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ABSTRACT

Motivation: There is much local variation in recombination rates
across the human genome — with the majority of recombination occu-
ring in recombination hotspots: short regions of around 2kb in length
that have much higher recombination rates than neighbouring regi-
ons. Knowledge of this local variation is important, for example in the
design and analysis of association studies for disease genes. Popula-
tion genetic data, such as that generated by the HapMap project, can
be used to infer the location of these hotspots. We present a new, effi-
cient and powerful method for detecting recombination hotspots from
population data.

Results: We compare our method with four current methods for
detecting hotspots. It is orders of magnitude quicker, and has greater
power, than two related approaches. It appears to be more powerful
than Hot spot Fi sher, though less accurate at inferring the precise
positions of the hotspot. It was also more powerful than LDhot in
some situations: particularly for weaker hotspots (10-40 times the
background rate) when SNP density is lower (less than 1 per kb).
Availability: Program, data sets, and full details of results are
available at: http://www.maths.lancs.ac.uk/~fearnhea/Hotspot.
Contact: p.fearnhead@lancs.ac.uk

grid). For each possible hotspot location, a likelihood ratio statistic

is calculated for the test of whether a hotspot is present. The set
of likelihood ratio statistic values can be then be used to visually

show the evidence for a recombination hotspot at different positions
along the chromosome and to flag up likely locations for hotspots

(see Section 2.3 for more details).

Whilst similar, this approach differs from those of [4] and [5]. For
both these approachs the chromosomal region was split up into a
series of sub-regions (defined to each contain a specified number of
consecutive SNPs), and then the likelihood curve for the recombina-
tion rate was calculated for each sub-region under the assumption of
a constant recombination rate within that sub-region. (The methods
described in [4] and [5] differ in how they combine the informa-
tion from these separate sub-regions into evidence for hotspots at
different locations.)

The advantage of the new approach described here is firstly com-
putational, with CPU times being reduced by over an order of
magnitude (see Section 4.1). This is because the Monte Carlo effort
for calculating the likelihood ratio statistic for a hotspot at each
possible position can be curtailed when it becomes obvious that eit-
her there is little or there is overwhelming evidence for a hotspot
(see Section 2.4). Secondly, the method allows for a more accurate

1 INTRODUCTION estimate of the background recombination rate through using the

There is currently much interest in understanding the fine-scalACL method of [12] (see [20] and discussion in [5]) and allows
variation in the recombination rate across the human genomdOr this background rate to vary across large chromosomal regions.
and detecting the presence of recombination hotspots. Primarilfinally the new approach can more accurately be applied to regions
this is because knowledge of this variation will inform the design©f data where the SNP density is low. For such regions, the ear-
and analysis of association studies for complex diseases [25, 6Ijgr approaches would estimate a constant recombination rate over
and also because of interest in the evolutionary forces affectingotentially large sub-regions, and any signal from a hotspot within
recombination hotspots [8, 17, 16]. that sub-region would be weakened due to the averaging of a small

In recent years, recombination hotspots have been found by dire®0tspot with larger non-hotspot (background) regions. This is avoi-
observation of crossovers in sperm [7, 9, 10]. While these giveded within the new method by always fitting an appropriate hotspot
accurate measurements of current local recombination rates, afBodel, consisting of a small hotspot region flanked by a background
position of recombination hotspots, analysis of sperm is costly and€g!on.
time-consuming, and has so far been restricted to a small number of We have compared our new method for detecting hotspots with
genetic regions. the earlier methods of [4] and [5], as well as tigt spot Fi sher

To learn about genome-wide variation in recombination rates an@rogram of [11] and th&éDhot program of [14, 16].
hotpots, analysis of population genetic diversity data has proven
more successful [1, 14, 24, 18, 5, 16], particularly due to the
large amount of SNP genotype data describing genetic variation in
different human populations [23].

Here we describe a new m_ethod for 'detecting recombination, METHOD
hotspots from population genetic data. This method uses the appro- )
ximate marginal likelihood method of [3] and is closely related to QU Methods takes as input haplotype data froohromosomes each typed

t L SNPs in a specific region. Our method also assumes an estimate of

the methods described in [4] and [5]. The approach scans throug&e background recombination rate across the whole reglwugh this

a chromosomal region of interest, and considers fitting a recombibackgrouncl rate can be allowed to vary across the regiorailbef one

nation hotspot at a set of possible locations (from a pre-specifiedpproach, the one used for the results given in this papehdit phasing

genotype data and for estimating the background recombingte is given
in Section 2.4

*to whom correspondence should be addressed
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2.1 Overview of Method

Our approach is to consider a grid of possible hotspot prsifiand to eva-
luate the evidence for the presence of the hotspot at eatiesé positions.
To define the grid, we specify a hotspot widtlh, and a spacingl (see
Section 2.2). Assume the SNPs are at ordered positions, . .., zr,, and
without loss of generality relabel positions so that = 1. Let IV be the
largest integer such th& x [ + w < x . Then our algorithm consists of
the following loop:
Fori =0,...,N:

(i) Consider a hotspot from positianx [ to4 x [ + w. Denotep to be the

recombination rate within the hotspot apéf) to be the background
recombination rate close to this hotspot.

(ii) ChooseS SNPs close to this hotspot, and summarise the data by the

sequences defined solely by the alleles at tlteS&Ps.

(iii) Use the Approximate Marginal Likelihood method of [3] ms_timate
LR; the likelihood-ratio statistic fop > pgz) againstp = pg”, for
the data chosen in (ii).

The output of the method is a set of likelihood ratio statssfit /2, }7Y
for the presence of a hotspot of widthstarting at positions, I, ..., N x L.
These likelihood ratio statistics are estimated based omanitance Samp-
ling approach [2, 3]. They are estimated under a standardaiesalescent
model, though the likelihood for such a model has been showe toliust
for inference of relative recombination rates [20].

Whilst this is a non-regular inference problem, simulatiord&s [3, 4]
suggest that the null distribution of the likelihood ratiatsstic is approxi-
mately an equal mixture of a point mass at 0, and a chi-squargtbdton
with one degrees of freedom. A plot of the likelihood ratidtistac against
hotspot position (see for example Figure 1) can give a piobfirtae evi-
dence for the presence of a hotspot against position adreshtomosomal
region. Details of how we use this output to give predictiforghe position
of hotspots is given in Section 2.3.

2.2 Detailsof Method

The method requires specifying a number of parameters. Weibeswre
the default choices of our method, which are suitable foryenad human
population genetic data and are the values we used for thdigeshown
in this paper. Firstly we chose the hotspot width= 2000 and spacing

| = 1000. The width is based on evidence that hotspots are of the orde

of 1-2kb [7], and the spacing is based on a trade-off betweerpatational
cost and accuracy. In calculating the Likelihood ratioistetin step (iii) we
allow for a range for the hotspot recombination rate, andethdsere chosen
to be between 10 and 100 times the background rate.

The choice of the number of SNRS, in step (ii) of the algorithm is again
a trade-off between the information in the data summary, anddhgu-
tational cost and Monte Carlo error in the estimate of theliiked ratio
statistic. We chos& = 7, which appears to give a noticeable improve-
ment overS = 6, while increasingS further did not appear to substantially
improve performance.

The algorithm for choosing which SNPs to keep in step (ii)dsdd upon
the intuition that the most informative set of SNPs will havegé& minor
allele frequency and be equally spaced in or close to theipataotspot.

2.3 Summarising Output

Given the likelihood ratio statistic for one putative haisposition LR;,
the simplest approach is to predict the presence of a hotsdaRj > ¢
for some cutoffec. The approximate null distribution of the likelihood ratio
statistic can be used to specify a suitable value-fdrfalues ofc = 10 and

¢ = 12 would produce a false-positive approximately once every0latd
3700 independent tests respectively (and are what we cliootee results
in this paper). Given a hotspot spacingidfb, and making the conserva-
tive approximation that tests for hotspot positions are jretkelent, then this
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Fig. 1. Example output fromsequencelLDhot . The raw output is the
Likelihood Ratio values for each putative hotspot (showiblagk horizontal
lines if non-zero). These are converted into extended bbtggions (deno-
ted by green horizonal lines), for each such region we inféngle hotspot
(position given by red vertical lines — height of lines githe evidence for
that hotspot). These results are for a cutoféef 12 (red horizontal line).

would suggest a false-positive rate of less than 1 per 1.2MHlgper 3.7Mb
respectively.

However this simple approach is likely to predict a number akpot
positions for each true hotspot, as each real hotspot wiltlap a number
of the putative hotspot positions within our grid. Furthermeven a hotspot
near, but not overlapping, the putative hotspot may prodoiceevidence of
a hotspot, as its presence will reduce the amount of Linkagedpiilibrium
(LD) within the sub-region covered by t SNPs chosen in step (ii) of the
method. Thus the patterns generated bySH&NPs may fit a hotspot model
better than a no-hotspot model, even if the hotspot is in tlemwposition.

As a result we summarise the output of our method by a set of disjoi
extended hotspot regions, which are defined to be contiguous regions with
evidence for a hotspot. Each extended hotspot region cenédileast one
putative hotspot with. R > ¢. Extending out from this putative hotspot we
then include all hotspot positions withR > 4 , and all hotspot positions
that overlap with a more distant hotspot position that have > c. The
idea is to describe in an automated way a contiguous regiocomains all
F\otspot positions whosE R value may have been affected by the presence
of the putative hotspot, and thus to avoid inferring clustefrnearby hots-
pots all except one of which are likely to be false positi@&ore accurate
methods may be possible, but this ad hoc approach appearskowebin
practice.)

Within each extended hotspot region we then infer a singiedun, whose
position is chosen to be the hotspot position with the larijlesihood ratio
value within that extended hotspot region.

See Figure 1 for an example of output of our method, and the defini
of the extended hotspot regions and the inferred hotspots.

2.4 Implementation

To obtain haplotype data from genotype data we uUBEASEV2. 1 [22,
21]. To obtain estimates of the background recombinationwateised the
inferred recombination rates withifHASEv2. 1 obtained under the MR
flag [12]. These estimates are based on a model which allowdeaetit
recombination rate between each pair of consecutive SNPastifoate the
background recombination rate at a positiowe took the median of all the
recombination rates esimated within a 100kb window centered.dThe
programsequencelLDhot is able to directly input the appropriate output
from PHASEv2. 1;)

The final detail of implementing our method, is the number of Monte
Carlo simulations used within step (iii) of the method. We wbd this
to vary across different putative hotspots, depending eretlidence for a
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hotspot. We specified a minimunNy and maximumK x Ny number of
iterations. Everye x N iterations, fork = 1,2,..., K — 1 we checked
the current estimate of the likelihood ratio statisfid?;. If LR; < 4 or
LR; > 20 then we stopped the Monte Carlo simulations for that putative
hotspot. The idea is to stop the simulations if there is eilitte or over-
whelming evidence for a hotspot. The choices of cut-off valhere chosen

to be a factor of roughly 2 different from the cutoffs 8fR; > 10 and
LR; > 12 considered for detecting hotspots.

This idea of curtailing the Monte Carlo simulation in stef) Gubstanti-
ally reduces the computation cost of the method, and was fauhe\e no
noticeable effect on the performance of the method. For thdtseshown
here we choséVy = 300 and K = 50. The Monte Carlo method in step
(iii) uses bridge sampling [15]. For each set of 300 Monte €airinulations
we used 100 simulation from each of 3 driving values; see [2je being
the background recombination rate and two being rates densiwith a
hotspot.

3 DATA AND OTHER METHODS

We compare our method to four recent methods, these are
(i) the Likelihood Ratio method of [4];
(i) the Penalised Likelihood of [5], code available from
http://www.maths.lancs.ac.ukfearnhea;
(iii) the Hot spot Fi sher program of [11] which is available from
http://bioinfo.au.tsinghua.edu.cn/membelijun; and
(iv) theLDhot program of [16].
Our comparisons were based on three sets of simulated dataftake a
number of recent papers. The names we use for each set of sonslati
based upon the real data the simulations try to mimic, togetiitér wief
descriptions are as follows:

SeattleSNP These data sets attempt to mimic data from the SeattleSNP, and

consist of 200 independent data sets, each for a 25kb regiopled from a
European and African American population; the sample sizz23uand 24
individual respectively, and 100 data sets contain no totss@and the other
100 each contain a single hotspot. These are taken from [5].

Table 1. Results for SeattleSNPs simulated data.

| sequenceLbhot | PL[5]* | LR[4]* |

Populatiof | EA AA | EA AA | EA AA
False Positives | 6 2 2 512 4
Power (%) 73 65 63 67| 56 44

a: Results taken from [5].
b: Populations are European American (EA), African American (AA).
c: False positives across 200 25kb data sets for each population.

Table 2. Results for HapMap Encode simulated data.

| sequenceLDhot | Hot spot Fi sher @

Populatioft | EUR ASI AFR| EUR ASI AFR
False Positives 3 5 4 8 5 2
Power (%) 77 75 86 69 66 66
Ave. offset (bpY¥ 450 502 441| 360 376 309
Center Coverage (%) 92 86 90 96 96 98

a: Results taken from [11].

b: Populations are European (EUR), Asian (ASI) and African (AFR).

c: False positives across 100 200kb data sets for each population.

d: Average offset of predicted center feequencelLDhot , and average offset
of predicted start and end of hotspots Fat spot Fi sher .

HapMap Encode These data sets consist of one hundred 200kb regions,

sampled in three populations (European, Asian and AfricBagh region
contains a random number of hotspots (mean close to 4), and Bf@tom-
bination events occur within the hotspots. Sample sizes @iaedividuals
for each population. These are the HQ0% data sets from [11].
Human-Chimp These data sets are taken from [24] and were generate:
empirically from real data. They consist of data from 3 diietr Encode
regions (4926, 7921 and 7g31), in European, African and ctgopulati-
ons. In humans, the average background rate in the 3 regiomsOie-0.6
cM/Mb, 0.4 cM/Mb and 0.4 cM/Mb respectively. Each data setgists of
a 100kb region with a 2kb hotspot at position 49kb-51kb. Agenf hots-
pot sizes were considered, and we give results for hotspate dollowing
intensities (all cM/Mb): 0.8, 4, 8, 16, 40, 80, and 160. Sansj#tes were 60,
60 and 38 respectively. SNP density varied considerab8/pér kb (Euro-
pean), 2.5 per kb (African), and 0.6 per kb (chimp).

For further details of these data sets, see the originalrpapbe Seatt-
leSNP and HapMap Encode simulations both usedcthei program of
[19].

The HapMap Encode simulate data sets are available from
http://bioinfo.au.tsinghua.edu.cn/membelijun, and the other data sets are
available from
http://www.maths.lancs.ac.ukfearnhea/Hotspot.

4 RESULTS
We now give the results of our new methagkquencelLDhot ,

we first inferred haplotypes and estimated background recombina-
tion rates using®HASEv2. 1. For the power results we show for
sequencelDhot , we treat a hotspot as found if it overlaps with
an inferred hotspot. We count as false-positives any hotspots that do

ot overlap with a true hotspot. (Thus we ignore the extended hots-
pot regions when calculating power and false positive rates, which
makes comparisons with existing methods fair.)

4.1 SeattleSNPs

Our first comparison is with the Likelihood Ratio (LR) method
of [4] and the Penalised Likelihood (PL) method of [5]. Firstly,
the computation involved usilgequencelLDhot is substantially
smaller than that of either of the LR or PL methods. All methods
require the use dPHASE to infer haplotypes. For an example data
setsequencelLDhot took 10 minutes to analyse the resulting
haplotype data; whereas both the LR and PL methods took of the
order of 4 hours.

Table 1 gives the results of the three methods. In testing for
hotspots we used a cutoff value of = 10, as this gave com-
parable false positive rates to the other two methods. The power
of sequencelLDhot is greater that either of the two alternative
approaches, with power averaged across the two populations being

on the three sets of simulated data sets as described in Se69% for sequencelLDhot , 65% for the PL method, and0% for
tion 3. All simulated data sets provide genotype information, andthe LR method.
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Human The results fosequencelDhot andHot spot Fi sher give
values for the power of the method for 7 different recombination
rates of the hotspot ranging from 0.8 cM/Mb to 160 cM/Mb. (As
compared to a background rate in humans of approximately 0.4
o4 ‘ ‘ ‘ ‘ ‘ ‘ cM/Mb.) We pooled results for all three regions together, and also
pooled results from both human populations.

For comparison betweesequencelDhot andHot spot Fi sher
we chose a cutoff value of = 12 as for this value the two
methods had similar false positive rates for the HapMap Encode
data. The resulting estimated power curves for both methods are
shown by the black and blue curves in Figure 2. Again we see
T i M - - thatsequencelLDhot is more powerful at inferring hotspots than

Hot spot Fi sher.
Table S3 of [24] gives power dfDhot (at a5% significance

Fig. 2. Plot of power against Hotspot strength for Human-Chimp daizp) level) for different hotspot intensities. For human hotspots, they
Results for human data; (Bottom) Results for Chimp data. Foh gét:  only give power values for hotspots with intensity close to 8cM/Mb;
(black)sequencelDhot ¢ = 12, (red)sequenceLDhot ¢ =5, (blue)  for chimp hotspots they give power values for a range of hotspot
Hot spot Fi sher; (green)LDhot . In both plots vertical bars give appro-  jntensities. We have plotted these values on Figure 2 (green curve).
ximate 95% con_fldence intervals on the estimates of power. iRieic@tion For comparison we also give power curves $aguencel Dhot
rate for hotspot is on a log scale. . . . . . P

with cutoff ¢ = 5, which gives a similar nominal significance

level to LDhot . The results suggest thaDhot is more power-

ful at estimating hotspots of strength close to 8cM/Mb (20 times the
4.2 HapMap Encode background rate) in the human data. For the chimp data it appears
We next analysed the HapMap Encode simulated ddda,spot Fi shethatsequencelLDhot is more powerful for weaker hotspots (up
While each data set consists of 200kb sequenced in 90 individuto around 16cM/Mb; and.Dhot is more powerful for inferring
als, to speed up the implementation of our method (in particular tdhotspots that are stronger than 16cM/Mb.
reduce the CPU cost ¢1HASE) we subsampled just 45 individu-
als, and analysed separately the first and last 110kb of sequence. We
chose to split the sequence in this way so that for putative hotspot§ DISCUSSION
at positions close to 100kb we would still have sufficient informa- Our new method has a number of advantages over existing methods.
tive SNPs surrounding the hotspot that we would not suffer anylt is substantially quicker, and appears to be more powerful than
loss of power. Our method then took on the order of 1-2 hourghe Likelihood Ratio method of [4] and the Penalised Likelihood
to analyse a single 200kb data set (which includes running botimethod of [5]. The gain in computational speed is substantial, and
PHASE andsequencelLDhot ), as compared to a few minutes for the new method is scalable to analysing genome-wide data. For
Hot spot Fi sher. example analysing a 200kb data set in the HapMap Encode analysis

Results are given in Table 2. When testing for hotspots we usetbok of the order of 1-2 hours computing. So analysying a genome-
a cut-off of ¢ = 12 so that our method had similar false positive wide data set would take of the order of 1000 CPU days, which is
rates toHot spot Fi sher . We have a noticeable improvement in practicable as the analysis is trivially parallelisable.
power overHot spot Fi sher : when averaged over three popula-  Our method appears to be more powerful at detecting hotspots
tion, we have a power of 79% as compared to 67%. However, fothanHot spot Fi sher, though the latter method is both quicker
inferred hotspotstHot spot Fi sher is more accurate at detecting than ours, and can localise the position of the hotspots more accura-
the hotspot position. tely. The reason it appears more accurate at inferring the position of

One noticeable problem with our method is in terms of detec-the hotspots is likely to be due to the finer grid it uses for putative
ting individual hotspots when they cluster together. In these caselsotspots.
our method will tend to infer a large extended hotspot region, and A comparison withLDhot is more difficult, as this method is
thus a single hotspot. The power of our method increases by 8% ifurrently not publicly available. The comparison we did had the
we include as detected all hotspots that lie fully within any exten-problem that we could only compare the power of the different
ded hotspot region. (The average hotspot region is around 5-6kb imethods, and not also the false positive rates. Whilst we attemp-

Power
05

Hotspot Rate cM/Mb

Chimp

Power
05

length.) ted to perform a comparison where the methods had similar putative
. false-positive rates, there was not way to check these in practice.
4.3 Human-Chimp However, this comparison based on the published power results

Finally we analysed the human-chimp data. WesaguencelLDhot LDhot suggests thatequencelLDhot may be more powerful for

on all data sets, anidot spot Fi sher on the human datasets (we weaker hotspots, and perhaps data with lower SNP density; whereas
had technical difficulties with runninglot spot Fi sher on the  LDhot is more powerful for stronger hotspots and data with higher
chimp data). We also obtained results Eddhot from Table S3 of  SNP density. Both these results seem plausible. Firstly, the power
[24]. These data sets only enable us to compare power (as oppof sequencelLDhot is reliant on correctly choosing informative
sed to false-positive rates), as they all contain a known hotspot, b BNPs to be used to calculate the Likelihood Ratio statistics. If it
the recombination landscape in the remaining part of the region ishooses these well, then it fully utilises the information contained in
unknown. these SNPs, but a poor choice may mean that it misses hotspots that
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would be obvious from a different choice of SNPs. This may mean  37:601-606, 2005.
it works poor|y, Compared to other rr]e’[hodsl for stronger hotspots[lO]L Kauppi, M P Stumpf, and A J Jeffreys. Localized breakdown in linkage dise-
— where the occasional choice of a poor set of SNPs will limit its quilibrium does not always predict sperm crossover hot spots in the humaih MH

. o class Il region.Genomics, 86:13-24, 2005.
0,
power S“ghtly away from 100%. Secondly' as SNP den3|ty Incnz"aseﬁll]\] Li, M Q Zhang, and X Zhang. A new method for detecting human recombi-

substantially (to say greater than 1 SNP per klequencelLDhot nation hotspots and its applications to the HapMap ENCODE datappear in
is unable to fully utilise this extra information as it always calculates ~ American Journal of Human Genetics, 79:628-639, 2006.
the Likelihood Ratio statistics based on a fixed number of SNPs. By[12IN Li and M Stephens. Modeliing LD, and identifying recombination hots

. . . from SNP dataGenetics, 165:2213-2233, 2003.
comparlsorLDhot will continue to be able to take account of the [13]G AT McVean, P Awadalla, and P Fearnhead. A coalescent method for detecting

information in these extra SNPs regardless of how high SNP density ' ecombination from gene sequenc@enetics, 160:1231-1241, 2002.

becomes. [14]G AT McVean, S R Myers, S Hunt, P Deloukas, D R Bentley, and P Donnelly.
The fine-scale structure of recombination rate variation in the human genome.
Science, 304:581-584, 2004.
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