0 + o_p(a_n^{-2/5}),
\]
(6)
and the lemma holds.

For \(A \subset \mathbb{R}^p \) and \(B \subset \mathbb{R}^d \), let \(\pi(A, B) = \int_A \int_B \pi(\theta) f_n(s \mid \theta) K\{ \epsilon_n^{-1}(s - s_{obs}) \} \epsilon_n^{-d} ds d\theta \) and
\[
\tilde{\pi}(A, B) = \int_A \int_B \pi(\theta) \tilde{f}_n(s \mid \theta) K\{ \epsilon_n^{-1}(s - s_{obs}) \} \epsilon_n^{-d} ds d\theta.
\]
Denote the marginal mean values of \(s \) for \(\pi(\theta, s \mid \text{obs}) \) and \(\tilde{\pi}(\theta, s \mid \text{obs}) \) by \(\tilde{s}_\epsilon \) and \(s_\epsilon \) respectively.

Proof of Lemma 5. For (a), write \(\Pi_\epsilon(\theta^* \in B_\delta^c \mid \text{obs}) \) as \(\pi[\mathbb{R}^p, \{ s : \theta^*(\theta, s) \in B_\delta^c \}] / \pi(\mathbb{R}^p, \mathbb{R}^d) \). By Lemma 7, \(\pi(\mathbb{R}^p, \mathbb{R}^d) = \theta_p(1) = \Theta_p(a_n^{d-p}) \). By the triangle inequality,
\[
\pi[\mathbb{R}^p, \{ s : \theta^*(\theta, s) \in B_\delta^c \}] \leq \pi(B_\delta^c, \mathbb{R}^d) + \pi[B_\delta^c, \{ s : \| \beta_\epsilon(s - s_{obs}) \| \geq \delta/2 \}],
\]
(7)
and it is sufficient that the right hand side of the above inequality is \(o_p(1) \). Since its first term is \(\pi_{B_\delta^c}(1) \), by Lemma 7 the first term is \(o_p(1) \).

When \(\epsilon_n = \Omega(a_n^{-7/5}) \) or \(\Theta(a_n^{-7/5}) \), by (6), \(\beta_\epsilon - \beta_0 = o_p(1) \) and so \(\beta_\epsilon \) is bounded in probability. For any constant \(\beta_{\text{sup}} > 0 \) and \(\beta \in \mathbb{R}^{p \times d} \) satisfying \(\beta \leq \beta_{\text{sup}} \),
\[
\pi[B_\delta^c, \{ s : \| \beta_\epsilon(s - s_{obs}) \| \geq \delta/2 \}] \leq K \left(\epsilon_n^{-1} \frac{\delta}{2 \beta_{\text{sup}}} \right) \epsilon_n^{-d},
\]
and by Condition 2(iv), the second term in (7) is \(o_p(1) \).

When \(\epsilon_n = o(a_n^{-7/5}) \), \(\beta_\epsilon \) is unbounded and the above argument does not apply. Let \(\delta_1 \) be a constant less than \(\delta_0 \) such that \(\inf_{\theta \in B_{\delta_1/2}} \lambda_{\text{min}} \{ A(\theta)^{-1/2} \} \geq m \) and \(\inf_{\theta \in B_{\delta_1/2}} \lambda_{\text{min}} \{ D\sigma(\theta) \} \geq m \) for some positive constant \(m \). In this case, it is sufficient to consider \(\delta < \delta_1 \). By Condition 4,
\[
r_n(s \mid \theta) \leq a_n^d |A(\theta)|^{1/2} r_{\text{max}}(a_n|A(\theta)|^{-1/2} \{ s - s(\theta) \}).
\]
Using the transformation \(t = \theta(s) \) and \(v = v(s) \), \(f_n(s \mid \theta) = \tilde{f}_n(s \mid \theta) + \alpha_n^{-1} r_n(s \mid \theta) \) and applying the Taylor expansion of \(s(\theta_0 + xt) \) around \(x = 0 \),
\[
\pi[B_{\delta/2}, \{ s : \| \beta_\epsilon(s - s_{obs}) \| \geq \delta/2 \}] \leq \int_{\{B_{\delta/2}\}} \int_{\| \beta_\epsilon(s) \| \geq \delta/2} N[A(\theta_0 + a_n^{-1} t)^{-1/2} \{ Ds(\theta_0 + e_n^1 t) t - A(\theta_0)^{1/2} W_{obs} - a_n \epsilon_n v \}] : 0, I_d \]
(\epsilon_n^2) K(v) dv dt
\]
\[
+ c \int_{\{B_{\delta/2}\}} \int_{\| \beta_\epsilon(s) \| \geq \delta/2} r_{\text{max}}(A(\theta_0 + a_n^{-1} t)^{-1/2} \{ Ds(\theta_0 + e_n^1 t) t - A(\theta_0)^{1/2} W_{obs} - a_n \epsilon_n v \}) K(v) dv dt,
\]
\[
+ c \int_{\{B_{\delta/2}\}} \int_{\| \beta_\epsilon(s) \| \geq \delta/2} \]
(\epsilon_n^2) K(v) dv dt
\]
for some positive constant c. To show that the right hand side of the above inequality is $o_p(1)$, consider a function $g_4(\cdot)$ in \mathbb{R}^d satisfying $g_4(v) = \bar{g}_4(||v||)$ and $g_4(\cdot)$ is decreasing. Let $A_n(t) = A(\theta_0 + a_n^{-1}t)^{-1/2}$, $C_n(t) = D_0s(\theta_0 + \xi_1)$ and $c = A(\theta_0)^{-1/2} W_{obs}$. For each n divide \mathbb{R}^p into $V_n = \{ t : ||C_n(t)||/2 \geq c + a_n e_n v \}$ and V_n^c. In V_n, $\|A_n(t)\|C_n(t)t - c - a_n e_n v\| \geq m^2/||t||/2$ and in V_n^c, $||t|| \leq 2m^{-1} ||c + a_n e_n v||$. Then

$$\int_{t(B_{\beta}/2)} \int_{\|\beta \|e_n v \| \geq \delta/2} g_4[A_n(t)\{C_n(t)t - c - a_n e_n v\}K(v)\,dvdt\leq \int_{\|\beta \|e_n v \| \geq \delta/2} \left\{ \int_{\mathbb{R}^p} \bar{g}_4(m^2/||t||/2)\,dt + \sup_{v \in \mathbb{R}^p} g_4(v)\int_{V_n^c}^d 1\,dt \right\} K(v)\,dv,$$

where $\int_{V_n^c}^d 1\,dt$ is the volume of V_n^c in \mathbb{R}^p. Then since $\beta \|e_n v \| = o_p(1)$, $a_n e_n v = o_p(1)$ and $\int_{V_n^c}^d 1\,dt$ is proportional to $||c + a_n e_n v||^p$, the right hand side of the above inequality is $o_p(1)$. This implies $\pi(B_{\beta}/2, \{ s : ||\beta(s - s_{obs})|| \geq \delta/2 \}) = o_p(1)$.

Therefore in both cases $\Pi_{\epsilon}(\theta^* \in B_{\delta}^c | s_{obs}) = o_p(1)$. For $\Pi_{\epsilon}(\theta^* \in B_{\delta}^c | s_{obs})$, since the support of its prior is B_{δ}, there is no probability mass outside B_{δ}, i.e., $\Pi_{\epsilon}(\theta^* \in B_{\delta}^c | s_{obs}) = 0$. Therefore (a) holds.

For (b),

$$\sup_{A \in \mathbb{R}^p} \Pi_{\epsilon}(\theta^* \in A (\theta_0 \cap B_\delta | s_{obs}) - \Pi_{\epsilon}(\theta^* \in A_0(\theta_0 \cap B_\delta) = o_p(1)$$

where $\pi(B_{\beta}/2, \{ s : ||\beta(s - s_{obs})|| \geq \delta/2 \}) = o_p(1)$. Then by the proof of Lemma 6 of Li & Fearnhead (2015), (b) holds.

For (c) to begin with, $a_n(\theta - \hat{\theta}) = a_n(\theta_0 - \hat{\theta}) - a_n(\beta(s_e - \tilde{s}_e)).$ By Lemma 7, $a_n(\beta - a_n(\theta - \hat{\theta})) = o_p(1)$. For $a_n(\beta(s_e - \tilde{s}_e)$, similar to the arguments of the proof of Lemma 4,

$$s_e - s_{obs} = \epsilon_n \{ \frac{\pi_{B_{\delta},v}(v)}{\pi_{B_{\delta},v}(1)} + O_p(\alpha^{-1}) \} 1 + O_p(\alpha^{-1}), \quad s_e - s_{obs} = \epsilon_n \frac{\pi_{B_{\delta},v}(v)}{\pi_{B_{\delta},v}(1)} (1 + O_p(\alpha^{-1})).$$

Then $a_n(\beta(s_e - \tilde{s}_e) = O_p(\alpha^{-1} a_n e_n v)$ which is $o_p(1)$ if $\epsilon_n = o(a_n^{-3/5})$. Therefore the first part of (c) holds. Since $\hat{\theta}_c = \theta_c - \beta(s_e - s_{obs})$, by the expansion of $\hat{\theta}_c$ in Lemma 3(c), the above expansion of $s_e - s_{obs}$ and (5), the second part of (c) holds.

4. Proof for Results in Section 3.3

Proof of Theorem 2. The integrand of $p_{acc,q}$ is similar to that of $\pi_{\mathbb{R}^p}(1)$. The expansion of $\pi_{\mathbb{R}^p}(1)$ is given in Lemma 7(ii), and following the same reasoning, $p_{acc,q}$ can be expanded as $\epsilon_n^d \int_{B_{\delta}} \int_{B_{\delta}^c} q_n(\theta) \tilde{f}(s_{obs} + \epsilon_n v) \, K(v)\,dvd(1 + o_p(1))$. With transformation $t = \theta$, plugging the expression of $q_n(\theta)$ and $\tilde{f}(s_{obs}, \theta)$ gives that

$$p_{acc,q} = (a_n \epsilon_n v)^d \int_{t(B_{\delta})} (r_n,c)^p q(r_n,c) \frac{\pi_{\epsilon,t,v}(t,v)}{\pi(\theta_0 + a_n \epsilon t)} \, dtd(1 + o_p(1),$$
where $r_{n,\varepsilon} = \sigma_n/a_{n,\varepsilon}$ and $c_{\mu, n} = \sigma_n(\mu_n - \theta_0)$. By the assumption of μ_n, denote the limit of $c_{\mu, n}$ by c_μ. Then by Lemma 2, $p_{acc,q}$ can be expanded as

$$p_{acc,q} = (a_{n,\varepsilon,n})^d \int_{t(B\delta) \times \mathbb{R}^d} (r_{n,\varepsilon})^{p-1} q(r_{n,\varepsilon} t + c_{\mu, n}) g_n(t, v) \, dv \, dt \{1 + o_p(1)\}. \quad (8)$$

Denote the leading term of the above by $Q_{n,\varepsilon}$.

For (1), when $c_\varepsilon = 0$, since $\sup_{t \in \mathbb{R}^p} g_n(t, v) \leq c_1 K(v)$ for some positive constant c_1, $Q_{n,\varepsilon}$ is upper bounded by $(a_{n,\varepsilon,n})^d c_1$ almost surely. Therefore $p_{acc,q} \to 0$ almost surely as $n \to \infty$.

When $r_{n,\varepsilon} \to \infty$, since $q(\cdot)$ is bounded in \mathbb{R}^p by some positive constant c_2, $Q_{n,\varepsilon}$ is upper bounded by $(r_{n,\varepsilon})^{-p} c_2 (a_{n,\varepsilon,n})^d \int_{\mathbb{R}^p \times \mathbb{R}^d} g_n(t, v) \, dv \, dt$. Therefore $p_{acc,q} \to 0$ in probability as $n \to \infty$ since $\int_{\mathbb{R}^p \times \mathbb{R}^d} g_n(t, v) \, dv \, dt = \Theta_p(1)$ by Lemma 2.

For (2), let $\tilde{t}(\theta) = r_{n,\varepsilon}^{-1}(\theta - c_{\mu, n})$ and $\tilde{t}(A)$ be the set $\{\phi : \phi = \tilde{t}(\theta) \text{ for some } \theta \in A\}$. Since $\tilde{t} = \sigma_n^{-1}(\theta - \theta_0) - c_{\mu, n}$ and $\sigma_n^{-1} \to 0$, $\tilde{t}(B\delta)$ converges to \mathbb{R}^p in probability as $n \to \infty$. With the transformation $\tilde{t} = \tilde{t}(\theta)$,

$$Q_{n,\varepsilon} = \begin{cases} (a_{n,\varepsilon,n})^d \int_{\tilde{t}(B\delta) \times \mathbb{R}^d} q(\tilde{t}) g_n(r_{n,\varepsilon}(\tilde{t} + c_{\mu, n}), v) \, d\tilde{t} \, dv, & c_\varepsilon < \infty, \\ \int_{\tilde{t}(B\delta) \times \mathbb{R}^d} q(\tilde{t}) g_n(r_{n,\varepsilon}(\tilde{t} + c_{\mu, n}), v') \, d\tilde{t} \, dv', & c_\varepsilon = \infty. \end{cases}$$

By Lemma 9 and the continuous mapping theorem,

$$Q_{n,\varepsilon} \to \begin{cases} c_\varepsilon^d \int_{\mathbb{R}^p \times \mathbb{R}^d} q(\tilde{t}) g \{r_1(\tilde{t} + c_{\mu, n}), v\} \, d\tilde{t} \, dv, & c_\varepsilon < \infty, \\ \int_{\mathbb{R}^p \times \mathbb{R}^d} q(\tilde{t}) g \{r_1(\tilde{t} + c_{\mu, n}), v\} \, d\tilde{t} \, dv, & c_\varepsilon = \infty, \end{cases}$$

in distribution as $n \to \infty$. Since the limits above are $\Theta_p(1)$, $p_{acc,q} = \Theta_p(1)$.

For (3), when $c_\varepsilon = \infty$ and $r_1 = 0$, in the above, the limit of $Q_{n,\varepsilon}$ in distribution is $\int_{\mathbb{R}^p \times \mathbb{R}^d} q(\tilde{t}) g(0, v) \, d\tilde{t} \, dv = 1$. Therefore $p_{acc,q}$ converges to 1 in probability as $n \to \infty$. \hfill \Box

REFERENCES

