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Abstract— Mobility tracking based on data from wireless
cellular networks is a key challenge that has been recently inves-
tigated both from a theoretical and practical point of view. This
paper proposes Monte Carlo techniques for mobility tracking in
wireless communication networks by means of received signal
strength indications. These techniques allow for accurate estima-
tion of Mobile Station’s (MS) position and speed. The command
process of the MS is represented by a first-order Markov model
which can take values from a finite set of acceleration levels.
The wide range of acceleration changes is covered by a set
of preliminary determined acceleration values. A particle filter
and a Rao-Blackwellised particle filter are proposed and their
performance is evaluated both over synthetic and real data. A
comparison with an Extended Kalman Filter (EKF) is performed
with respect to accuracy and computational complexity. With a
small number of particles the RBPF gives more accurate results
than the PF and the EKF. A posterior Cramér Rao lower bound
(PCRLB) is calculated and it is compared with the filters’ root-
mean-square error performance.

Index Terms— Mobility tracking, wireless networks, hybrid
systems, sequential Monte Carlo methods, Rao-Blackwellisation.

I. I NTRODUCTION

M OBILITY tracking is one of the most important fea-
tures of wireless cellular communication networks [1].

Data from two types of station are usually used:base stations
(BSs) the position of which is known, andmobile stations
(MSs) or mobile users for which location and motion are
estimated.

Mobility tracking techniques can be divided in two
groups [2]: i) methods in which the position, speed and
possibly the acceleration are estimated, andii ) conventional
geo-location techniques, which only estimate the position
coordinates. Previous approaches for mobility tracking rely on
Kalman filtering [2]–[4], hidden semi-Markov models [4]–[6]
and sequential Monte Carlo (MC) filtering [7].
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Two types of measurements are usually used: pilot signal
strength from different BSs measured at the mobile unit and
the corresponding propagation times.

The Kalman-filtering algorithms developed in [2] for real-
time tracking of a MS in cellular networks have limitations
due to the necessity for linearisation. This leads to the
shortcomings in accuracy caused by this approximation. The
two algorithms proposed in [2] use the pilot signal strengths
from neighbouring BSs (i.e., theReceived Signal Strength
Indication (RSSI)), although signal measurements such as
time-of-arrival (TOA) are also suitable. The model of the
MS is considered to be linear, driven by a discrete command
process corresponding to the MS acceleration. The command
process is modelled as a semi-Markov process over a finite
set of acceleration levels. The first algorithm in [2] consists
of an averaging filter for processing pilot signal strength
measurements and two Kalman filters, one to estimate the dis-
crete command process and the other to estimate the mobility
state. The second algorithm employs a single Kalman filter
without pre-filtering the measurements and is able to track a
MS even when a limited set of pilot signal measurements is
available. Both proposed algorithms can be used to predict
future mobility behaviour, which can be utilised in resource
allocation applications.

Yang and Wang [7] developed an MC algorithm for joint
mobility tracking and hard handoff detection in cellular
networks. In their work, mobility tracking involves on-line
estimation of the location and speed of the mobile, whereas
handoff detectioninvolves on-line prediction of the pilot signal
strength at some future time instants. The optimal solution of
both problems is prohibitively complex due to the nonlinear
nature of the system. The MC joint mobility tracking and
handoff detection algorithm designed in [7] is compared with a
modified EKF and it is shown that the MC technique provides
much better accuracy than the EKF.

In this paper we focus on mobility tracking based on signal
strength measurements. In contrast to previous work [2], [3],
[7], [8], mobility tracking is formulated as an estimation
problem ofhybrid systemswhich have a base state vector and
a mode (modal) state vector. The base states are continuously
evolving, whilst the modal states can undergo abrupt changes.
This formulation together with the sequential MC approach
provides us with a powerful tool for mobility tracking. A
particle filter (PF) and a Rao-Blackwellised particle filter
(RBPF) are developed and their performance investigated
compared to an EKF with respect to accuracy and compu-
tational complexity.
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Fig. 1. Structure of the mobility acceleration chain.

The structure of the paper is as follows. Section II formu-
lates the problem. Section III presents the mobility state and
observation models. A particle filter for mobility estimation
in wireless cellular networks is presented in Section IV and
a Rao-Blackwellised particle filter is designed in Section V.
Section VI considers the relevant PCRLB. The performance of
the designed algorithms is evaluated using synthetic and real
data in Section VII. Finally, conclusions and ongoing research
issues are highlighted in Section VIII.

II. PROBLEM FORMULATION

We consider the problem of mobility tracking in cellular
networks within the sequential MC framework. The dynamics
of the mobility unit is described by the equation

xk = f(xk−1, mk, uk, wk), (1)

wherexk ∈ Rnx is the systembasestate,uk ∈ Rnu specifies
the command process, andwk ∈ Rnw is the state noise, with
k ∈ N being the discrete time andN is the set of natural
numbers. Themodal (discrete) statemk characterising the
different system modes (regimes), can take values over a finite
setM, i.e., mk ∈M.

The measurement equation is of the form

zk = h(xk,vk), (2)

where zk ∈ Rnz is the observation, andvk ∈ Rnv is the
measurement noise. Functionsf(.) andh(.) are nonlinear in
general.

It is assumed that the observations are taken at discrete
time pointsTk, with a discretisation time stepT . The ac-
celerationuk of the mobile unit is usually highly correlated,
but sometimes it undergoes rapid changes caused by various
reasons such as traffic lights and road turns. Following [3],
[7], [8], the motion of the moving user can be modeled as a
dynamic system driven by a commanduk = (ux,k, uy,k)′ and
a correlated random accelerationrk = (rx,k, ry,k)′ at timek,
i.e., the total acceleration isak = uk + rk (see Fig. 1).

III. M OBILITY STATE AND OBSERVATION MODELS

Different state mobility models have previously been used in
cellular networks such as the constant acceleration model [9]
and Singer-type models [2], [4], [10]. In this paper we choose
a discrete-time Singer-type model [7] because it captures
correlated accelerations and allows for prediction of position,
speed and acceleration of mobile users. Originally proposed in

[11] for tracking targets in military systems, the Singer model
has served as a basis for developing effective manoeuvre mod-
els for various applications (see [12] for a detailed survey),
including user mobility patterns. In the original Singer model
there is no control process and the acceleration is considered
as a random process, which has a time autocorrelation. The
Singer-type model from [2] includes a command process in
explicit form. Yang and Wang consider a simpler form of this
mobility model [7]. In our previous paper [13] we investigated
the Singer-type model adopted for mobility tracking by [2].
However, we found that the model of [7] gives better results
and at the same time is simpler since it enables a more efficient
calculation of the PCRLBs. In this paper we adopt their model.

The state of the moving mobile at time instantk is defined
by the vectorxk = (xk, ẋk, ẍk, yk, ẏk, ÿk)′ wherexk andyk

specify the position,̇xk and ẏk specify the speed, and̈xk and
ÿk specify the acceleration in thex andy directions in a two-
dimensional space.

The motion of the mobility user can be described by the
equation

xk = A(T, α)xk−1 + Bu(T )uk + Bw(T )wk, (3)

whereuk = (ux,k, uy,k)′ is a discrete-time command process
and the respective matrices in (3) are of the form

A(T, α) =
(

Ã 03×3

03×3 Ã

)
, Bi(T ) =

(
B̃i 03×1

03×1 B̃i

)
,

(4)

Ã=




1 T T 2/2
0 1 T
0 0 α


 , B̃u =




T 2/2
T
0


 , B̃w =




T 2/2
T
1


 .

(5)
The subscripti in the matrixB(T ) in (4) stands foru or w
respectively. The random processwk is a2×1 vector,T is the
discretisation period. The parameterα is the reciprocal of the
manoeuvre time constant and thus depends on how long the
manoeuvre lasts. Sincewk is a white noise,E[wkw′

k+j ] = 0,
for j 6= 0. The covariance matrixQ of wk is Q = σ2

wI, where
I denotes the unit matrix andσw is the standard deviation.

The unknown command processesux,k anduy,k are mod-
elled as a first-order Markov chain that takes values from a
set of acceleration levelsMx andMy, and the processuk

takes values from the setM = Mx×My = {m1, . . . , mM},
with transition probabilitiesπij = P (uk = mj |uk−1 = mi),
i, j = 1, . . . , M and initial probability distributionµi,0 =
P{m = mi} for modesmi ∈ M such thatµi,0 ≥ 0 and∑M

i=1 µi,0 = 1.

A. Observation Model

A commonly used model [2], [7] in cellular networks for
the distance between a mobile and a given base station (BS)
relies on the RSSI, which is the pilot signal strength received
at the mobile. Denote byzk,i the RSSI signal received by
a given mobile from thei-th BS with coordinates(ai, bi) at
timek. The RSSI can be modelled as a sum of two terms: path
loss and shadow fading. Fast fading is neglected assuming that
a low-pass filter is used to attenuate the Rayleigh or Rician
fade. Therefore, the RSSI (measured in dB) that the mobile
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unit receives from a particular BSi at timek can be modelled
as the following function

zk,i = z0,i − 10ηlog10(dk,i) + vk,i, (6)

wherez0,i is a constant characterising the transmission power
of the BS, depending on factors such as wavelength, antenna
height and gain of celli; η is a slope index (typicallyη = 2
for highways andη = 4 for microcells in a city);dk,i =√

(xk − ai)2 + (yk − bi)2 is the distance between the mobile
unit and the base station;(ai, bi) is the position of thei-th
BS; vk,i is the logarithm of the shadowing component, which
was found in [3] to be a zero mean, stationary Gaussian
process with standard deviationσv,i, typically from 4 – 8
dB. The shadowing component can considerably worsen the
estimation process as it is shown in [2], [4]. This difficulty
can be overcome by pre-filtering the measurements (e.g. by an
averaging filter [2]) in order to reduce the observation noise.

To locate the mobile station (MS) in a two-dimensional
plane, a minimum of three distance measurements to neigh-
bouring BSs are sufficient to enable triangulation. Within
the GSM system the MS is constantly monitoring up to 7
neighbouring BSs in order to establish the need for handovers.
For the considered problem the observation vector consists
of the three largest RSSI denotedzk,1, zk,2, zk,3. Hence, the
measurement equation is of the form

zk = h(xk) + vk, (7)

with h(xk) = (h1(xk), h2 (xk), h3(xk))′, hi(xi,k) = z0,i −
10ηlog(dk,i), a measurement vectorzk = (zk,1, zk,2, zk,3)′,
shadowing componentsvk = (vk,1, vk,2, vk,3)′ assumed to
be uncorrelated both in time and space and having Gaussian
distribution,vk,i = N (0, σ2

v,i).

IV. M OBILITY TRACKING AND PREDICTION WITHIN

BAYESIAN FRAMEWORK

We now consider the sequential estimation of the mobility
of a user within the Bayesian framework. Since the command
processu is unknown, we are considering a hybrid particle
xk = (x′k, m′

k)′ that fully characterises the target state
and mode. The mobility statexk can be evaluated at each
time instant from the conditional probability density function
p(xk|z1:k) and a set of measurementsz1:k , {z1, . . . , zk}
up to time instantk via the Chapman-Kolmogorov equation

p(xk|z1:k−1)=
∫

Rnx

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (8)

After the arrival of the measurementzk at timek, the posterior
state probability density function (pdf) can be updated via
Bayes rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (9)

wherep(zk|z1:k−1) is a normalising constant. The analytical
solution to the above equations is intractable. Hence, we utilise
the MC technique [14] which has proven to be very suitable
and powerful for dealing with nonlinear system dynamics.

The MC approach relies on a sample-based construction of
these probability density functions. Multiple particles (sam-
ples) of the variables of interest are generated, each one

associated with a weight which characterises the belief that the
object is in this state. An estimate of the variable of interest
is obtained by the weighted sum of particles. Two major
stages can be distinguished:prediction and update. During
the prediction each particle is modified according to the state
model, including the addition of random noise in order to
simulate the effect of the noise on the variable of interest.
Then in the update stage, each particle’s weight is re-evaluated
based on the new sensor data. Aresamplingprocedure is
dealing with the elimination of particles with small weights
and replicates the particles with higher weights.

A. A Particle Filter for Mobility Tracking

The developed particle filter (PF) is based on multiple
models for the unknown accelerationu. A detailed scheme
of the PF is given below, whereN denotes the number of
particles.

A particle filter for mobility tracking

Initialisation
I. k = 0, for j = 1, . . . , N ,

generate samples{x(j)
0 ∼ p(x0),m

(j)
0 ∼ P0(m) },

where P0(m) are the initial mode probabilities for the
accelerations and set initial weightsW (j) = 1/N .

II. For k = 1, 2, . . . ,

1) Prediction Step
For j = 1, . . . , N , generate samples

x
(j)
k = A(T, α)x(j)

k−1+Bu(T )u(j)(m(j)
k )+Bw(T )w(j)

k ,

wherew
(j)
k ∼ N (0,Q), and under the constraint:

if V =
√

(ẋ(j)
k )2 + (ẏ(j)

k )2 > Vmax, (10)

αc = arctan{ẏ(j)
k /ẋ

(j)
k },

ẋ
(j)
k = Vmaxcos(αc), ẏ

(j)
k = Vmaxsin(αc),

end
m

(j)
k ∼ {π`m}M

m=1, m = 1, . . . ,M for ` = m
(j)
k−1;

Measurement Update: evaluate the importance weights
2) for j = 1, . . . , N , on the receipt of a new measurement,

compute the weights

W
(j)
k = W

(j)
k−1L(zk|x(j)

k ). (11)

The likelihood L(zk|x(j)
k ) is calculated using (7)

L(zk|x(j)
k ) ∼ N (h(x(j)

k ), σv).

3) for j = 1, . . . , N , normalise the weights,
Ŵ

(j)
k = W

(j)
k /

∑N
j=1 W

(j)
k .

Output
4) The posterior meanE[xk|z1:k]

x̂k = E[xk|z1:k] =
N∑

j=1

Ŵ
(j)
k x

(j)
k . (12)

Calculate posterior mode probabilities
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5) for j = 1, . . . , N ,
P (mk = `|z1:k) =

∑N
j=1 1(m(j)

k = `)Ŵ (j)
k ,

where1(.) is an indicator function such that

1(mk) =
{

1, if mk = `;
0, otherwise.

Compute the effective sample size
6) Neff = 1/

∑N
j=1(Ŵ

(j)
k )2,

Selection step (resampling)if Neff < Nthresh

7) Multiply/ suppress samples{x(j)
k , m

(j)
k } with high/ low

importance weightsŴ (j)
k , in order to obtainN new

random samples approximately distributed according to
the posterior state distribution. The residual resampling
algorithm [15], [16] is applied. This is a two step process
making use of sampling-importance-resampling scheme.
* For j = 1, . . . , N , setW (j)

k = Ŵ
(j)
k = 1/N .

The PF takes into account the fact that the speed of the
mobile unit cannot exceed certain values (Eq. (10)). Other
refined schemes for accounting for constraints can also be
applied [17].

V. A RAO-BLACKWELLISED PARTICLE FILTER FOR

MOBILITY TRACKING

A major drawback of particle filtering is that it can become
prohibitively expensive when a large number of particles is
used. However, the complexity can be reduced by a procedure
called Rao-Blackwellisation [17]–[23].

Rao-Blackwellisation is a technique for improving particle
filtering by analytically marginalising some of the variables
(linear, Gaussian) from the joint posterior distribution. The
linear part of the system model is then estimated by a Kalman
filter (KF), an optimal estimator, whilst the nonlinear part is
estimated by a PF. This leads to the fact that a KF is attached
to each particle. In the mobility tracking problem the positions
of the mobile unit are estimated with a PF, whilst the speeds
and accelerations with a KF. Since the measurement equation
is highly nonlinear, the particle filter is used to approximate
this distribution. After estimating the positions, these estimates
are given to the KF as measurements. As a result of the
marginalisation, the variance of the estimates can be reduced
compared with the standard PF.

Similarly to the Rao-Blackwellisation approach, the mixture
Kalman filtering approach proposed by Chen and Liu [24]
represents the system in a linear conditional dynamic model.
In this way the problem is solved by multiple Kalman filters
run with the MC sampling approach. A formulation of the
Rao-Blackwellisation problem is given in [25], [26] in a way
different from that in [20]. In the implementation of our Rao-
Blackwellised PF for mobility tracking we follow the approach
proposed in [19] and [20]. In contrast to these works we design
a RBPF which has a command process in the system model.

The mobility model (1)-(2) is rewritten in the form
(

xpf
k

xkf
k

)
=

(
I Apf

0 Akf

) (
xpf

k−1

xkf
k−1

)
+

(
Bpf

u

Bkf
u

)
uk

+
(

Bpf
w

Bkf
w

)
wk, (13)

zk = h(xpf
k ) + vk, (14)

wherexpf = (x, y)′, ‘pf’ is short for particle filter,xkf =
(ẋ, ẍ, ẏ, ÿ)′, ‘kf’ is short for Kalman filter andw is assumed
Gaussian. Equations (13)-(14) have the same properties as
equations (1)-(2). Since the noisewk is Gaussian,

wk =
(

wpf
k

wkf
k

)
∈ N ∼ (0, Q), Q =

(
Qpf M

M ′ Qkf

)
, (15)

The mobility model is a Singer-type model which accounts
for correlations between the state vector components. Hence,
we cannot assume that the process noisewpf is uncorrelated
with wkf , i.e. M 6= 0.

Instead of directly estimating the pdfp(xk|z1:k), with the
entire state vector, consider the pdfp(xpf

k , xkf
k |z1:k). Using

the Bayes rule, this pdf can be factorised into two parts

p(xpf
k , xkf

k |z1:k) = p(xkf
k |xpf

k , z1:k)p(xpf |z1:k). (16)

Since the measurementsz1:k are conditionally independent on
xkf

k , the probabilityp(xkf
k |xpf

k , z1:k) can be written as

p(xkf
k |xpf

k ,z1:k) = p(xkf
k |xpf

k ). (17)

Consider now the system

xkf
k = Akfxkf

k−1 + Bkf
u uk + Bkf

w wkf
k ,

zk = Apfxkf
k−1 + Bpf

u uk + Bpf
w wpf

k , (18)

wherezk = xpf
k − f(xpf

k ). Since the system (18) is linear
and Gaussian, the optimal solution is provided by the KF. We
can assume a Gaussian form of the pdf (17), i.e.

p(xkf
k |xpf

k ) ∼ N (x̂kf
k|k−1,P

kf
k|k−1), (19)

where the estimate vector̂xkf
k|k−1 and the corresponding

covariance matrixP kf
k|k−1 are calculated by the Kalman filter.

The second pdf from (16) can be written recursively [19]

p(xpf
k |z1:k) =

p(zk|xpf
k )p(xpf

k |xpf
1:k−1)

p(zk|z1:k−1)
p(xpf

1:k−1|z1:k−1).

(20)
Due to the nonlinear measurement equation we apply a PF

to solve (20). The weights are recursively calculated based on
the likelihoodsp(zk|xpf,(j)

k ). The particles will be sampled
according top(xpf,(j)

k |xpf,(j)
1:k−1). Using the state equation for

the xpf from (13) and having in mind (19), the prediction
step in the particle filter can be performed as follows

x
pf,(j)
k+1 ∼ N (xpf,(j)

k + Apf x̂
kf,(j)
k|k−1 + Bpf

u u
(j)
k+1,

ApfP
kf,(j)
k|k−1(A

pf )′ + Bpf
w Qpf (Bpf

w )′. (21)
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For each particle, one Kalman filter estimatesx
kf,(j)
k+1|k, j =

1, . . . , N . It should be noted that the prediction of the non-
linear variables is used to improve the estimates of the linear
state variables.

Next, we present the developed RBPF. Note that in the
KF update and prediction steps, the filter gainKk, the
predicted and estimated covariance matrices,P kf

k|k, P kf
k−1|k

are calculated once, which reduces the computational load.

A Rao-Blackwellised PF for mobility tracking

Initialisation

1) k = 0, for j = 1, . . . , N ,
generate samples{xpf,(j)

0 ∼ p(xpf
0 ), m(j)

0 ∼ P0(m) },
whereP0(m) are the initial mode probabilities for the
accelerations. Initialise the Kalman filters by{x̂kf,(j)

0|−1 ∼
N

(
x̂kf

0|−1,P
kf
0|−1

)
} and set initial weightsW (j)

0 =1/N .

Particle Filter Prediction Step
2) For j = 1, . . . , N ,

Predict the particles

x
pf,(j)
k+1 = N (xpf,(j)

k + Apfx
kf,(j)
k|k−1 + Bpf

u u(m(j)
k+1),

ApfP kf
k|k−1(A

pf )T + Bpf
w Qpf

w (Bpf
w )′), (22)

wherem
(j)
k+1 ∼ {π`m}M

m=1 for ` = m
(j)
k ;

3) Update step of the Kalman filters

Kk = P kf
k|k−1(A

pf )′(Sk)−1, (23)

P kf
k|k = P kf

k|k−1 −KkApfP kf
k|k−1, (24)

Sk = ApfP kf
k|k−1(A

pf )′ + Bpf
w Qpf (Bpf

w )′, (25)

For j = 1, 2, . . . , N

x
kf,(j)
k|k = x

kf,(j)
k|k−1 + Kk(z(j)

k −Apf x̂
kf,(j)
k|k−1), (26)

wherez
(j)
k = x

pf,(j)
k+1 −x

pf,(j)
k and under the constraint:

if V =
√

(ˆ̇x(j)
k|k)2 + (ˆ̇y(j)

k|k)2 > Vmax, (27)

αc = arctan{ˆ̇y(j)
k|k/ˆ̇x(j)

k|k},
ˆ̇x(j)

k|k = Vmaxcos(αc), ˆ̇y(j)
k|k = Vmaxsin(αc),

end

4) Prediction step of the Kalman filters

P kf
k+1|k = DP kf

k|kD′ + Bkf
w Q̄

kf (Bkf
w )

′
, (28)

where

C = M ′(Qpf )−1, (29)

D = Akf −CApf , (30)

Q̄
kf = Qkf −M ′(Qpf )−1M , (31)

For j = 1, 2, . . . , N

x
kf,(j)
k+1|k = Dx̂

kf,(j)
k|k + Cz

(j)
k + Bkf

u u(m(j)
k+1). (32)

Measurement Update: evaluate the importance weights
5) Compute the weights

W
(j)
k+1 = W

(j)
k L(zk+1|xpf,(j)

k+1 ). (33)

The likelihoodL(zk+1|xpf,(j)
k+1 ) is calculated from (7)

L(zk+1|xpf,(j)
k+1 ) ∼ N (h(xpf,(j)

k+1 ), σv).

6) Normalise weights,Ŵ (j)
k+1 = W

(j)
k+1/

∑N
j=1 W

(j)
k+1.

7) Output

x̂pf
k+1 ≈

N∑

j=1

Ŵ
(j)
k+1x

pf,(j)
k+1 , (34)

x̂kf
k+1 ≈

N∑

j=1

Ŵ
(j)
k+1x̂

kf,(j)
k+1|k, (35)

Calculate posterior mode probabilities
8) P (mk+1 = `|z1:k+1) =

∑N
j=1 1(m(j)

k+1 = `)Ŵ (j)
k+1,

where1(.) is an indicator function such that

1(mk) =
{

1, if mk = `;
0, otherwise.

Selection step (resampling)
9) If Neff < Nthresh resample{xpf,(j)

k+1 , x
kf,(j)
k+1/k,m

(j)
k+1}

in the same way as in the PF.
10) Setk = k + 1 and return to step 2.

A. Mobility Prediction

Based on the approximation of the filtering distribution
p(xk|z1:k) we seek to estimate thet-step ahead prediction
distribution (t ≥ 2). In a general prediction problem we are
interested in computing the posteriort-step ahead prediction
distributionp(xk+r|z1:k) given by [7], [25]

p(xk+t|z1:k) =
∫

Rnx

p(xk|z1:k)

[
k+t∏

i=k+1

dxk:k+t−1

]
, (36)

where xk+t = {xk, uk, . . . , xk+t, uk+t}. Then
the solution to the t step ahead prediction can
be given by performing the following steps.

r step ahead prediction

* For i = 1, . . . , t, For j = 1, 2, . . . , N , sample
x

(j)
k+i=A(T, α)x(j)

k+i−1+Bu(T )u(j)(mk+i)+Bw(T )w(j)
k+i,

wherew
(j)
k+i ∼ N (0,Q),

m
(j)
k+i ∼ {π`m}M

`=1, m = 1, . . . ,M for ` = m
(j)
k+i−1;

Then the predicted state estimate of the mobile unit is equal to

x̂k+t/k =
Nmc∑

j=1

W
(j)
k x

(j)
k+t|k. (37)
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VI. POSTERIORCRAMÉR-RAO LOWER BOUND (PCRLB)

The posterior CRLB (PCRLB) [17], [27], [28] characterises
the best achievable theoretical accuracy in nonlinear filtering.
This is of paramount importance for assessing the level of
approximation introduced by the algorithms.

Consider a sequence of target states (a trajectory)Xk =
{x1, x2, . . . , xk} estimated based on the set of measurements
z1:k. Since the hybrid estimation problem deals with joint
estimation of the state vectorxk and the mode variablemk,
the PCRLB is the inverseJk of the information matrix and
is defined as follows [29]

Jk , E{[∇Yk
log p(Yk,z1:k)][∇Yk

log p(Yk, z1:k)]′},
(38)

whereYk = [Xk,Mk]′, with Mk = {m1, . . . , mM} being
the random regime sequence;∇Yk

is the first-order partial
derivative operator with respect toYk. The analytical deriva-
tion of the PCRLB for hybrid state estimation is a difficult
problem. In the derivation of the PCRLB we follow the
approach from [17] (Ch. 4, p. 76).

When the target trajectory is generated in a deterministic
way and the sequence of modes is deterministic, then the
PCRLB is identical to the covariance matrix propagation of
the Extended Kalman Filter (EKF) with Jacobians evaluated
at the true state vectorxk and true regimes. This is a very
“optimistic” bound. This bound is often calculated in practice
[17] and most tracking system specifications consider purely
deterministic trajectories. In our work we also calculate the
PCRLB for a deterministic trajectory. If the target trajectory
is deterministic, but the sequence of modes is random, the
PCRLB can be calculated in a similar way [17].

VII. PERFORMANCEEVALUATION

Example 1.The developed MC algorithms have been eval-
uated over a conventional hexagonal cellular network (similar
to those in [7]). It is supposed that a map of the cellu-
lar network is available and the centre coordinates of the
base stations are known. The simulated service area contains
64 base stations with cell radius of 2 km, as shown in
Fig. 2. The mobile can move to any cell of the network
with varying speed and acceleration. The sequence of modes
in the testing scenario is generated in a deterministic way.
Short-time manoeuvres are followed by uniform motions. The
discrete-time command processesux,k and uy,k can change
within the range[−5, 5] [m/s2]. The command processuk

in the filters is assumed to be a Markov chain, taking values
between the following acceleration levelsM = Mx ×My =
{(0.0, 0.0), (3.5, 0.0), (0.0, 3.5), (0.0,−3.5), (−3.5, 0.0)},
in units of [m/s2]. The simulated trajectory of the mobile is
generated deterministically according to the mobility model
(3) and, with this trajectory, the RSSI signals are randomly
generated according to the observation equation (7) with
different random noise realisations for each simulation run.
The randomness of the RSSI comes from the randomness of
the shadowing component. At any sampling time, the observed
RSSI signal is chosen to be the three largest signal powers
among all 64 BSs in the network. The simulation parameters
are summarised inTable 1.
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Fig. 2. Centres of the base stations, the actual trajectory of the mobile unit,
estimated trajectories by the EKF, PF and RBPF from a single realisation.

After partitioning the state vector according to (13) within
the RBPF scheme the respective matrices of the PF and KF
acquire the form:

Apf =
(

T T 2/2 0 0
0 0 T T 2/2

)
,Bpf

u =
(

T 2/2 0
0 T 2/2

)
,

Qpf =
(

q11 0
0 q11

)
σ2

w, Mpf =
(

q12 q13 0 0
0 0 q12 q13

)
,

Akf =




1 T 0 0
0 α 0 0
0 0 1 T
0 0 0 α


 , Bkf

u =




T 0
0 0
0 T
0 0


 ,

Bkf
w =




T 0
1 0
0 T
0 1


 , Qkf =




q22 q23 0 0
q23 q33 0 0
0 0 q22 q23

0 0 q33 q33


 σ2

w,

Bpf
w = Bpf

u ,

where qij , i, j = 1, 2, 3 have the formq11 = T 4/4,
q12 = T 3/2, q13 = T 2/2, q22 = T 2, q23 = T , q33 = 1.

Table 1. Simulation parameters
Discretisation time stepT 0.5 [s]
Correlation coefficientα 0.6

Path loss indexη 3
Base station transmission powerz0,i 90

Covarianceσ2
w of the noisewk in (3) 0.52 [m/s2]2

Maximum speedVmax 45 [m/s]
Transition probabilitiespi,i 0.8

Initial mode probabilitiesµi,0 1/M, i = 1, ..., M, M = 5
Threshold for resampling Nthresh = N/10

Number of Monte Carlo runs Nmc = 100
Covarianceσ2

v of the noisevi,k [42] [dB]2

The estimated and actual trajectories of the mobile unit over
a single realisation are given in Fig. 2.

The position root-mean-square error (RMSE) [30]

RMSE =
√

1
Nmc

∑Nmc

m=1
[(x̂k − xk)2 + (ŷk − yk)2] (39)
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Fig. 3. Actual speed of the moving unit. This figure shows the abrupt
manoeuvre in the MS motion.
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Fig. 4. RMSE ofx and y positions combined of the EKF, PF and RBPF
for Nmc = 100 runs. The PF and RBPF particles areN = 300.

is used to assess the closeness of the estimated trajectory
{x̂k, ŷk} to a given trajectory{xk, yk} over Nmc = 100 MC
runs. The location PCRLB is determined as

location PCRLB =
√

(P k(1, 1) + P k(4, 4)), (40)

whereP is the covariance matrix of the EKF having Jacobians
evaluated for the true state vectorxk.

Figures 4-5 present the position and speed RMSE of the
PF and RBPF, respectively, withN =300 particles. The RBPF
and PF outperform the EKF. This is very pronounced during
the manoeuvres where the EKF peak dynamic errors are the
highest. Figures 6-9 presents results from the PF and RBPF
with a different number of particles. The position RMSE of the
PF increases withN = 100 compared with the case withN =
500 (Figures 6-7). The RBPF, on the other hand exhibits very
good performance with a small number of particles (Figures
8-9, N = 200) which is his advantage.

The trade-off between accuracy and complexity is an im-
portant issue and for marginalised PFs has been analysed in
[31]. On average, for these 100 Monte Carlo runs, when the
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Fig. 5. RMSE ofẋ andẏ speeds combined of the EKF, PF and RBPF (with
N = 300) for Nmc = 100 runs.
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Fig. 6. PF Position RMSE (x and y combined) of the PF withN =
100, 200, 300 and1000.

PF is working withN = 500 particles, and the RBPF with
200 particles, the average computational time of the RBPF is
reduced by60% compared with the PF. If the RBPF operates
with 100 particles, the reduction of its computational time
compared with the PF withN = 500 is more than70% with
reduced accuracy.

In conclusion, the developed RBPF has similar accuracy to
the PF with respect to the position and speed, with decreased
computational time when we use a small number of particles,
e.g.,N = 200. The PF accuracy is worsen whenN < 500.

Figure 10 shows the accuracy of the algorithms for
different numbers of particles and the average computational
time for one cycle of the algorithms over 100 MC runs. It
can be seen from the table, that position RMSEs of the RBPF
with N=200 particles is nearly the same as the position RMS
errors of the PF with N=300. Thus, a similar performance
can be achieved by the RBPF with decreased computational
resources.
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Example 2.The performance of the mobility tracking al-
gorithms has been investigated with real RSSIs, collected
from BSs in Glasgow, United Kingdom. The mobile station
was a vehicle driving in the city centre. More than 400 BSs
are available in the area where the car operated. However,
only data from the six with the highest RSSIs were provided
to the algorithms. Figure 11 presents the map of the urban
environment, with the nearest base stations and the trajectory
of the car (shown augmented in Figure 12). The vehicle
trajectory contains both patterns with sharp manoeuvres and
rectilinear motion, including a stretch at the end where the
vehicle is parked. Additional information for the road is
included as position constraints in the algorithms. The MC
algorithms have shown efficiency in all these conditions. Apart
from the signal strengths, a GPS system collected the actual
positions of the moving MS, with the sampling period,T =
0.5 s. Figure 13 shows the actual MS trajectory together with
the estimated trajectories and Figure 14 gives the respective
position RMSEs.
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Fig. 9. Speed RMSE (ẋ and ẏ combined) of the RBPF withN =
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 RBPF PF EKF 
N 100 200 300 500 1000 100 200 300 500 1000  

RMSE pos, [m] 228.5 204.1 193.5 193.2 192.4 303.8 223.2 199.7 184.2 177.0 303.5 
RMSE speed, 
[m/s] 

18.2 16.8 15.8 15.7 15.27 17.64 15.5 14.72 14.02 13.75 20.0 

Time, [s] 0.097 0.191 0.301 0.517 1.07 0.097 0.185 0.284 0.467 0.9994 0.0011 
 

Fig. 10. Table containing RMSEs (averaged over the whole time period) of
the MC algorithms for different numbers of particles, from the EKF, and the
respective computational time. All results are from 100 MC runs.

The robustness of the algorithms to outliers and miss-
ing data can be increased when the measurement error is
modeled with a mixture of Gaussians [32]. In this partic-
ular implementation, we present results with one Gaussian
component,p(vk) = N (µv,σ2

v), where the nonzero mean
µv and the covarianceσ2

v are calculated from RSSI data
(µv = (−1.96,−4.66,−3.23)′, σv = diag{3.93, 6.99, 6.20}).
The other parameters of the filters are:σw = 0.00015, α =
0.1, η = 4, Vmax = 10 [m/s] and M = Mx × My =
{(0.0, 0.0), (5.5, 0.0), (0.0, 5.5), (0.0,−5.5), (−5.5, 0.0)}.

The advantages of the MC methods compared to the EKF
include their ability to easily incorporate constraints (e.g.,
speed, road constraints) and to deal efficiently with high level
nonlinearities.

The behaviour of the MC filters is similar in both examples.
Based on the above results we draw the following conclusions:
i) The PF is sensitive to changes in the motion of the mobile
unit. This sensitivity of the PF leads to higher peak-dynamic
errors during abrupt manoeuvres. In the presence of a sequence
of abrupt manoeuvres a divergence of the PF is not excluded
if it operates with a small number of particles. The probability
of divergence could be reduced if a high number of particles is
used which, however, increases the computational complexity.
ii ) The RBPF exhibits better accuracy during the periods with
abrupt changes. The ‘measurements’ at time instantk for the
Kalman filter in the RBPF represent the difference between
the estimated and predicted locations of the particles at time
instancesk− 1 andk, respectively. This is one of the reasons
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Fig. 11. The area in Glasgow, United Kingdom, where the vehicle is moving.
The nearest BSs, the start and destination positions are indicated on the map.

 

Fig. 12. The vehicle trajectory (from the left to the right side). The start
and destination positions are indicated on the map.

for these particularities of its performance. Both MC filters
outperform the EKF.

VIII. C ONCLUSIONS

This paper has presented two sequential MC techniques
for mobility tracking, namely a particle filter and a Rao-
Blackwellised particle filter. An assessment of their best
achievable theoretical accuracy has been made. They have
shown efficient mobility tracking in wireless networks over
both synthetic and real received signal strength measurements.
The designed filters are compared with the EKF technique
and their enhanced performance with respect to the EKF is
demonstrated over scenarios with abrupt manoeuvres. Advan-
tages of the RBPF compared with the PF are:i) decreased
computational complexity because it exhibits similar accuracy
with smaller number of particles;ii ) smaller peak-dynamic
errors during abrupt manoeuvres which is very important for
the practice. Posterior Cramér-Rao lower bounds have been
calculated that characterise the lower limit for the average
mean-square error of the state estimates.
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are used in the MC algorithms.

Open issues for future research include road-map assisted
mobility tracking of single and multiple mobile units, inves-
tigation of different measurement models (including varying
measurement time interval) and the fusion of data from
different modalities.
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