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ABSTRACT
Motivation: There is much local variation in recombination rates
across the human genome – with the majority of recombination occu-
ring in recombination hotspots: short regions of around 2kb in length
that have much higher recombination rates than neighbouring regi-
ons. Knowledge of this local variation is important, for example in the
design and analysis of association studies for disease genes. Popula-
tion genetic data, such as that generated by the HapMap project, can
be used to infer the location of these hotspots. We present a new, effi-
cient and powerful method for detecting recombination hotspots from
population data.
Results: We compare our method with four current methods for
detecting hotspots. It is orders of magnitude quicker, and has greater
power, than two related approaches. It appears to be more powerful
than HotspotFisher, though less accurate at inferring the precise
positions of the hotspot. It was also more powerful than LDhot in
some situations: particularly for weaker hotspots (10–40 times the
background rate) when SNP density is lower (less than 1 per kb).
Availability: Program, data sets, and full details of results are
available at: http://www.maths.lancs.ac.uk/∼fearnhea/Hotspot.
Contact: p.fearnhead@lancs.ac.uk

1 INTRODUCTION
There is currently much interest in understanding the fine-scale
variation in the recombination rate across the human genome,
and detecting the presence of recombination hotspots. Primarily
this is because knowledge of this variation will inform the design
and analysis of association studies for complex diseases [25, 6],
and also because of interest in the evolutionary forces affecting
recombination hotspots [8, 17, 16].

In recent years, recombination hotspots have been found by direct
observation of crossovers in sperm [7, 9, 10]. While these give
accurate measurements of current local recombination rates, and
position of recombination hotspots, analysis of sperm is costly and
time-consuming, and has so far been restricted to a small number of
genetic regions.

To learn about genome-wide variation in recombination rates and
hotpots, analysis of population genetic diversity data has proven
more successful [1, 14, 24, 18, 5, 16], particularly due to the
large amount of SNP genotype data describing genetic variation in
different human populations [23].

Here we describe a new method for detecting recombination
hotspots from population genetic data. This method uses the appro-
ximate marginal likelihood method of [3] and is closely related to
the methods described in [4] and [5]. The approach scans through
a chromosomal region of interest, and considers fitting a recombi-
nation hotspot at a set of possible locations (from a pre-specified
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grid). For each possible hotspot location, a likelihood ratio statistic
is calculated for the test of whether a hotspot is present. The set
of likelihood ratio statistic values can be then be used to visually
show the evidence for a recombination hotspot at different positions
along the chromosome and to flag up likely locations for hotspots
(see Section 2.3 for more details).

Whilst similar, this approach differs from those of [4] and [5]. For
both these approachs the chromosomal region was split up into a
series of sub-regions (defined to each contain a specified number of
consecutive SNPs), and then the likelihood curve for the recombina-
tion rate was calculated for each sub-region under the assumption of
a constant recombination rate within that sub-region. (The methods
described in [4] and [5] differ in how they combine the informa-
tion from these separate sub-regions into evidence for hotspots at
different locations.)

The advantage of the new approach described here is firstly com-
putational, with CPU times being reduced by over an order of
magnitude (see Section 4.1). This is because the Monte Carlo effort
for calculating the likelihood ratio statistic for a hotspot at each
possible position can be curtailed when it becomes obvious that eit-
her there is little or there is overwhelming evidence for a hotspot
(see Section 2.4). Secondly, the method allows for a more accurate
estimate of the background recombination rate through using the
PACL method of [12] (see [20] and discussion in [5]) and allows
for this background rate to vary across large chromosomal regions.
Finally the new approach can more accurately be applied to regions
of data where the SNP density is low. For such regions, the ear-
lier approaches would estimate a constant recombination rate over
potentially large sub-regions, and any signal from a hotspot within
that sub-region would be weakened due to the averaging of a small
hotspot with larger non-hotspot (background) regions. This is avoi-
ded within the new method by always fitting an appropriate hotspot
model, consisting of a small hotspot region flanked by a background
region.

We have compared our new method for detecting hotspots with
the earlier methods of [4] and [5], as well as theHotspotFisher
program of [11] and theLDhot program of [14, 16].

2 METHOD
Our methods takes as input haplotype data fromn chromosomes each typed
at L SNPs in a specific region. Our method also assumes an estimate of
the background recombination rate across the whole region, though this
background rate can be allowed to vary across the region. Details of one
approach, the one used for the results given in this paper, for both phasing
genotype data and for estimating the background recombination rate is given
in Section 2.4
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2.1 Overview of Method
Our approach is to consider a grid of possible hotspot positions, and to eva-
luate the evidence for the presence of the hotspot at each of these positions.
To define the grid, we specify a hotspot width,w, and a spacing,l (see
Section 2.2). Assume theL SNPs are at ordered positionsx1, . . . , xL, and
without loss of generality relabel positions so thatx1 = 1. Let N be the
largest integer such thatN × l + w < xL. Then our algorithm consists of
the following loop:

For i = 0, . . . , N :

(i) Consider a hotspot from positioni× l to i× l + w. Denoteρ to be the

recombination rate within the hotspot andρ
(i)
b

to be the background
recombination rate close to this hotspot.

(ii) ChooseS SNPs close to this hotspot, and summarise the data by the
sequences defined solely by the alleles at theseS SNPs.

(iii) Use the Approximate Marginal Likelihood method of [3] toestimate

LRi the likelihood-ratio statistic forρ > ρ
(i)
b

againstρ = ρ
(i)
b

, for
the data chosen in (ii).

The output of the method is a set of likelihood ratio statistics {LRi}
N

i=0
for the presence of a hotspot of widthw starting at positions0, l, . . . , N × l.
These likelihood ratio statistics are estimated based on an Importance Samp-
ling approach [2, 3]. They are estimated under a standard neutral coalescent
model, though the likelihood for such a model has been shown to be robust
for inference of relative recombination rates [20].

Whilst this is a non-regular inference problem, simulation studies [3, 4]
suggest that the null distribution of the likelihood ratio statistic is approxi-
mately an equal mixture of a point mass at 0, and a chi-squared distribution
with one degrees of freedom. A plot of the likelihood ratio statistic against
hotspot position (see for example Figure 1) can give a pictureof the evi-
dence for the presence of a hotspot against position across the chromosomal
region. Details of how we use this output to give predictionsfor the position
of hotspots is given in Section 2.3.

2.2 Details of Method
The method requires specifying a number of parameters. We describe here
the default choices of our method, which are suitable for analysing human
population genetic data and are the values we used for the results shown
in this paper. Firstly we chose the hotspot widthw = 2000 and spacing
l = 1000. The width is based on evidence that hotspots are of the order
of 1-2kb [7], and the spacing is based on a trade-off between computational
cost and accuracy. In calculating the Likelihood ratio statistic in step (iii) we
allow for a range for the hotspot recombination rate, and these where chosen
to be between 10 and 100 times the background rate.

The choice of the number of SNPs,S, in step (ii) of the algorithm is again
a trade-off between the information in the data summary, and thecompu-
tational cost and Monte Carlo error in the estimate of the likelihood ratio
statistic. We choseS = 7, which appears to give a noticeable improve-
ment overS = 6, while increasingS further did not appear to substantially
improve performance.

The algorithm for choosing which SNPs to keep in step (ii) is based upon
the intuition that the most informative set of SNPs will have larger minor
allele frequency and be equally spaced in or close to the putative hotspot.

2.3 Summarising Output
Given the likelihood ratio statistic for one putative hotspot positionLRi,
the simplest approach is to predict the presence of a hotspot if LRi > c

for some cutoffc. The approximate null distribution of the likelihood ratio
statistic can be used to specify a suitable value forc. Values ofc = 10 and
c = 12 would produce a false-positive approximately once every 1200 and
3700 independent tests respectively (and are what we choosefor the results
in this paper). Given a hotspot spacing of1kb, and making the conserva-
tive approximation that tests for hotspot positions are independent, then this
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Fig. 1. Example output fromsequenceLDhot. The raw output is the
Likelihood Ratio values for each putative hotspot (shown byblack horizontal
lines if non-zero). These are converted into extended hotspot regions (deno-
ted by green horizonal lines), for each such region we infer asingle hotspot
(position given by red vertical lines – height of lines givesthe evidence for
that hotspot). These results are for a cutoff ofc = 12 (red horizontal line).

would suggest a false-positive rate of less than 1 per 1.2Mb and 1 per 3.7Mb
respectively.

However this simple approach is likely to predict a number of hotspot
positions for each true hotspot, as each real hotspot will overlap a number
of the putative hotspot positions within our grid. Furthermore even a hotspot
near, but not overlapping, the putative hotspot may produce some evidence of
a hotspot, as its presence will reduce the amount of Linkage Disequilibrium
(LD) within the sub-region covered by theS SNPs chosen in step (ii) of the
method. Thus the patterns generated by theS SNPs may fit a hotspot model
better than a no-hotspot model, even if the hotspot is in the wrong position.

As a result we summarise the output of our method by a set of disjoint
extended hotspot regions, which are defined to be contiguous regions with
evidence for a hotspot. Each extended hotspot region contains at least one
putative hotspot withLR > c. Extending out from this putative hotspot we
then include all hotspot positions withLR > 4 , and all hotspot positions
that overlap with a more distant hotspot position that haveLR > c. The
idea is to describe in an automated way a contiguous region that contains all
hotspot positions whoseLR value may have been affected by the presence
of the putative hotspot, and thus to avoid inferring clusters of nearby hots-
pots all except one of which are likely to be false positives.(More accurate
methods may be possible, but this ad hoc approach appears to work well in
practice.)

Within each extended hotspot region we then infer a single hotspot, whose
position is chosen to be the hotspot position with the largest likelihood ratio
value within that extended hotspot region.

See Figure 1 for an example of output of our method, and the definition
of the extended hotspot regions and the inferred hotspots.

2.4 Implementation
To obtain haplotype data from genotype data we usedPHASEv2.1 [22,
21]. To obtain estimates of the background recombination ratewe used the
inferred recombination rates withinPHASEv2.1 obtained under the-MR
flag [12]. These estimates are based on a model which allows a different
recombination rate between each pair of consecutive SNPs. Toestimate the
background recombination rate at a positionx we took the median of all the
recombination rates esimated within a 100kb window centered on x. (The
programsequenceLDhot is able to directly input the appropriate output
from PHASEv2.1; )

The final detail of implementing our method, is the number of Monte
Carlo simulations used within step (iii) of the method. We allowed this
to vary across different putative hotspots, depending on the evidence for a
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hotspot. We specified a minimum,N0 and maximumK × N0 number of
iterations. Everyk × N0 iterations, fork = 1, 2, . . . , K − 1 we checked
the current estimate of the likelihood ratio statisticLRi. If LRi < 4 or
LRi > 20 then we stopped the Monte Carlo simulations for that putative
hotspot. The idea is to stop the simulations if there is eitherlittle or over-
whelming evidence for a hotspot. The choices of cut-off valuewhere chosen
to be a factor of roughly 2 different from the cutoffs ofLRi > 10 and
LRi > 12 considered for detecting hotspots.

This idea of curtailing the Monte Carlo simulation in step (iii) substanti-
ally reduces the computation cost of the method, and was found to have no
noticeable effect on the performance of the method. For the results shown
here we choseN0 = 300 andK = 50. The Monte Carlo method in step
(iii) uses bridge sampling [15]. For each set of 300 Monte Carlo simulations
we used 100 simulation from each of 3 driving values; see [2] - one being
the background recombination rate and two being rates consistent with a
hotspot.

3 DATA AND OTHER METHODS
We compare our method to four recent methods, these are

(i) the Likelihood Ratio method of [4];

(ii) the Penalised Likelihood of [5], code available from
http://www.maths.lancs.ac.uk/∼fearnhea;

(iii) the HotspotFisher program of [11] which is available from
http://bioinfo.au.tsinghua.edu.cn/member/∼lijun; and

(iv) theLDhot program of [16].

Our comparisons were based on three sets of simulated data taken from a
number of recent papers. The names we use for each set of simulations,
based upon the real data the simulations try to mimic, together with brief
descriptions are as follows:
SeattleSNP These data sets attempt to mimic data from the SeattleSNP, and
consist of 200 independent data sets, each for a 25kb region sampled from a
European and African American population; the sample sizes are 23 and 24
individual respectively, and 100 data sets contain no hotspots, and the other
100 each contain a single hotspot. These are taken from [5].
HapMap Encode These data sets consist of one hundred 200kb regions,
sampled in three populations (European, Asian and African).Each region
contains a random number of hotspots (mean close to 4), and 90% of recom-
bination events occur within the hotspots. Sample sizes are 90 individuals
for each population. These are the HQ= 90% data sets from [11].
Human-Chimp These data sets are taken from [24] and were generated
empirically from real data. They consist of data from 3 different Encode
regions (4q26, 7q21 and 7q31), in European, African and chimppopulati-
ons. In humans, the average background rate in the 3 regions were 0.5–0.6
cM/Mb, 0.4 cM/Mb and 0.4 cM/Mb respectively. Each data set consists of
a 100kb region with a 2kb hotspot at position 49kb-51kb. A range of hots-
pot sizes were considered, and we give results for hotspots of the following
intensities (all cM/Mb): 0.8, 4, 8, 16, 40, 80, and 160. Samplesizes were 60,
60 and 38 respectively. SNP density varied considerably: 1.8 per kb (Euro-
pean), 2.5 per kb (African), and 0.6 per kb (chimp).

For further details of these data sets, see the original papers. The Seatt-
leSNP and HapMap Encode simulations both used thecosi program of
[19].

The HapMap Encode simulate data sets are available from
http://bioinfo.au.tsinghua.edu.cn/member/∼lijun, and the other data sets are
available from
http://www.maths.lancs.ac.uk/∼fearnhea/Hotspot.

4 RESULTS
We now give the results of our new method,sequenceLDhot,
on the three sets of simulated data sets as described in Sec-
tion 3. All simulated data sets provide genotype information, and

Table 1. Results for SeattleSNPs simulated data.

sequenceLDhot PL [5]a LR [4]a

Populationb EA AA EA AA EA AA

False Positivesc 6 2 2 5 2 4
Power (%) 73 65 63 67 56 44

a: Results taken from [5].
b: Populations are European American (EA), African American (AA).
c: False positives across 200 25kb data sets for each population.

Table 2. Results for HapMap Encode simulated data.

sequenceLDhot HotspotFishera

Populationb EUR ASI AFR EUR ASI AFR

False Positivesc 3 5 4 8 5 2
Power (%) 77 75 86 69 66 66
Ave. offset (bp)d 450 502 441 360 376 309
Center Coverage (%) 92 86 90 96 96 98

a: Results taken from [11].
b: Populations are European (EUR), Asian (ASI) and African (AFR).
c: False positives across 100 200kb data sets for each population.
d: Average offset of predicted center forsequenceLDhot, and average offset
of predicted start and end of hotspots forHotspotFisher.

we first inferred haplotypes and estimated background recombina-
tion rates usingPHASEv2.1. For the power results we show for
sequenceLDhot, we treat a hotspot as found if it overlaps with
an inferred hotspot. We count as false-positives any hotspots that do
not overlap with a true hotspot. (Thus we ignore the extended hots-
pot regions when calculating power and false positive rates, which
makes comparisons with existing methods fair.)

4.1 SeattleSNPs
Our first comparison is with the Likelihood Ratio (LR) method
of [4] and the Penalised Likelihood (PL) method of [5]. Firstly,
the computation involved usingsequenceLDhot is substantially
smaller than that of either of the LR or PL methods. All methods
require the use ofPHASE to infer haplotypes. For an example data
set sequenceLDhot took 10 minutes to analyse the resulting
haplotype data; whereas both the LR and PL methods took of the
order of 4 hours.

Table 1 gives the results of the three methods. In testing for
hotspots we used a cutoff value ofc = 10, as this gave com-
parable false positive rates to the other two methods. The power
of sequenceLDhot is greater that either of the two alternative
approaches, with power averaged across the two populations being
69% for sequenceLDhot, 65% for the PL method, and50% for
the LR method.
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Fig. 2. Plot of power against Hotspot strength for Human-Chimp data: (Top)
Results for human data; (Bottom) Results for Chimp data. For each plot:
(black)sequenceLDhot c = 12, (red)sequenceLDhot c = 5, (blue)
HotspotFisher; (green)LDhot. In both plots vertical bars give appro-
ximate 95% confidence intervals on the estimates of power. Recombination
rate for hotspot is on a log scale.

4.2 HapMap Encode
We next analysed the HapMap Encode simulated data,HotspotFisher.
While each data set consists of 200kb sequenced in 90 individu-
als, to speed up the implementation of our method (in particular to
reduce the CPU cost ofPHASE) we subsampled just 45 individu-
als, and analysed separately the first and last 110kb of sequence. We
chose to split the sequence in this way so that for putative hotspots
at positions close to 100kb we would still have sufficient informa-
tive SNPs surrounding the hotspot that we would not suffer any
loss of power. Our method then took on the order of 1–2 hours
to analyse a single 200kb data set (which includes running both
PHASE andsequenceLDhot), as compared to a few minutes for
HotspotFisher.

Results are given in Table 2. When testing for hotspots we used
a cut-off of c = 12 so that our method had similar false positive
rates toHotspotFisher. We have a noticeable improvement in
power overHotspotFisher: when averaged over three popula-
tion, we have a power of 79% as compared to 67%. However, for
inferred hotspots,HotspotFisher is more accurate at detecting
the hotspot position.

One noticeable problem with our method is in terms of detec-
ting individual hotspots when they cluster together. In these cases
our method will tend to infer a large extended hotspot region, and
thus a single hotspot. The power of our method increases by 8% if
we include as detected all hotspots that lie fully within any exten-
ded hotspot region. (The average hotspot region is around 5–6kb in
length.)

4.3 Human-Chimp
Finally we analysed the human-chimp data. We ransequenceLDhot
on all data sets, andHotspotFisher on the human datasets (we
had technical difficulties with runningHotspotFisher on the
chimp data). We also obtained results forLDhot from Table S3 of
[24]. These data sets only enable us to compare power (as oppo-
sed to false-positive rates), as they all contain a known hotspot, but
the recombination landscape in the remaining part of the region is
unknown.

The results forsequenceLDhot andHotspotFisher give
values for the power of the method for 7 different recombination
rates of the hotspot ranging from 0.8 cM/Mb to 160 cM/Mb. (As
compared to a background rate in humans of approximately 0.4
cM/Mb.) We pooled results for all three regions together, and also
pooled results from both human populations.

For comparison betweensequenceLDhot andHotspotFisher
we chose a cutoff value ofc = 12 as for this value the two
methods had similar false positive rates for the HapMap Encode
data. The resulting estimated power curves for both methods are
shown by the black and blue curves in Figure 2. Again we see
thatsequenceLDhot is more powerful at inferring hotspots than
HotspotFisher.

Table S3 of [24] gives power ofLDhot (at a 5% significance
level) for different hotspot intensities. For human hotspots, they
only give power values for hotspots with intensity close to 8cM/Mb;
for chimp hotspots they give power values for a range of hotspot
intensities. We have plotted these values on Figure 2 (green curve).
For comparison we also give power curves forsequenceLDhot
with cutoff c = 5, which gives a similar nominal significance
level to LDhot. The results suggest thatLDhot is more power-
ful at estimating hotspots of strength close to 8cM/Mb (20 times the
background rate) in the human data. For the chimp data it appears
thatsequenceLDhot is more powerful for weaker hotspots (up
to around 16cM/Mb; andLDhot is more powerful for inferring
hotspots that are stronger than 16cM/Mb.

5 DISCUSSION
Our new method has a number of advantages over existing methods.
It is substantially quicker, and appears to be more powerful than
the Likelihood Ratio method of [4] and the Penalised Likelihood
method of [5]. The gain in computational speed is substantial, and
the new method is scalable to analysing genome-wide data. For
example analysing a 200kb data set in the HapMap Encode analysis
took of the order of 1–2 hours computing. So analysying a genome-
wide data set would take of the order of 1000 CPU days, which is
practicable as the analysis is trivially parallelisable.

Our method appears to be more powerful at detecting hotspots
thanHotspotFisher, though the latter method is both quicker
than ours, and can localise the position of the hotspots more accura-
tely. The reason it appears more accurate at inferring the position of
the hotspots is likely to be due to the finer grid it uses for putative
hotspots.

A comparison withLDhot is more difficult, as this method is
currently not publicly available. The comparison we did had the
problem that we could only compare the power of the different
methods, and not also the false positive rates. Whilst we attemp-
ted to perform a comparison where the methods had similar putative
false-positive rates, there was not way to check these in practice.

However, this comparison based on the published power results
LDhot suggests thatsequenceLDhot may be more powerful for
weaker hotspots, and perhaps data with lower SNP density; whereas
LDhot is more powerful for stronger hotspots and data with higher
SNP density. Both these results seem plausible. Firstly, the power
of sequenceLDhot is reliant on correctly choosing informative
SNPs to be used to calculate the Likelihood Ratio statistics. If it
chooses these well, then it fully utilises the information contained in
these SNPs, but a poor choice may mean that it misses hotspots that
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would be obvious from a different choice of SNPs. This may mean
it works poorly, compared to other methods, for stronger hotspots
– where the occasional choice of a poor set of SNPs will limit its
power slightly away from 100%. Secondly, as SNP density increases
substantially (to say greater than 1 SNP per kb),sequenceLDhot
is unable to fully utilise this extra information as it always calculates
the Likelihood Ratio statistics based on a fixed number of SNPs. By
comparisonLDhot will continue to be able to take account of the
information in these extra SNPs regardless of how high SNP density
becomes.
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