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Summary: We show how the idea of monotone coupling from the past can produce sim-

ple algorithms for simulating samples at a non-neutral locus under a range of demographic

models. We specifically consider a biallelic locus, and either a general variable population

size mode, or a general migration model for population subdivision. We investigate the

effect of demography on the efficacy of selection, and the effect of selection on genetic

divergence between populations.
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1 Introduction

While simulating from neutral population genetics models is straightforward using the

coalescent (Kingman, 1982), even for complex demographic models (see e.g. Donnelly and

Tavaré, 1995; Hudson, 2002), simulation from non-neutral models is much more difficult.

There are currently numerous approaches to simulation for non-neutral models. These can

be split into two cases, simulating from the stationary distribution of the population, or

simulating from the population at a specfic time. Examples of the latter include simulating

samples a specific time after the fixation of a beneficial allele (e.g. Przeworski, 2003). In

this paper we focus on the former.

For non-neutral models which assume parent-independent mutation, constant population

size and random-mating, the stationary distribution of allele frequencies is known and can

be simulated from directly using rejection sampling (Donnelly et al., 2001) or numerical

integration methods (Fearnhead and Meligkotsidou, 2004; Joyce and Genz, 2006). For

such models it is also possible to simulate the genealogy of a sample, and linked neutral

variation. This is possible by simulating and conditioning on the frequency of the non-

neutral allele in the history of the population(Spencer and Coop, 2004; Coop and Griffiths,

2004; Nordborg, 2001; Nordborg and Innan, 2003), or by simulating from the conditional

distribution of the ancestral selection graph given the allelic type of the sample (Slade,

2000; Stephens and Donnelly, 2003; Fearnhead, 2006)

For models which do not assume parent-independent mutations, it is possible to use

coupling-from-the-past (CFTP) (Propp and Wilson, 1996; Kendall, 2005) to simulate sam-

ples from the ancestral selection graph (Fearnhead, 2001). Here we extend this idea. Firstly

we introduce a simpler implementation of CFTP, which is obtained by having a state-space

of unordered rather than ordered samples. This means that we characterise a sample by

the number of alleles of each type, rather than by the allelic type of each of an ordered set

of chromosomes. This has two advantages, firstly that as we work on a smaller dimensional

space, coupling should be quicker. Secondly, for the models we consider, by working with

unordered samples we obtain a monotonicity of the sample space, which makes it more

straightforwad to detect when we have obtained a sample from the stationary distribution

of interest, and thus provides a much simpler algorithm to implement.

Our second extension is to allow for a variety of demographic models, including arbitrary

variable population size models, and models with multiple sub-populations (demes). As

far as we are aware, the method we propose is the only current method for simulating
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from such multiple deme coalescent models in the presence of selection. Our method is

computationally efficient, with for example 1,000 samples of size 100 being simulated in

less than 40s for a 10 deme stepping-stone model under a variety of selection models (see

RESULTS).

2 Methods

Monotone Coupling From The Past

Consider an ergodic Markov chain Xt with state space {0, 1, . . . , K}. Coupling from the

past (CFTP; Propp and Wilson, 1996) gives a method for simulating from the stationary

distribution of Xt. The idea is based on the fact that if we simulated the Markov chain

from time −∞ to time 0, then regardless of the initial value of the chain, X−∞, we would

have that X0 is a draw from the stationary distribution of the chain. The idea of CFTP is

that it enables us to perform such simulation in finite computing time.

To do this we first introduce some extra simulation, in that we consider simulating the value

of Xt+1 for all possible values of Xt. To simplify notation we will define a function Ft(·)

which specifies all these transitions. So if we are told that Xt = x, then we have Xt+1 =

Ft(x). Note that the function Ft is a realisation of a random variable; the stochasticity of

the Markov chain is now encompassed in the randomness of this function, but given a set

of realisations F−T , F−T+1, . . . , F−1 we have a deterministic relationship between X−T and

X0.

We now have an idealised simulation algorithm:

(a) For t = −1,−2, . . . ,−∞ simulate the value of Xt+1 for all possible values of Xt; and

hence the function Ft(·).

(b) Arbitrarily specify X−∞; and for t = −∞, . . . ,−1 recursively apply xt+1 = Ft(xt) to

obtain x0, a draw from the stationary distribution of the Markov chain.

This algorithm is obviously impracticable, as it involves infinite computing time. However

we can perform this simulation in finite computing time by doing this simulation a bit at

a time. This gives the following CFTP algorithm:

(a) Arbitrarily choose a negative integer T0; set T = T0 and S = 0.

(b) For t = S − 1, S − 2, . . . , T , simulate Ft.
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(c) For each possible starting value x = 0, 1, . . . , K, set XT = x and recursively apply

xt+1 = Ft(xt) to obtain x0. If the value of x0 is identical for all starting values of

Xt then output x0, a draw from the stationary distribution of the Markov Chain;

otherwise set S = T , T = 2T and return to (b).

The idea here is that we imagine that we are doing the idealised simulation algorithm

above. However, we first simulate the dynamics of the chain from time T0 to time 0; then

the extra dynamics from time 2T0 to time T0; then the extra dynamics from time 4T0 to

times 2T0 and so on (step b). The coupling condition in step (c) enables us to determine

with certainty what the value of X0 would be if we had continue to simulated the dynamics

of the chain back to time −∞ (as in the idealised algorithm). For example, imagine that

the condition in step (c) is satisfied after simulating back to time 4T0; this condition says

that regardless of the value of X4T0
, the value of X0 will be the same (x0). Thus we do not

need to know the realisation of the chain from time −∞ to time 4T0, as regardless of this

we know that continuing the realisation on to time 0 will produce X0 = x0. Thus the value

we output in step (c) is the same as the value we would obtain in step (b) of the idealised

simulation algorithm, and is thus a draw from the stationary distribution of the Markov

chain.

Any choice for how to decrease T when coupling does not occur would produce a valid

algorithm, but it has been argued that doubling T each time is optimum (by its relationship

with a binary search; see e.g. Kendall, 2005). Note that the validity of the approach requires

that we do not resimulate any of the dynamics of the Markov chain if coupling does not

occur in step (c). Furthermore, the algorithm requires only that the functions Ft(·) are

simulated in such a way that marginally the dynamics of the Markov chain are correct, and

it is possible to have any amount of dependence in terms of the value of Xt+1 for different

values of Xt. In some cases it is possible to utilise this to obtain a more efficient way

of determining whether coupling occurs in step (c). If we can find a distribution on Ft,

which marginally has the dynamics of the Markov chain, and that staisfies the monotonicty

condition that x ≥ y ⇒ F (x) ≥ F (y) then we can replace step (c) with:

(c) For both x = 0 and x = K, set XT = x and recursively apply xt+1 = Ft(xt) to obtain

x0. If the value of x0 is identical for both starting values of Xt then output x0, a draw

from the stationary distribution of the Markov Chain; otherwise set S = T , T = 2T

and return to (b).

We call the resulting algorithm monotone CFTP. The only difference is that we only run
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the Markov chain forward in time for the minimal and maximal elements of the state-space.

The monotonicity ensures that if these two realisations couple, then all realisations from

other starting points (which lie between them) will also couple.

While in this example we have assumed a totally ordered state-space, monotone CFTP

will still apply if we have only a partial order: if starting the chain at each of the maximal

and minimal elements of our state-space produce the same x0 value, then so must all other

starting values of the chain (which lie between the minimal and maximal elements). We

will use this extension to partial orderings in the multi-deme models we consider below.

An example of the CFTP algorithms is given in Figure 1.

Models

We consider coalescent models which include selection, variable population size and pop-

ulation structure, and focus on a single biallelic locus. Details of how selection is incor-

porated within a coalescent-type process can be found in work on the Ancestral Selection

Graph (Krone and Neuhauser, 1997; Neuhauser and Krone, 1997) or the Ancestral In-

fluence Graph (Donnelly and Kurtz, 1999). For background on incorporating population

growth or population structure see for example Donnelly and Tavaré (1995) and Hudson

(1990) and references therein.

The coalescent model we consider is obtained in the large population size limit to a range

of forward population genetics model. We briefly describe how the parameters are defined

in the case of the Wright-Fisher model. Firstly define an effective population size of N0

diploid individuals, or equivalently 2N0 chromosomes. We measure time in units of 2N0

generations, and as is common define time in terms of time before the present. We consider

a population consisting of D demes, with random mating within each deme. At time t in

the past, the population size of deme d is Nd(t) = N0λd(t) diploid individuals. For the

case D > 1 we further define a migration matrix by Mij = 4N0mij for i 6= j, where mij is

the proportion of the population of deme i in a generation that have migrated there from

deme j in the previous generation. We define Mi =
∑

j 6=i Mij.

We denote the alleles at our locus by 1 and 2. As with any biallelic model, mathematically

we can describe the mutation process in terms of parent-independent mutations. We let

θ = 4N0u, where u is the probability of mutation per chromosome per generation, and let

ν = (ν1, ν2) be the probability distribution of the mutant allele. (Note that this model

allows for “silent” mutations, which do not change the allele at the locus; thus the effective

mutation rate of allele 2 to allele 1 is θν1, and of allele 1 to allele 2 is θν2.)

Finally we define the selection process. We assume that the fitness of an ij genotype is
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Figure 1: Example of monotone CFTP for a 5-state Markov chain. For each state at

each time we imagine simulating the transitions of the Markov chain (red dashed lines).

(Informally the monotonicity can be seen by the fact that no pair of transitions cross each

other.) Initially in this example we actually simulate these from times t = −1,−2, . . . ,−4.

We then simulate forward in time from the maximal (4) and minimal (0) states at t = −4

(blue dashed lines). As simulating forward these states produce different samples, we

simulate the transitions for times t = −5, . . . ,−8, and repeat simulating forward in time

from the maximal and minimal states at t = −8. These both give the value X0 = 0, and

thus the Markov chain has coupled and we have a draw from the stationary distribution of

the chain. (Notice that regardless of what value X−8 is, forward simulation produces the

value X0 = 0, and thus this is the value we would have obtained if we had simulated the

Markov chain from time t = −∞.)
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1 + sij for i, j = 1, 2, with sij ≥ 0 and s12 = s21, We can thus define selection rates σ∗
ij =

4N0sij. We choose a different parameterisation of these selection rates where σ∗
11 = σ11,

σ∗
12 = σg + σ12 and σ∗

22 = 2σg + σ22. This is an over-parameterisation of the selection

process, and any choice of σg ≥ 0 and σij ≥ 0 for i, j = 1, 2 which gives the correct values

of σ∗
ij could be used. We then define σ = max{σ11, σ12, σ22}.

The choices of defining the mutation process in terms of a parent-independent mutation

process, and the parameterisation of selection rates, have been made in order to make the

simulation algorithm detailed below as efficient as possible. In particular the parameteri-

sation of the selection rates is in terms of a genic component (given by the σg terms) and

a non-genic component. The efficiency of the simulation algorithm is increased by choos-

ing σg to be as large as possible subject to the constraints on the positivity of the other

selection rates. (To do this we should label the alleles so that σ∗
22 ≥ σ∗

11.)

For ease of presentation we have assumed that the selection rates are constant through

time and across demes; though it is straightforward to generalise to the case where these

rates vary. The coalsescent process for our above model can be described in terms of a

backward process for the history of our sample (which is independent of the alleles in the

sample) and conditional on this backward process some forward dynamics for the allelic

types of the branches. If we simulated the backward process until time t = ∞, then for any

initial choice for the population frequency of the alleles at that time, when we simulated

the process forward we would obtain a sample at the present time which is drawn from the

stationary distribution of the population. We now describe these backward and forward

processes and how we can appply monotone CFTP.

Backward Process

The Backward Process is a continuous time Markov Chain, whose state N(t) = (N1(t), . . . ,ND(t))

is the number of branches in the underlying coalscent-type process at time t in the past

that come from each deme. The transitions correspond to different possible events in this

coalescent-type process. To ease notation, let the state at current time t be (n1, n2, . . . , nD),

then the rates of the possible events, and the corresponding transitions, are:

(i) Coalescence, deme d occurs at rate nd(nd−1)/(2λd(t)); with transition nd = nd−1.

(ii) Migration, deme d to deme i occurs at rate ndMdi/2;with transition nd = nd − 1

and ni = ni + 1.

(iii) Mutation deme d occurs at rate ndθ/2; no change to state.
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(iv) Genic Selection, deme d occurs at rate ndσg/2; with transition nd = nd + 1.

(v) Diploid Selection, deme d occurs at rate ndσ/2; with transition nd = nd + 2.

(When describing the transition we have listed only the elements of the state that change.)

The initial value of the state, N(0) is given by the number of chromosomes sampled from

each deme.

Forward Dynamics and Monotone CFTP

Assume we have simulated and stored T events in the backward process above. We now

consider the forward in time dynamics; however in order to apply CFTP we need to make

these forward dynamics deterministic, and thus for each event that we simulate in the

backward process we also simulate and store a realisation of an independent continuous

uniform [0, 1] random variable. These realisations will then determine the specific forward

transition at each event.

Forward in time the state of our system is given by the number of each type of allele in

each deme in our ancestral process. As we have stored the number of branches in each

deme at each event, we can define this state solely in terms of the number of type 1 alleles

in each deme; which we denote by n(1) = (n
(1)
1 , . . . , n

(1)
D ). Our forward in time dynamics

are determined by specifing an initial value for the state n(1). Then for the T th event,

T − 1th event, . . . , 1st event in turn we update this state as follows.

Consider the jth event. Let u denote the realisation of the uniform random variable

associated with this event. Assume the current state is n(1), and the number of branches

in each deme is n = (n1, . . . , nD). Then the dynamics depend on the type of the jth event

as follows:

(i) Coalescence, deme d; if u < n
(1)
d /nd then let n

(1)
d = n

(1)
d + 1.

(ii) Migration, deme d to deme i; if u < n
(1)
i /ni then let n

(1)
d = n

(1)
d + 1 and n

(1)
i =

n
(1)
i − 1.

(iii) Mutation deme d; if u < (nd−n
(1)
d )ν1/nd then let n

(1)
d = n

(1)
d +1; if u > 1−n

(1)
d ν2/nd

then let n
(1)
d = n

(1)
d − 1.

(iv) Genic Selection, deme d; if u < 1 − (nd − n
(1)
d )(nd − n

(1)
d − 1)/(nd(nd − 1)) then

let n
(1)
d = n

(1)
d − 1.
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(v) Diploid Selection, deme d; if

u <
n

(1)
d (n

(1)
d − 1)(n

(1)
d − 2 + (σ − σ11 + σ12)(nd − n

(1)
d )/σ)

nd(nd − 1)(nd − 2)
, (1)

then let n
(1)
d = n

(1)
d − 2; otherwise if

u < 1 −
(nd − n

(1)
d )(nd − n

(1)
d − 1)(nd − n

(1)
d − 2 + (σ − σ22 + σ12)n

(1)
d /σ)

nd(nd − 1)(nd − 2)
, (2)

then let n
(1)
d = n

(1)
d − 1.

We have described the dynamics purely in terms of changes in n(1), the changes in the

number of branches in each deme is given by the reverse of the dynamics of the backward

process. These dynamics come from the different possible events in the coalescent process

that would affect n(1). For (i) this is a coalescent event to branch of allele 1; for (ii) a

migration of an allele 1 branch from population i to d; for (iii) a mutation of an allele 2

branch to allele 1, or vice-versa; for (iv) a selection event at which an allele 1 branch is

non-ancestral (which occurs unless both incoming and continuing branches have allele 2);

and for (v) a selection event at which both non-ancestral branches have allele 1, or only

one has. (See Appendix A for the calculation of the probabilities in this case).

We can now use CFTP to simulate a sample from the stationary distribution of the pop-

ulation. The dynamics specified above satisfy a monotonicity condition (see Appendix

B) if 2σ21 ≤ σ + σ11 + σ22. (This can always be achieved by, if necessary, choosing

σ > max{σ11, σ12, σ22}; for example if σ11 = σ22 = 0 as in heterozygote advantage then

we choose σ = 2σ12.) The partial ordering of this monotonicity is that (n1, . . . , nD) ≥

(n′
1, . . . , n

′
D) if and only if nd ≥ n′

d for d = 1 . . . , D.

Thus the monotone CFTP algorithm described above can be applied, whereby to check

coupling we need only run the process forward in time from two values of the state: n(1) =

(n1, . . . , nD), all branches in all demes carry allele 1, and n(1) = (0, . . . , 0), no branches in

any deme carry allele 1. If we obtain the same sample from each of these initial conditions,

then that sample is drawn from the population at stationarity. If not we have to simulate

the backward process further into the past and repeat until coupling occurs.

Programs implementing CFTP for both single-population variable population size and for

multiple-deme constant-population size models were written in a combination of R and C.

These are available from www.maths.ac.uk/∼fearnhea.

Verifying the CFTP Results
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To check the validity of the programs implementing this monotone CFTP algorithm we

ran the programs under two special cases. Firstly we considered the neutral case, and

compared the results of our program with those obtained by the program ms (Hudson,

2002). Note that this program defines time in units of N0 generations, rather than the 2N0

used here. It assumes an infinite sites mutation model - this output can be converted into a

2-allele model with ν = (0.5, 0.5) by (i) setting the mutation rate it θ/2, and (ii) assuming

each mutation changes the allele of the chromosome so that the allele of a chromosome is

determined by whether it has an odd or an even number of mutations. For the constant

population size and a single panmictic population (D = 1) we compared results with those

based on simulating from the known stationary distribution of the population frequency of

allele 1 using rejection sampling (see Donnelly et al., 2001).

3 Results

Single-Population Model

First we used the CFTP algorithm to simulated from a series of single population models.

There are many demographic models that have been suggested or inferred for human or

other populations (e.g. Wakeley et al., 2001; Wall et al., 2002; Marth et al., 2004; Schaffner

et al., 2005). We considered four different scenarios for the variation in population size,

and four different selection models. In each case we set N0 = 10, 000 diploid individuals,

θ = 1 and ν = (0.9, 0.1) (based loosely on appropriate mutation models for disease genes;

see Pritchard, 2001). The four population size scenarios are:

Constant A constant population size.

Growth An exponentially growing population with λ(t) = exp(−0.7t) (based on an in-

ferred model for beta-globin, see Harding et al., 1997).

Bottleneck A population bottleneck from t = 0.15 to t = 0.175. During the bottleneck

the effective population size is 1,000, and prior to it it is 5,000. (based on a model from

Marth et al., 2004).

Complex A more complicated scenario based loosely on the population-size of a non-

African population in the model of Schaffner et al. (2005). It includes recent exponential

growth and a bottleneck.
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Figure 2: Plots of λ(t) = N(t)N0 for the four population-size scenarios.(Note the diffent

scale for the Complex scenario.)

Plots of λ(t) = N(t)/N0 for each of these models are given in Figure 2

The selection models are defined in terms of the selection rates σ∗ = (σ∗
11, σ

∗
12, σ

∗
22). Our four

selection models are (i) Neutral σ∗ = (0, 0, 0); (ii) Genic σ∗ = (0, 5, 10); (iii) Heterozygote

advantage σ∗ = (0, 10, 0); and (iv) Heterozygote overdominance σ∗ = (0, 20, 10). For each

combination of population size scenario and selection model we simulated 10,000 samples.

The CPU cost varied across the 16 pairs we considered. In the constant population-size

case, on a 3.4GHz Laptop, it took 0.3s, 1s, 15s and 25s to simulate 1,000 samples for the

four selection models respectively. CPU times were reduced by around a factor of 2 for

the Growth and Bottleneck scenarios, and were increased by around a factor of 1.5 for the

Complex scenario.

Histograms of the frequency of allele 1 in a sample of size 50 (conditional on the allele

segregating) are given in Figure 3. These histograms agree with other simulation results

for the cases which include constant population size (see Verifying the CFTP Results).

The different population size scenarios have little effect on the frequency spectrum in the

neutral case, but quite a noticeable effect for each of other selection scenarios. The effect is
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Figure 3: Histograms of the frequency of allele 1 in a sample of size 50 (conditional on the

allele segregating) for each pair of variable population size scenario and selection model.

See text for full details of the models.
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most pronounced for the Heterozygote Advantage case where the Growth and Bottleneck

scenarios have substantially reduced any effect of selection.

Two Deme Model

We now consider a model based on two demes each containing a constant-sized panmictic

populations with migration between the demes. For simplicity we assume each deme has

the same population size, and idential migration rate from deme 1 to deme 2 and vice

versa. We assume a total sample of size 100, with 50 chromosomes sampled from each

deme. We assume ν = (0.5, 0.5) and present results for θ = 0.1. We obtain very similar

results for smaller values of θ except that the probability of the allele segregating in the

population is reduced.

We present results for four selection models and four migration rates. Again we summarise

the selection models in terms of σ∗ = (σ∗
11, σ

∗
12, σ

∗
22). Our four selection models are (i)

Neutral σ∗ = (0, 0, 0); (ii) Genic σ∗ = (0, 5, 10); (iii) Heterozygote advantage σ∗ = (0, 10, 0);

and (iv) Recessive σ∗ = (0, 10, 10). The four migration rates (the values of M12 = M21)

are 10, 2, 0.5 and 0.1.

We simulated 10,000 samples for each of the 16 combinations of selection model and migra-

tion rate. We verified the results for the neutral model with other simulation methods (see

Verifying the CFTP Results). The CPU cost of the simulation varied little with migration,

and was approximately 0.4s, 0.7s, 10s and 4s per 1,000 samples for the four selection mod-

els respectively (CPU times for a 3.4GHz Laptop). The frequency spectrum for samples

of size 50 within a single deme, conditional on the allele segregating are shown in Figure

4. The amount of migration appears to have little effect except in the case of heterozygote

advantage, when smaller migration rates appear to reduce the effect of selection.

We also studied the effect of selection and the degree of divergence in gene frequency be-

tween the demes. Table 1 gives the mean Fst values for samples under a SNP ascertainment

model which requires 2 randomly chosen chromosomes (across both demes) to segregate.

If the observed frequency of type 1 alleles in the demes were p1 and p2 respectively, and

p = (p1 +p2)/2, then the Fst value for that sample was (p1−p)2/(p(1−p)) (see e.g Section

2.3 of Nicholson et al., 2002). The weight given to a sample is proportional to p(1 − p),

and gives more importance to samples whose minor allele frequency is close to 0.5.

As noted by Hughes et al. (2005), the effect of selection is to reduce the amount of variation

in allele frequencies, and hence Fst values, across demes. The effect is most pronounced

as migration rates are decreased. (Measuring the variation in allele frequencies using the

d-statistic of Nei (1987) produced similar results.)
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Figure 4: Histograms of the frequency of allele 1 in a sample of size 50 from a single deme

(conditional on the allele segregating) for each pair of migration rate and selection model.

See text for full details of the models.

M = 10 M = 5 M = 0.5 M = 0.1

Neutral 0.035 0.123 0.326 0.650

Genic 0.031 0.070 0.127 0.218

Het Adv 0.031 0.080 0.159 0.295

Recessive 0.033 0.083 0.149 0.199

Table 1: Mean Fst values (based on 10,000 samples) under a 2-deme model for each

combination of selection model and migration rate (M). A weighted mean was calculated

with the Fst value from each sample being weighted by the probability that 2 randomly

chosen chromosomes carry different alleles. See text for full details of the models.
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M = 10 M = 5 M = 0.5 M = 0.1

Genic 0.036 0.122 0.367 0.706

Het Adv 0.034 0.110 0.253 0.439

Recessive 0.033 0.115 0.330 0.654

Table 2: Mean Fst values (based on 10,000 samples) under a 2-deme model with different

selection regimes within each deme. We assumed neutrality within deme 1, and either the

genic, heterozygote advantage or recessive selection model for deme 2. Results are given

for different migration rates (M). A weighted mean was calculated with the Fst value from

each sample being weighted by the probability that 2 randomly chosen chromosomes carry

different alleles. See text for full details of the models.

We further tested the effect of different selection regimes within the two demes. For sim-

plicity we assumed neutrality within deme 1, and the three selection models above within

deme 2. The mean Fst values in this case are given in Table 2. As expected Fst values

increased as compared to the case of the same selection regime within each population,

though only in the genic selection case are Fst values consistently greater than in the

completely neutral case.

Stepping Stone Model

We now consider a linear (circular) stepping stone model . We assume 10 ordered demes,

each of equal population size. Migration events are possible between neighbouring demes,

with Mi,i+1 = Mi+1,i = 1 for i = 1, . . . , 9 and M1,10 = M10,1 = 1. We consider the same

mutation model and each of the four selection models used in the 2 deme case, and simulate

samples of size 100, with 50 chromosomes sampled from deme 1, and 50 from deme 1 + c

for c = 1, 2, 3, and 4. We are interested in the degree of correlation in allele frequencies

for differing degrees of physical separation of the demes (c) and differing selection models.

Again we simulated 10,000 samples for each combination of selection model and c. CPU

costs were affected only slightly by c and were 0.5s, 1,4s, 40s and 20s per 1,000 samples

for the neutral, genic, heterozygous advantage, and recessive selection models respectively

(on a 3.4GHz Laptop). We calculated Fst values in the same way as for the 2 deme case

(above), once again under a SNP ascertainment scheme that requires two randomly chosen

chromosomes from our sample of size 100 to be carrying different alleles.

Results are given in Table 3. Again the effect of selection is to reduce the amount of

variation in allele frequencies between demes. Most strikingly, for these selection models

15



c = 1 c = 2 c = 3 c = 4

Neutral 0.19 0.27 0.32 0.34

Genic 0.09 0.10 0.10 0.10

Het Adv 0.09 0.11 0.11 0.12

Recessive 0.11 0.12 0.13 0.14

Table 3: Mean Fst values (based on 10,000 samples) under a stepping-stone model for each

combination of selection model and spatial separation of the two demes (c). A weighted

mean was calculated with the Fst value from each sample being weighted by the probability

that 2 randomly chosen chromosomes carry different alleles. See text for full details of the

models.

c = 1 c = 2 c = 3 c = 4

σg = 1 0.16 0.22 0.23 0.25

σg = 2 0.13 0.17 0.19 0.17

σg = 3 0.11 0.13 0.14 0.14

σg = 4 0.10 0.11 0.12 0.11

Table 4: Mean Fst values (based on 10,000 samples) under a stepping-stone model for

genic selection and different spatial separation of the two demes (c). A weighted mean was

calculated with the Fst value from each sample being weighted by the probability that 2

randomly chosen chromosomes carry different alleles. See text for full details of the models.

the amount of variation in allele frequencies depends little on the spatial separation of the

demes, which is not the case for the neutral case. We further investigated this effect by

simulating samples under the genic model for a range of smaller selection values; σg = 1,

2, 3 and 4 (see Table 4). The effect that Fst values depend little on spatial separation is

noticeable for σg ≥ 2.

4 Discussion

We have presented a method for simulating samples from the stationary distribution of a

class of non-neutral population genetic models. The method is simple compared to other

approaches based on CFTP (Fearnhead, 2001) due to the monotonicity inherent in the

16



problems we consider. Thus simulating samples only requires (i) to simulate the number of

branches within the ancestral selection graph back in time; and (ii) to simulate the number

of these branches (within each deme) that carry allele 1 forward in time for two initial

configurations: all branches initially carrying allele 1 and all branches initially carrying

allele 2. The resulting algorithm has been shown to be computationally efficient, and

enables simulation of a large number of samples from complex selection and demographic

models within practicable CPU time. The main limitation on the simulation algorithm is

the mutation rate θ, with the CPU cost appearing to increase proportional 1/θ for small

theta. Thus simulation for very small values of the mutation rate can be prohibitive.

The monotonicity characteristic of our models occurs because we consider only a single

selective locus which carries two different alleles. For more general models, monotonicity

will not necesarily apply, but simulating unordered samples as here should still be easier

and more efficient than simulating ordered samples as in Fearnhead (2001).

The examples we considered either assumed a single population and variable population

size, or constant population size and multiple demes. There are alternative approaches for

analysing and simulating under the former class of models: in some cases direct simulation

is possible by simulating the ancestral selection graph back in time until there is a constant

population size and then simulating the alleles on the branches at that time from the

known stationary distribution of the constant population size model. Alternatively there

is recent work by Evans et al. (2006) which calculates the frequency spectrum under variable

population size models and an infinite sites mutation model, and the method used with

SelSim (Spencer and Coop, 2004) could easily be adapted to this situation.

However, simulating samples from non-neutral models with multiple demes is much more

challenging, and we know of no other current coalescent-based simulation methods in this

case. Some methods exist for special cases, for example diffusion approximations for the

island model in the limit as the number of demes tends to infinity (Cherry and Wakeley,

2003; Cherry, 2003).
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Appendix A: Diploid Selection Dynamics

Fix a deme and let n be the number of branches located in that deme and n(1) the number

which carry allele 1. The dynamics at a diploid selection event are as follows (see Neuhauser

and Krone, 1997): (i) choose 3 branches at random, call the first the incoming branch, the
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secong the continuing branch and the third the checking branch; (ii) denote by ij the

genotype given be the incoming and checking branch; and (iii) with probability σij/σ the

incoming branch is parental, otherwise the continuing branch is.

Firstly consider the probability of the non-ancestral branches at a diploid selection event

both carrying allele 1. This corresponds to the first condition on u given by (1). This

occurs if either (a) all three branches chosen in (i) carry allele 1, or (b) if two of these

branches carry allele 1 and they are non-ancestral. The probability of (a) is n(1)(n(1) −

1)(n(1) − 2)/(n(n − 1)(n − 2)). The probabilitiy of (b) is

3n(1)(n(1) − 1)(n − n(1))

n(n − 1)(n − 2)

(

σ12

3σ
+

σ − σ11

3σ

)

,

where the first term is the probability of choosing 2 branches carrying allele 1 and one

carrying allele 2; the second the term is the probability of the branch carrying allele 2

being the incoming branch and being ancestral; and the final term is the probability of the

branch carrying allele 2 being the continuing branch and being ancestral.

Combining these probabilities gives the expression on the right-hand side of (1).

The right-hand side of (2) is one minus the probability of the two non-ancestral branches

carrying allele 2, and is calculated in an identical manner. The probability of u satisfying

(2) but not (1) is thus the required probability of the precisely one non-ancestral branches

carrying allele 1.

Appendix B: Monotonicity

For notational simplicity we will drop the (1) superscipt for the state. Consider two values

for the state n and n′ which satisfy n ≥ n′. To demonstrate monotonicity we need to show

that for any possible event and value of u this ordering of the states is preserved.

Monotonicity at coalescence, mutation and genic selection events hold trivially. Assume

one of these events occurs to a branch in deme d. Either nd = n′
d in which case the dynamics

at this event are identical for both states; or nd ≥ n′
d + 1 in which case the ordering is

preserved as the transition changes the nd and n′
d values by either 0 or 1.

Monotonicity also follows for migration events. Consider a migration from deme i to deme

d. We need only consider ni 6= n′
i, as otherwise the dynamics at this event are identical for

both states. However in this case the ordering is preserved in deme i by the same argument

as above; and is also preserved in deme d as nd ≥ n′
d and the dynamics mean that whenever

n′
d increases by one then so does nd.

Finally consider diploid selection in deme d. By the same arguments as above monotonicity

trivially holds if nd = n′
d or nd ≥ n′

d + 2, so we focus on nd = n′
d + 1. The key point is to
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check that it is never possible for n′
d to be unchanged at this event at the same time as nd

being decreased by 2. Again for ease of exposition, we slightly change notation and denote

the number of branches in deme d by n. For such a transition to occur we would need

u <
nd(nd − 1)(nd − 2 + (σ − σ11 + σ12)(n − nd)/σ)

n(n − 1)(n − 2)
, (3)

for the nd to be decreased by 2 (see Equation 1) and

u > 1 −
(n − nd + 1)(n − nd)(n − nd − 1 + (σ − σ22 + σ12)(nd − 1)/σ)

n(n − 1)(n − 2)
, (4)

for n′
d to be unchanged (using Equation 2 and n′

d = nd−1). Now let a = (σ−σ11+σ12)/(3σ)

and b = (σ−σ22 +σ12)/(3σ). Inequalities (3) and (4) can simultaneously hold for the same

u if and only if

nd(nd − 1)(nd − 2 + 3a(n − nd))

n(n − 1)(n − 2)
> 1 −

(n − nd + 1)(n − nd)(n − nd − 1 + 3b(nd − 1))

n(n − 1)(n − 2)
.

Thus for monotonicity we need to show that this cannot occur, and thus that for all n and

nd

n(n − 1)(n − 2) ≥ nd(nd − 1)(nd − 2) + 3nd(nd − 1)(n − nd)a+

(n − nd + 1)(n − nd)(n − nd − 1) + 3(n − nd + 1)(n − nd)(nd − 1)b

Now consider the right hand side; this can be re-written as

nd(nd − 1)(nd − 2) + 3nd(nd − 1)(n − nd) − 3nd(nd − 1)(n − nd)(1 − a)+

(n − nd)(n − nd − 1)(n − nd − 2) + 3(n − nd)(n − nd − 1) + 3(n − nd)(n − nd − 1)(nd) +

3(n − nd)(3nd − n − 1) − 3(n − nd + 1)(n − nd)(nd − 1)(1 − b)

Now the first, second, fourth and sixth terms of this expression sum to n(n− 1)(n− 2), so

we get that the inequality we required simplifies to

0 ≥ −3nd(nd − 1)(n − nd)(1 − a) + 3(n − nd)(n − nd − 1)+

3(n − nd)(3nd − n − 1) − 3(n − nd + 1)(n − nd)(nd − 1)(1 − b)

= 3(n − nd)((n − nd − 1 + 3nd − n − 1) − (1 − a)nd(nd − 1) − (1 − b)(n − nd + 1)(nd − 1))

= 3(n − nd)(nd − 1)[2 − (1 − a)nd − (1 − b)(n − nd + 1)]
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Now this inequality trivially holds for nd = 1 and for n = nd. For larger values of nd and

n−nd the term in the square brackets is decreasing with both nd and n−nd (as both a < 1

and b < 1). So we need only show that the inequality holds for nd = 2 and n−nd = 1.The

square bracket term in this case is 2(a + b − 1); and the inequality a + b − 1 < 0 holds if

and only if 2σ21 ≤ σ + σ11 + σ22.
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