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Abstract

This paper presents visual cues for object tracking in video sequences using particle filtering. A consistent histogram-based
framework is developed for the analysis of colour, edge and texture cues. The visual models for the cues are learnt from the
first frame and the tracking can be carried out using one or more of the cues. A method for online estimation of the noise
parameters of the visual models is presented along with a method for adaptively weighting the cues when multiple models are
used. A particle filter (PF) is designed for object tracking based on multiple cues with adaptive parameters. Its performance
is investigated and evaluated with synthetic and natural sequences and compared with the mean-shift tracker. We show that
tracking with multiple weighted cues provides more reliable performance than single cue tracking.

Keywords – particle filtering, tracking in video se-
quences, colour, texture, edges, multiple cues, Bhat-
tacharyya distance

1 Introduction

Object tracking is required in many vision applications
such as human-computer interfaces, video communi-
cation/compression, road traffic control, security and
surveillance systems. Often the goal is to obtain a record
of the trajectory of one or more targets over time and
space. Object tracking in video sequences is a challeng-
ing task because of the large amount of data used and
the common requirement for real-time computation.
Moreover, most of the models encountered in visual
tracking are nonlinear, non-Gaussian, multi-modal or
any combination of these.

In this paper we focus on Monte Carlo methods (par-
ticle filtering) for tracking in video sequences. Particle
filtering, also known as the Condensation algorithm [1]
and bootstrap filter [2], has recently been proven to be
a powerful and reliable tool for nonlinear systems [2–4].
Particle filtering is a promising technique because of its
inherent property to allow fusion of different sensor data,
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to account for different uncertainties, to cope with data
association problems when multiple targets are tracked
with multiple sensors and to incorporate constraints.
They keep track of the state through sample-based rep-
resentation of probability density functions. Here we de-
velop a particle filtering technique for object tracking
in video sequences by visual cues. Further, methods are
presented for combining the cues if they are assumed to
be independent. By comparing results from single-cue
tracking with multiple cues we show that multiple com-
plementary cues can improve the accuracy of tracking.
The features and their parameters are adaptively chosen
based on appropriately defined distance function. The
developed particle filter together with a mixed dynamic
model enables recovery after a partial or full loss.

Different algorithms have been proposed for visual track-
ing and their particularities are mainly application de-
pendent. Many of them rely on a single cue, which can
be chosen according to the application context, e.g. in [5]
a colour-based particle filter is developed. The colour-
based particle filter has been shown [5] to outperform the
mean-shift tracker proposed in [6,7] in terms of reliabil-
ity, at the price of increased computational time. How-
ever, both the particle filtering and mean shift tracking
methods have real-time capabilities. Colour cues form
a significant part of many tracking algorithms [5, 8–12],
the advantage of colour is that it is a weak model and
is therefore unrestrictive about the type of objects be-
ing tracked. The main problem for tracking with colour
alone occurs when the region around the target object
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contains objects with similar colour. When the region is
cluttered in this way a single cue does not provide reliable
performance because it fails to fully model the target.
Stronger models have been used but they rely on off-line
learning and modelling of foreground and background
models [1,13]. Multiple-cue tracking provides more infor-
mation about the object and hence there is less opportu-
nity for clutter to influence the result. In [9] colour cues
are combined with motion and sound cues to provide bet-
ter results. Motion and sound are both intermittent cues
and therefore cannot always be relied upon. Colour and
shape cues are used in [8], where shape is described using
a parameterised rectangle or ellipse. The cues are com-
bined by weighting each one based upon the performance
in previous frames. A cue-selection approach to optimise
the use of the cues is proposed in [14] which is embedded
in a hierarchical vision-based tracking algorithm. When
the target is lost, layers cooperate to perform a rapid
search for the target and continue tracking. Another ap-
proach, called democratic integration [15] implements
cues concurrently where all vision cues are complemen-
tary and contribute simultaneously to the overall result.
The integration is performed through saliency maps and
the result is a weighted average of saliency maps. Ro-
bustness and generality are major features of this ap-
proach resulting from the combination of the cues. Adap-
tion schemes are sometimes used to handle changes to
the appearance of the object being tracked [16]. Care-
ful design has to make a trade off between adaption to
rapidly changing appearance with adapting too quickly
to incorrect regions. The work here does not involve an
adaption scheme but an existing scheme (e.g. [16]) could
be adopted within the framework. In this paper we also
show that tracking with multiple weighted cues provides
more reliable and accurate results. A framework is sug-
gested for combining colour, texture and edge cues to
provide robust and accurate tracking without the need
for extensive off-line modelling. It is an extension and
generalisation of the results reported in [17], with colour
and texture only. A comparison is presented in [17] of a
particle filter with a Gaussian sum particle filter, work-
ing separately with colour, with texture, and both with
colour and texture features. Adaptive colour and texture
segmentation for tracking moving objects is proposed
in [11]. Texture is modelled by an autobinomial Gibbs
Markov random field, whilst colour is modelled by a two-
dimensional Gaussian distribution. In our paper texture
is represented using a steerable pyramid decomposition
which is a different approach to [11] but is related to the
work in [16]. Additionally, in [11] segmentation-based
tracking with a Kalman filter is considered instead of
feature-based tracking proposed here.

The paper is organised as follows. Section 2 states the
problem of visual tracking within a sequential Monte
Carlo framework and presents the particle filter (PF)
based on single or multiple information cues. Section 3
introduces the model of the region of interest. Section 4
describes the cues and their likelihoods used for the

tracking process. Methods for adaptively changing the
cues’ noise parameters and adaptively weighting the cues
are presented. The overall likelihood function of the par-
ticle filter represents a product of the separate cues. Sec-
tion 5 investigates the particle filter performance and
validates it over different scenarios. We show the ad-
vantages of fusing multiple cues compared to single-cue
tracking using synthetic and natural video sequences. A
comparison with the mean-shift algorithm is performed
over natural video sequences and their computational
time is characterised. Results are also presented for par-
tial and full occlusions. Finally, Section 6 discusses the
results and open issues for future research.

2 Sequential Monte Carlo Framework

The aim of sequential Monte Carlo estimation is to eval-
uate the posterior probability density function (pdf)
p(xk|Zk) of the state vector xk ∈ Rnx , with dimension
nx, given a set Zk = {z1, . . . , zk} of sensor measure-
ments up to time k. The Monte Carlo approach relies on
a sample-based construction to represent the state pdf.
Multiple particles (samples) of the state are generated,
each one associated with a weight W

(`)
k which charac-

terises the quality of a specific particle `, ` = 1, 2, . . . , N .

An estimate of the variable of interest is obtained by
the weighted sum of particles. Two major stages can be
distinguished : prediction and update. During prediction,
each particle is modified according to the state model
of the region of interest in the video frame, including
the addition of random noise in order to simulate the
effect of the noise on the state. In the update stage, each
particle’s weight is re-evaluated based on the new data.

An inherent problem with particle filters is degeneracy,
the case when only one particle has a significant weight.
An estimate of the measure of degeneracy [18] at time k
is given as

Neff =
1

∑N
`=1(W

(`)
k )

. (1)

If the value of Neff is below a user defined threshold
Nthres a resampling procedure can help to avoid degen-
eracy by eliminating particles with small weights and
replicating particles with larger weights.

2.1 A Particle Filter for Object Tracking Using Multiple
Cues

Within the Bayesian framework, the conditional pdf
p(xk+1|Zk) is recursively updated according to the
prediction step

p(xk+1|Zk) =
∫

Rnx

p(xk+1|xk)p(xk|Zk)dxk (2)
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and the update step

p(xk+1|Zk+1) =
p(zk+1|xk+1)p(xk+1|Zk)

p(zk+1|Zk)
(3)

where p(zk+1|Zk) is a normalising constant. The recur-
sive update of p(xk+1|Zk+1) is proportional to

p(xk+1|Zk+1) ∝ p(zk+1|xk+1)p(xk+1|Zk). (4)

Table 1: The Particle Filter with Multiple Cues

Initialisation
(1) For ` = 1, . . . , N , generate samples {x(`)

0 } from the
prior distribution p(x0). Set initial weights
W

(`)
0 = 1/N .

For k = 0, 1, 2, . . . ,

Prediction Step
(2) For ` = 1, . . . , N , sample

x
(`)
k+1 ∼ p(xk+1|x(`)

k )
from the dynamic model presented in Section 3.

Measurement Update: evaluate the importance
weights

(3) Compute the weights

W
(`)
k+1 ∝ W

(`)
k L(zk+1|x(`)

k+1).

based on the likelihood L(zk+1|x(`)
k+1) given in Sec-

tion 4.
(4) Normalise the weights, Ŵ

(`)
k+1 =

W
(`)
k+1∑N

`=1
W

(`)
k+1

.

Output
(5) The state estimate x̂k+1 is the probabilistically av-

eraged sum

x̂k+1 =
N∑

`=1

Ŵ
(`)
k+1x

(`)
k+1.

(6) Estimate the effective number of particles Neff

Neff =
1

∑N
`=1(Ŵ

(`)
k+1)2

If Neff ≤ Nthres then perform resampling

Resampling Step
(7) Multiply/suppress samples x

(`)
k+1 with high/ low im-

portance weights Ŵ
(`)
k+1.

(8) For ` = 1, . . . , N , set W
(`)
k+1 = Ŵ

(`)
k+1 = 1/N .

Usually, there is no simple analytical expression for prop-
agating p(xk+1|Zk+1) through (4) so numerical meth-
ods are used.

In the particle filter approach, a set of N weighted
particles, drawn from the posterior conditional pdf, is
used to map integrals to discrete sums. The posterior
p(xk+1|Zk+1) is approximated by

p̂(xk+1|Zk+1) ≈
N∑

`=1

Ŵ
(`)
k+1δ(xk+1 − x

(`)
k+1) (5)

where Ŵ
(`)
k are the normalised importance weights. New

weights are calculated, putting more weight on particles
that are important according to the posterior pdf (5).

It is often impossible to sample directly from the pos-
terior density function p(xk+1|Zk+1). This difficulty is
circumvented by making use of the importance sampling
from a known proposal distribution p(xk+1|xk). The par-
ticle filter is given in Table 1. The residual resampling
algorithm described in [19, 20] is applied at step (7).
This is a two step process making use of the sampling-
importance-resampling scheme.

3 Dynamic Models

The considered model for the moving object provides
invariance to different motions, such as translations, ro-
tations, and to changes in the object size. This allows to
cover the different types of motion of the object, also the
case when the object size varies considerably (the ob-
ject get closer to the camera or moves far away from it)
and hence ensures reliable performance of the PF. In our
particular implementation two generic models are used.
We adopted a constant velocity model for the transla-
tional motion and the random walk model for the rota-
tion and scaling. A mixed dynamic motion model is also
presented which allows more than one model to be used
for dealing with occlusions.

For the purpose of tracking an object in video sequences
we initially choose a region which defines the object.
The shape of this region is fixed a priori and here is a
rectangular box.

Denote by (x, y) the coordinates of the centre of the rect-
angular region, by θ the angle through which the region
is rotated, and by s the scale, (ẋ, ẏ) are the respective
velocity components.

3.1 Constant Velocity Model for Translational Motion

The translational motion of the region of interest in
x direction can be described by a constant velocity
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model [21]

xk+1 = Fxk + wk, wk v N (0, Q), (6)

where the state vector is x = (x, ẋ)T . The matrix F

F =

(
1 T

0 1

)
,

describes the dynamics of the state over time and T is the
sampling interval. The system noise wk is assumed to be
a zero-mean white Gaussian sequence, wk v N (0, Q),
with the covariance matrix

Q =

(
1
4T 4 1

2T 3

1
2T 3 T 2

)
σ2 (7)

and σ is the noise standard deviation.

3.2 Random Walk Model for Rotational Motion and for
the Scale

A random walk model propagates the state x = (θ, s)T

by
xk+1 = xk + wk, (8)

where wk v N (0, Q) is a zero-mean Gaussian noise,
with covariance matrix Q = diag{σ2

θ , σ2
s }, describing the

uncertainty in the state vector.

3.3 Multi-Component State

The motion of the object being tracked is described us-
ing the translation (x, y), rotation (θ) and scaling (s)
components. The translation components are modelled
using the constant velocity model (6) and the rotation
and scaling components are modelled using the random
walk model (8). The full augmented state of the region
is then given as

x = (x, ẋ, y, ẏ, θ, s)T . (9)

The dynamics of the full state can then be modelled as

xk+1 = Gxk + wk, wk v N (0, Q), (10)

where the matrix G has the form

G =




F 02×2 02×1 02×1

02×2 F 02×1 02×1

01×2 01×2 1 0

01×2 01×2 0 1




. (11)

The covariance matrix of the zero-mean Gaussian is

Q =




Qx 02×2 02×1 02×1

02×2 Qy 02×1 02×1

01×2 01×2 σ2
θ 0

01×2 01×2 0 σ2
s




, (12)

where Qx is the covariance matrix of the constant-
velocity model for the x component (7), Qy is the co-
variance matrix of the y component and σ2

θ and σ2
s are

the covariances for the rotation (θ) and scaling (s).

3.4 Mixed Dynamic Model

A mixed-dynamic model allows the system to be de-
scribed through more than one dynamic model [16,22,23]
and provides abilities to the tracking algorithm to cope
with occlusions. Here, we make use of two models: the
constant velocity model as given in Section 3.1 and the
other is the reinitialisation model described below. When
the object is occluded the tracker might lose it temporar-
ily. In this case the reininialisation model that ensures
uniform spread of particles along the image guarantees
robustness. The new location of the object is recovered
after processing the information from separate cues in
the measurement update step.

Samples are generated from the constant velocity model
with probability j, set a priori, and from the reinitialisa-
tion model with probability 1−j. Hence, from the mixed
model samples are generated by the following steps:

(1) Generate a number γ ∈ [0, 1) from a uniform dis-
tribution U

(2) If γ > j, then sample from the constant velocity
model (6)

(3) else use the reinitialisation model

p(xk+1|xk) ∼ U(0, xmax). (13)

where xmax is a vector with the maximum allowed values
for the state vector components. This is repeated until
the required number of samples are obtained.

4 Likelihood Models

This section describes how we model the separate cues
of the rectangular region Sx, surrounding the moving
object and the likelihood models of the cues. One of
the particularities of tracking moving objects in video
sequences compared to other tracking problems, such
as tracking of airborne targets with radar data, is that
there are no measurement models in explicit form. The
estimated state variables of the object are connected to
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features of the video sequences. Practically, the likeli-
hood models of the features provide information about
the changes in the motion of the object.

All of the models are based on histograms. Histograms
have the useful property that they allow some change in
the object appearance without changing the histogram.

4.1 Colour Cue

Colour cues are flexible in the type of object that they
can be used to track. However, the main drawbacks of
colour cues are:

• the effect of other similar coloured regions and
• the lack of discrimination with respect to rotation (ob-

vious on Fig. 1).

A histogram, hx = (h1,x, . . . , hBC ,x), for a region Sx

corresponding to a state x is given by

hi,x =
∑

u∈Sx

δi(bu), i = 1 . . . BC (14)

where δi is the Kronecker-delta function at the bin index
i, bu ∈ {1, . . . , BC} is the histogram bin index associated
with the intensity at pixel location u = (x, y) and BC is
the number of bins in each colour channel. The histogram
is normalised such that

∑BC

i=1 hi,x = 1.

A histogram is constructed for each channel in the colour
space. For example, we use 8x8x8 bin histograms in the
three channels of red, green, blue (RGB) colour space [9],
other colour spaces could be used to improve robustness
to illumination or appearance changes.

4.2 Texture Cue

Although there is no unique definition of texture, it is
generally agreed that texture describes the spatial ar-
rangements of pixel levels in an image, which may be
stochastic or periodic, or both [24]. Texture can be qual-
itatively characterised such as fine, coarse, grained and
smooth. When a texture is viewed from a distance it may
appear to be fine, however, when viewed from close up
it may appear to be coarse.

The texture description used for this work is based on
steerable pyramid decomposition [25]. The first deriva-
tive filter as developed in [26] is steered to 4 orientations
at two scales (subsampled by a factor of two). A his-
togram is then constructed for each of the 8 bandpass
filter outputs

ti,x =
∑

u∈Sx

δi(tu), i = 1, . . . , BT (15)

(a) Frame 1

(b) Frame 40

(c) Frame 70

Fig. 1. Colour cues provide a flexible model for tracking but
lack discrimination with respect to rotation. The time board
is tracked with colour cues, it can be seen that at frame 40
(b) the region has rotated, this has got worse by frame 70 (c).

where tu ∈ {1, . . . , BT } is the histogram bin index asso-
ciated with the steerable filter output θ̂ at pixel location
u, with BE number of bins. The histogram is normalised
such that

∑BE

i=1 ei,x = 1.

4.3 Edge Cue

Edge cues are useful for modelling the structure of the
object to be tracked. The edges are described using a his-
togram based on the estimated edge direction. Given an
image region Sx the intensity of the pixels in that region
are I(Sx). The edge images are constructed by estimat-
ing the gradients ∂I

∂x and ∂I
∂y in the x and y directions

respectively by Prewitt operators. The edge strength m
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and direction θ are then approximated as

m(u) =

√
∂I

∂x
+

∂I

∂y
, θ(u) = tan−1

(
∂I

∂y
/
∂I

∂x

)
. (16)

The edge direction is filtered to include only edges with
magnitude above a predefined threshold

θ̂(u) =
{

θ(u), m(u) > threshold
0, otherwise.

(17)

A histogram ei,x of the edge directions θ̂ is then con-
structed

ei,x =
∑

u∈Sx

δi(bu), i = 1, . . . , BE (18)

where bu ∈ {1, . . . , BE} is the histogram bin index as-
sociated with the thresholded edge gradient θ̂ at pixel
location u, with BE number of bins. The histogram is
normalised such that

∑BE

i=1 ei,x = 1.

4.4 Weighted Histograms

The above histograms discard all information about the
spatial arrangement of the features in the image. An
alternative approach that incorporates the pixel distri-
bution can help to give better performance [5]. More
specifically we can give greater weighting to pixels in the
center of the image region. This weighting can be done
through the use of a convex and monotonically decreas-
ing kernel, for example the Epanechnikov kernel [5] or
the elliptical Gaussian function

K(u) =
1

2πρxρy
exp

(
− (x− x̂)2

2ρ2
x

+
(y − ŷ)2

2ρ2
y

)
(19)

where the values ρ2
x and ρ2

y control the spatial signifi-
cance of the weighting function in the x and y directions
and the centre pixel in the target region is at (x̂, ŷ). This
kernel can be used to weight the pixel when extracting
the histogram

hi,x =
∑

u∈Sx

K (u) δi(bu), i = 1 . . . BC (20)

The histogram is normalised so that
∑BC

i=1 hi,x = 1.

4.5 Distance Measure

The Bhattacharyya measure [27] has been used previ-
ously for colour cues [5, 7] because it has the important
property that ρ(p, p) = 1. In the case here the distri-
butions for each cue are represented by the respective

histograms [28]

ρ(href, htar) =
B∑

i=1

√
href,ihtar,i, (21)

where two normalised histograms htar and href describe
the cues for a target region defined in the current frame
and a reference region in the first frame respectively. The
measure of the similarity between these two distributions
is then given by the Bhattacharyya distance

d(href,htar) =
√

1− ρ(href, htar). (22)

The larger the measure ρ(href, htar) is, the more similar
the distributions are. Conversely, for the distance d, the
smaller the value the more similar the distributions (his-
tograms) are. For two identical normalised histograms
we obtain d = 0 (ρ = 1) indicating a perfect match.

Based on (22) a distance D2 for colour can be defined
that takes into account all of the colour channels

D2(href, htar) =
1
3

∑

c∈{R,G,B}
d2(hc

ref, h
c
tar) (23)

the distance D2 for the edges is equal to d2 since there
is only one component. The distance D2 for texture is

D2(href,htar) =
1
8

∑

ω∈{1,...,8}
d2(hω

ref, h
ω
tar) (24)

where ω is the channel in the steerable-pyramid decom-
position.

The likelihood function for the cues can be defined by [9]

L(z |x) ∝ exp
(
−D2(href, hx)

2σ2

)
(25)

where the standard deviation σ specifies the Gaussian
noise in the measurements. Note that small Bhat-
tacharyya distances correspond to large weights in the
particle filter. The choice of an appropriate value for σ is
usually left as a design parameter, a method for setting
and adapting the value is proposed in Section 4.6.

4.6 Dynamic Parameter Setting

Figure 2 shows the likelihood surface for a single cue,
applied to one frame, with different values of σ. It can
be seen that as σ is varied the likelihood surface changes
significantly. The likelihood becomes more discriminat-
ing as the value of σ is decreased. However, if σ is too
small and there has been some change in the appearance
of the object, due to noise, then the likelihood function
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may have all values near to or equal to zero. The value
of the noise parameter σ has a major influence on the
properties of the likelihood (25). Typically, the choice of
this value is left as a design parameter to be determined
usually by experimentation. For a well constrained prob-
lem, such as face tracking, analysis can be performed
off-line to determine an appropriate value. However, if
the algorithm is to be used to track a priori unknown
objects, it may not be possible to determine one value
for all objects. To overcome the problems of choosing an
appropriate value for σ, an adaptive scheme is presented
here which aims to maximise the information available
in the likelihood, using the Bhattacharyya distance d.
We define the minimum squared distance D2

l,min as the
minimum distance D2 of the set of distance calculated
for all particles with a particular cue l (l = 1, 2, . . . , L)
where L is the number of cues. Rearranging the likeli-
hood yields

log(L) = −D2

2σ2
(26)

from which we can get

σ =
√

2
2

√
−D2

l,min

log(L)
. (27)

For example if the choice is made to maximise the in-
formation by setting σ to give a maximum likelihood
log(L) = −1 (L ≈ 0.36) then σ = (

√
2D2

l,min)/2.

4.7 Multiple Cues

The relationship between different cues has been treated
differently by different authors. For example, [29] makes
the assumption that colour and texture are not indepen-
dent. However, other works [11, 30] assume that colour
and texture cues are independent. For the purposes of
image classification the independence assumption be-
tween colour and texture is applied for feature fusion in
a Bayesian framework [31].There is generally agreement
that in practice colour and texture and colour and edges
do combine well together.

We assume that the considered cue combinations, colour
and texture and colour and edges are independent. With
this assumption the overall likelihood function of the
particle filter represents a product of the likelihoods of
the separate cues

Lfused(zk|xk) =
L∏

l=1

Ll(zl,k|xk)εl (28)

The cues are adaptively weighted by weighting coeffi-
cients εl, zk denotes the measurement vector, composed
of the measurement vectors zl,k from the lth cue for
l = 1, . . . , L.

(a) σ = 0.30

(b) σ = 0.17

Fig. 2. The effect of the σ value on the cues. The results
shown are for the colour cue, however, similar results apply
for texture and edges. It can be seen that as σ decreases
there is more discrimination in the likelihood. As σ becomes
smaller the likelihood tends to zero. A method for dynamic
setting of σ is presented in Section 4.6

4.8 Adaptively Weighted Cues

A method is presented here which takes account of the
Bhattacharyya distance (22) to give some significance to
the likelihood obtained for each cue based on the current
frame. This is different to previous works which use the
performance of the cues over the previous frames [9], not
taking into account information from the latest measure-
ments. This allows an estimate to be made for εl in (28).
Using the smallest value of the distance measure D2

l,min

for each cue the weight for each cue l is determined by

ε̂l =
1

D2
l,min

, l = 1, . . . , L. (29)

The weights are then normalised such that
∑L

l=1 εl = 1

εl =
ε̂l∑L
l=1 ε̂l

, l = 1, . . . , L. (30)
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Fig. 3. Results from: 1) nonadaptive cues (N), 2) adaptive
cues with automatic setting of σ (Aσ), 3) Gaussian weighting
kernel for the histogram (WH), 4) both WH & Aσ.

5 Experimental Results

This section evaluates the performance of : i) the colour,
texture and edge cues ii) combined cues and iii) the
mixed-state model in sequences with occlusion.

The combined root mean squared error (RMSE) [32]

RMSExy =

√√√√ 1
R

R∑

i=0

(xi − x̂i)2 + (yi − ŷi)2 (31)

of the pixel coordinates (xi, yi) to their estimates (x̂i, ŷi)
is the measure used to evaluate the performance of the
developed technique in each frame i = 1, . . . , Nf over
R = 100 independent Monte Carlo realisations.

5.1 Dynamic σ and Weighted Histograms

Two techniques were given in this paper to improve the
performance of the cues: i) automatic setting of the
noise parameters σ for the likelihood (Section 4.6) and
ii) weighting of the pixels in the histogram extraction
process (Sections 4.1, 4.2 and 4.3). The effect of these
techniques can be seen in Fig. 3, where the RMSExy is
shown for 100 realisations each with N = 500 particles,
Nthresh = N/2 for tracking in a synthetic sequence us-
ing colour cues. Four different implementations are com-
pared: 1) nonadaptive cues (N), 2) adaptive cues with
automatic setting of σ (Aσ), 3) Gaussian weighting ker-
nel for the histogram (WH), 4) and both WH & Aσ.
The automatic setting of σ and the use of a Gaussian
weighting kernel for the histogram both provide an im-
provement. The smallest error is seen when the Gaus-
sian weighting kernel for the histogram is combined with
automatic setting of σ (WH & Aσ).

5.1.1 Single Cues

Three very different tracking scenarios are used to high-
light some of the strengths and weaknesses of the in-
dividual cues. All of the results are obtained using 500
particles. The first sequence is a wildlife problem which
involves tracking a penguin [33] moving across a snowy
background, Fig. 4. As is common in wildlife scenarios
the colour of the object to be tracked is similar to the
background. The particle filter with colour cues (Fig. 4
(a)-(c)) is distracted by similar coloured background re-
gions. Both the particle filter with edge cues (Fig. 4 (d)-
(f)) and with texture cues (Fig. 4 (g)-(i)) perform much
better and track the penguin successfully.

(a) Frame 1 (b) Frame 37 (c) Frame 61

(d) Frame 1 (e) Frame 35 (f) Frame 61

(g) Frame 1 (h) Frame 37 (i) Frame 61

Fig. 4. Tracking a penguin against a snowy background. The
colour cues (a)-(c) are distracted by the snowy background.
Using either the edge (d)-(f) or the texture cues (g)-(i) pro-
vides an improvement.

The second sequence is a car tracking [33] problem with
the car undergoing a significant and rapid change in
scale. It can be seen that despite the change in scale both
the particle filters with colour (Fig. 5 (a)-(c)) and edge
cues (Fig. 5 (d)-(f)) are able to keep track of the full state
of the car. However, the texture cues (Fig. 5 (g)-(i)) fail
because of the change in appearance and distractions in
the background.

The final example from single cues is an example of
tracking a logo, in a longer sequence, that is undergo-
ing translation, rotation and some small amount of scale
change. All three cues are able to keep track of the lo-
cation of the sequence but the particle filter with colour
cues (Fig. 6 (a)-(c)) does not provide accurate state in-
formation for the rotation of the object. The particle fil-

8



(a) Frame 1 (b) Frame 26 (c) Frame 91

(d) Frame 1 (e) Frame 26 (f) Frame 91

(g) Frame 1 (h) Frame 26 (i) Frame 91

Fig. 5. Tracking a car, as it moves away it undergoes a signifi-
cant change in scale. The colour (a)-(c) and edge (d)-(f) cues
both cope with the scale change. After the original object
has undergone some change the texture cues get distracted
by the background.

ter with texture cues (Fig. 6 (d)-(f)) provides better in-
formation about the rotation of the object and the par-
ticle filter with edge cues (Fig. 6 (g)-(i)) provides the
most accurate result of the three.

5.1.2 Comparison with Mean-Shift Tracker

An alternative tracking technique that has received a
considerable amount of research interest recently is the
mean-shift tracker [6,34]. A comparison between the vi-
sual particle filter presented here and the mean-shift
tracker is particularly relevant because they are both
based on histogram analysis. The mean-shift tracker is a
mode-finding technique that locates the local minimum
of the posterior density function. Based on the mean-
shift vector, received as an estimation of the gradient of
the Bhattacharyya function, the new object state esti-
mate is calculated. The mean-shift algorithm was imple-
mented with Epanechnikov kernel [6].

A comparison between the results of the particle filter
and the mean-shift tracker can be seen in Figure 7, both
algorithms use colour cues. The mean-shift tracker is un-
able to track successfully as the hand is moved in front of
the face. The particle filter is slightly distracted by the
face, however, it is successfully tracks the hand due to
the fact that it can maintain a multi-modal distribution
for a number of frames whereas the mean-shift tracker
is not able to. This illustrates the superiority of the par-
ticle filter with respect to the mean-shift tracker in the
presence of ambiguous situations.

(a) Frame 1 (b) Frame 105 (c) Frame 290

(d) Frame 1 (e) Frame 105 (f) Frame 290

(g) Frame 1 (h) Frame 105 (i) Frame 290

Fig. 6. Logo tracking as it undergoes translation, rotation
and mild scale change. The colour (a)-(c) cues are able to
locate the object but it does not successfully capture the
object rotation. The texture cues (g)-(i) provide more accu-
rate information about the rotation and the edge cues (d)-(f)
provide the most accurate information about the rotation.

(a) Frame 1 (b) Frame 66 (c) Frame 196

(d) Frame 1 (e) Frame 66 (f) Frame 196

Fig. 7. Tracking a hand using colour cues to compare the
performance of the mean-shift tracker with the particle filter.
The mean shift(a)-(c) tracker gets distracted by the face and
does not recover. The particle filter (d)-(f) is distracted by
the face but because it is able to maintain a multi-modal
distribution it is able to recover.

The results presented here were obtained from Matlab
implementation, where the particle filter takes in the or-
der of 10 times longer than the mean shift tracker. The
PF with colour cue was also implemented in C++ soft-
ware on a standard PC computer (with Pentium CPU
and 2.66 GHz) and has shown abilities to process 25-30
frames per second with particles in the range from 500 to
100. This result shows the applicability of the PF to real-
time problems. The same algorithm, ran with the Mat-
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lab code needs 8 times more computational time than
its C++ version.

5.1.3 Multiple Cues

From the results presented in the previous section it can
be seen that no single cue can provide accurate results
under all conditions. In this section we look at the per-
formance change when combining the cues.

Firstly, the behaviour of the cue weighting scheme in-
troduced in Section 4.7 is explored with an example as
shown in Fig. 8. In (d) the change in weights from edge to
colour can be seen. At the start of the sequence the edges
provide more accurate results and is therefore given a
higher weighting. As the players turn around the edges in
the scene change and therefore the model learnt from the
first frame become less reliable. In contrast the colour of
the region does not change significantly and so becomes
relatively more reliable and is given a higher weighting.

In the previous section the PF with the colour cue failed
to track the penguin successfully (Fig. 4), we now look
at how the performance of the PF is effected if the colour
cues are combined with the edge and texture informa-
tion. It can be seen in Fig. 9 that the previous perfor-
mance of the edge and texture cues is maintained even
when the colour cues are combined with them. In a
hand tracking scenario the particle filter with edge cues
(Fig. 10 (a)-(c)) fails but the particle filter with colour
cues (Fig. 10 (d)-(f))is successful. This is due to the fact
that the particle filter can maintain multi-modal pos-
terior distributions. The particle filter with combined
colour and edge cues (Fig. 10 (g)-(i)) successfully tracks
the hand through the entire sequence.

5.2 Occlusion Handling and Handling the Changeable
Window Size

It is important that the tracking process is robust to
both partial occlusions and is able to recover after a full
occlusion. The sequence shown in Fig. 11 contains full
occlusions from which the tracker successfully recovers.
This is due to the mixed-state model described in Sec-
tion 3.4 that provides the ability to recover when the
object undergoes full occlusion or re-enters the frame af-
ter leaving. Additionally, the use of the Gaussian kernel
enhances the accuracy when features are extracted from
the frame.

6 Conclusions and Future Work

This paper has presented a sequential Monte Carlo tech-
nique for object tracking in a broad range of video se-
quences with visual cues. The visual cues, colour, edge,
and texture, form the likelihood of the developed par-
ticle filter. A method for automatic dynamic setting of

(a) Frame 1

(b) Frame 16

(c) Frame 26

 

(d) Weights of each cue through the sequence

Fig. 8. The particle filter is run with adaptively weighted
colour and edge cues to track the football player’s helmet.
(a)-(c) show that the helmet is successfully tracked. The
weighting assigned to the cues is shown in (d).

the noise parameters of the cues is proposed to allow
more flexibility in the object tracking. Multiple cues are
combined for tracking, which has been shown to make
the particle filter more able to accurately and robustly
track a range of objects. These techniques can be fur-
ther extended with other visual cues such as motion and
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(a) Frame 1 (b) Frame 37 (c) Frame 61

(d) Frame 1 (e) Frame 35 (f) Frame 61

Fig. 9. The same sequence as in Fig 4 for which colour track-
ing failed. (a)-(c) show the results from tracking with com-
bined colour and edge cues, (d)-(f) from colour and texture
cues. It can be seen that combining the colour cues with ei-
ther edge and texture cues provides accurate tracking.

(a) Frame 1 (b) Frame 66 (c) Frame 196

(d) Frame 1 (e) Frame 66 (f) Frame 196

(g) Frame 1 (h) Frame 66 (i) Frame 196

Fig. 10. Hand tracking as it undergoes translation, rotation
and mild scale change. The colour (a)-(c) cues track the
object, although some distraction is caused by the face. The
edge cues (d)-(f) get distracted by the edge information in
the light. Combining colour and edges (g)-(i) provides more
accurate tracking of the hand.

non-visual cues.

The developed particle filter is compared with the mean-
shift algorithm and its reliability is shown also in the
presence of ambiguous situations. Nevertheless that the
particle filter is more time consuming than the mean-
shift algorithm, it runs comfortably in real time.

Current and future areas for research include the inves-

(a) Frame 1

(b) Frame 40

(c) Frame 168

Fig. 11. In this sequence the serve speed board is being
tracked, it undergoes both partial and full occlusion. The
results show that the cues are resilient to partial occlusion,
see (b) and (c). Using the mixed-state model the tracker is
able to recover following a full occlusion.

tigation of alternative data fusion schemes, improved
proposal distributions, tracking multiple objects and
online adaption of the target model.
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