Title: Roles of the Nfu Fe-S targeting factors in the trypanosome mitochondrion

Article Type: Full Length Article

Keywords: Trypanosoma brucei, Nfu1, iron-sulfur cluster, Fe-S, mitochondrion

Corresponding Author: Prof J. Lukes,
Corresponding Author's Institution: Institute of Parasitology

First Author: Corinna Benz
Order of Authors: Corinna Benz; Julie Kovářová; Ivica Králová-Hromadová; Antonio J Pierik; J. Lukes

Manuscript Region of Origin: CZECH REPUBLIC

Abstract: Iron-sulfur clusters (ISCs) are protein co-factors essential for a wide range of cellular functions. The core ISC assembly machinery resides in the mitochondrion, yet due to export of an essential precursor from the organelle, it is also needed for cytosolic and nuclear ISC assembly. In mitochondria all [4Fe-4S] ISCs are synthesized and transferred to specific apoproteins by so-called ISC targeting factors. One of these factors is the universally present mitochondrial Nfu1, which in humans is required for the proper assembly of a subset of mitochondrial [4Fe-4S] proteins. Although most eukaryotes harbor a single Nfu1, the genomes of Trypanosoma brucei and related flagellates encode three Nfu genes. All three Nfu proteins localize to the mitochondrion in the procyclic form of T. brucei, and TbNfu2 and TbNfu3 are both individually essential for growth in bloodstream and procyclic forms, suggesting highly specific functions for each of these proteins in the trypanosome cell. Moreover, these two proteins are functional in the ISC assembly in a heterologous system and rescue the growth defect of a yeast deletion mutant.
Dear Professor Loukas,

We thank the reviewers for their comments, which have helped improve the manuscript.

We have dealt with every comment and provided our response in blue text in the separate file entitled ‘response to reviews’. Since there was substantial support from both reviewers we hope that this improved manuscript is now acceptable for publication.

Yours sincerely,

Julius Lukeš
Reviewers' comments:

Reviewer #1: This submission presents expression, localization, and functional data on the three phylogenetically related TbNfuI proteins of Trypanosoma brucei. These TbNfuI proteins function in the assembly of mitochondrial iron-sulfur clusters that have been shown to participate in multiple vital cellular roles, but this is the first such study in protozoan parasites. Fundamentally, the authors demonstrate that: 1) all three TbNfu1 proteins are clustered in a phylogenetic tree (Figure 1); 2) all three C-tagged TbNfu proteins localize to the mitochondrion in procyclic forms (Figure 2); 3) at least TbNfu2 and TbNfu3 localize to the mitochondrion in bloodstream forms (Figure 3); 4) TbNfu2 and TbNfu3 complement a \(<\Delta TbNfu1\>\) lesion in Saccharomyces cerevisiae; and 5) RNAi knockdowns of TbNfus have growth inhibitory effects in both procyclic and bloodstream forms, although to differing degrees. Overall, although the impact of this study is not enormous, the study is well-designed, sufficiently novel, and the manuscript adequately clear to warrant publication in the journal. There are some issues, however, that should be addressed.

Major point:

The Introduction and Discussion sections are much too long and should be reduced by approximately two thirds. The Introduction is six pages long and much of it is review-like material that is not directly pertinent to TbNfu function. The Discussion is basically a rehash of the Results section and the remainder is highly speculative.

We have reduced the introduction to 4.5 pages and the discussion to 4 pages. We feel that any further reductions would remove essential information and also not be compatible with suggestions from reviewer 2 (addition of the ISC assembly scheme and speculation about the diversification of trypanosome Nfus).

Minor points:

1) The title should be changes. This reviewer did not understand why the three NbNfus had "non-redundant" roles.

Since the Nfu proteins are apparently all required for normal trypanosome growth, we felt justified in saying that they play non-redundant roles in the organism. We however agree that the situation with TbNfu1 is not entirely conclusive and have hence changed the title to 'Roles of the Nfu Fe-S targeting factors in the trypanosome mitochondrion'.

2) Line 197 - It is not clear why the authors conclude that there is a differential distribution of TbNfu2 and TbNfu3 based on a photograph of a single parasite transfected with either tagged gene.

We have removed this conclusion about the differential distribution of TbNfu2 and 3 from the manuscript.

3) Lines 338-340 - Are the authors differentiating between "similarity" and identity?

We now include both similarity and identity values in the text for clarity.

4) The data in Figure 6A, per the authors' statement on lines 455-456, are not reproducible. Therefore, the Figure should be removed.

We feel that the figure should stay in the manuscript for the sake of completeness. We have reworded the text to make it more obvious that the obtained phenotype - while transient and weak - is consistently observed immediately after transfection of TbNfu1 RNAi constructs and only lost upon continued cultivation of cells or freezing.

5) Table 1 could go in a supplement.

We have put table 1 into the supplementary material.
Reviewer #2: The authors have presented experimental evaluation of T. brucei Nfu1-3, and supported their role in ISC pathway. They appear to be mitochondrial, and have distinct targets. At least 2 are essential, while results for Nfu1 are somewhat inconclusive in that regard. Overall the paper is clearly written, and reasonably straightforward.

Points to address:

1) While not absolutely necessary, it would be helpful to include a schematic overview of the ISC assembly pathway, to orient the background information in the introduction and indicate the position that the TbNfus occupy within this pathway.

We now include this scheme as Fig. 1 to improve clarity of the background information.

2) In Figure 2B, right panel, there appear to be 2 bands in the region of Nfu3 in the whole cell lysate. Upon fractionation, the upper band stays primarily in the cytoplasm, and the lower is in the mitochondrion. Would the authors speculate that the upper band is a pre-import intermediate, prior to N-terminal cleavage, or do they believe it is merely a cross-reacting protein?

This fractionation experiment uses a cell line overexpressing a tagged version of TbNfu3. Although the explanation suggested by the reviewer is possible, we did not observe this band in other Western blots (of this cell line or cell lines expressing TbNfu3-PTP from the endogenous locus) and hence suspect that it is merely a cross-reacting band.

3) In both Figures 5 & 6, the y-axis scales for growth curves vary from panel to panel, for no apparent reason. I would recommend using a uniform scale on all of these graphs to facilitate comparisons between cell lines.

We have unified the y-axes of these graphs.

4) The sentence starting on line 437, "We suspect that suppression of the phenotype occurs..." is not clear. I think that the authors are circuitously referring to the common RNAi phenomenon in which repression is eventually lost over time; however, the way it is written implies to me that something is actively suppressing the effect of Nfu1 loss. Also, the following note that cryopreserved lines no longer display RNAi phenotype upon tet induction is a very common occurrence for this technique, and it doesn't reflect anything particular to Nfu1 - this point should be made clear to the reader.

The text has been rephrased to emphasise that the RNAi effect is simply lost over time and a sentence added to mention that this is a common occurrence.

5) Line 498: replace the word "only" with either "lone" or "single". I think this fits the intended meaning more clearly.

The word 'only' has been replaced by 'single'.

6) Line 505: the supposition that Nfu1 was not locatable in BSF "probably due to very low expression" is addressable in a couple immediate ways. First, ribosome profiling work comparing BSF and PCF have been published (e.g. Jensen, et al. 2014) that the authors should check to determine if their hypothesis is substantiated. Second, the authors possess antibodies to Nfu1 that should be sufficient to test the relative amount of protein per cell equivalent in each cell type. Either or both of these analyses should be included to address this hypothesis.

Ribosomal profiling suggests that all TbNfus are similarly expressed in both life stages, so we have removed the 'probably due to low expression'. Unfortunately the remainder of the antibody does not produce convincing signals on Western blots anymore (see supplementary figure 2B) which might be
due to repeated freeze-thaw cycles (it was produced many years ago) and we do not have an old blot comparing levels in BSF and PCF carefully.

7) Line 564: how is it "known" that Tb927.8.6190 and Tb927.11.11730 are mitochondrial ISC targeting factors? My understanding is that they have not been characterized experimentally, and are putative predictions based on homology.

We have added a 'putative' to the sentence.

8) The conclusions drawn regarding Nfu1 in the final paragraph of the Discussion (Lines 581-2) are not justified. While the Nfu1 RNAi results do not indicate it is essential, they also do not indicate it is not essential. When you have a significant but intermediate growth defect, you cannot discern whether cells can biologically compensate for the loss of the target, or whether the RNAi knockdown is incomplete. The authors should refrain from claiming that Nfu1 is not essential, and either state its essentiality is inconclusive, or note that it is required for normal growth. Also, the conclusion from the Nfu1 yeast complementation experiment is underdeveloped. The authors chose to try complementation with an N-terminal truncation of Nfu1, for reasons not made clear to me, which could very well be the root cause of its inactivity. Comparison of truncated Nfu1 to complete Nfu2 and Nfu3 is therefore tricky, and the negative result for Nfu1 cannot be a reliable proxy for claiming that Nfu1 doesn't have similar ISC targeting activity to Nfu2 or Nfu3. These points need to be clarified in the revised manuscript.

We have reworded our conclusions regarding TbNfu1 accordingly and also added a sentence regarding the removal of the mitochondrial targeting sequence from this protein only in the results section.

8) The authors should present at least one hypothesis in the Discussion to explain the unprecedented diversity of ISC targeting proteins in trypanosomes. Why have tryps done this? While it is clear that the answer is unknown at present, the question deserves emphasis and at least an attempt to explain it.

We fully agree that this question deserves attention, especially since the presence of multiple Nfus excited us from the beginning. We have now come up with a hypothesis, which is presented in the Discussion section.

9) As experimental localization of Nfu1 in BSF was not successful, perhaps the words "All three" should be deleted from line 51 of the abstract.

We have removed this from the abstract and elsewhere in the text.
*Graphical Abstract (for review)
- *Trypanosoma brucei* expresses three Nfu proteins whereas other eukaryotes generally have only one.
- Two of these three proteins are essential in both the mammalian-infective and the insect stage of the parasite.
- These two Nfu proteins are also functional in a heterologous context in *S. cerevisiae*.
Roles of the Nfu Fe-S targeting factors in the trypanosome mitochondrion

Corinna Benza,1, Julie Kovářováb,2, Ivica Králová-Hromadováb,3, Antonio J. Pierikc & Julius Lukeša,b,d,*

a Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic

b Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic

c Faculty of Chemistry – Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany

d Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada

1 Present address: Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom

2 Present address: Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom

3 Present address: Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
Corresponding author at: Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic. Tel.: +420387775416.

Email address: jula@paru.cas.cz (Julius Lukeš)
Abstract

Iron-sulfur clusters (ISCs) are protein co-factors essential for a wide range of cellular functions. The core ISC assembly machinery resides in the mitochondrion, yet due to export of an essential precursor from the organelle, it is also needed for cytosolic and nuclear ISC assembly. In mitochondria all [4Fe-4S] ISC are synthesized and transferred to specific apoproteins by so-called ISC targeting factors. One of these factors is the universally present mitochondrial Nfu1, which in humans is required for the proper assembly of a subset of mitochondrial [4Fe-4S] proteins. Although most eukaryotes harbor a single Nfu1, the genomes of Trypanosoma brucei and related flagellates encode three Nfu genes. All three Nfu proteins localize to the mitochondrion in the procyclic form of T. brucei, and TbNfu2 and TbNfu3 are both individually essential for growth in bloodstream and procyclic forms, suggesting highly specific functions for each of these proteins in the trypanosome cell. Moreover, these two proteins are functional in the ISC assembly in a heterologous system and rescue the growth defect of a yeast deletion mutant.

Keywords: Trypanosoma brucei, Nfu1, iron-sulfur cluster; Fe-S; mitochondrion
1. Introduction

Trypanosoma brucei and related flagellates are unicellular parasites that cause devastating diseases of humans and livestock and thus have a major impact on health and economy mostly in sub-Saharan Africa but also in other tropical regions. The trypanosome life cycle is rather complex with different stages in mammalian and insect hosts that differ dramatically in their morphology and metabolic requirements (Matthews, 2005). These differences are generally necessitated by the different environments the parasites find themselves in: In the glucose-rich blood of their mammalian host, the bloodstream form (BSF) relies mainly on glycolysis for its energy generation, while the insect-dwelling procyclic form (PCF) needs a fully functional mitochondrion with active oxidative phosphorylation to meet its energetic demands (Tielens and van Hellemond, 2009). As a consequence, the BSF mitochondrion is much more reduced while its PCF counterpart is highly elaborate, extensively branched and metabolically active (Verner et al., 2015).

Despite these obvious differences, both BSF and PCF mitochondria harbor a similar cohort of proteins important for iron-sulfur cluster (ISC) biogenesis, although their abundance in the BSF is generally much lower (Lukeš and Basu, 2015). ISC biogenesis is the most fundamental process that defines a mitochondrion, and in fact the only known common denominator of all mitochondria and mitochondrion-derived organelles, since it is also found in the most reduced mitosomes of several anaerobic protists (Maguire and Richards, 2014; Makiuchi and Nozaki, 2014).

These evolutionary ancient and highly important ISCs are cofactors of proteins involved in a variety of cellular functions such as metabolic catalysis, DNA replication and repair, translation and iron regulation, to name just the most prominent ones (Brzóska et al.,)
With almost 20 well conserved proteins participating in the mitochondrial stage of ISC biogenesis, the process is rather complex and still not fully understood. We will now briefly describe what is known about the mitochondrial steps of ISC biogenesis in yeast and mammalian cells (using the yeast nomenclature for this well conserved process) and compare this to the situation in trypanosomes.

Mitochondrial ISC assembly takes place on the Isu1/Isu2 scaffold (Isu2 having arisen from a gene duplication event specific to yeast) with sulfur being provided by the reduction of cysteine to alanine which is catalysed by the desulfurase complex Nfs1- lsd11 (Mühlenhoff et al., 2003) (Fig. 1). The sulfur is reduced by a dedicated electron transport chain constituted of ferredoxin and ferredoxin reductase, with the iron possibly provided by a putative donor frataxin (Lill et al., 2012). The T. brucei scaffold protein Isu and the desulfurase Nfs are both indispensable for PCF and their depletion negatively impacts on aconitase activity (used as a readout for the synthesis of [4Fe-4S] clusters) (Smíd et al., 2006). Moreover, Isu is also essential in BSF, and both Isu and Nfs localize to the mitochondrion as well as to the nucleolus in both life stages, although the role these proteins might play there remains a matter of speculation (Kovářová et al., 2014). The desulfurase complex of T. brucei was also shown to be required for tRNA thiolation in PCF, however, it remains to be resolved if this is due to direct involvement of this complex in the process or indirectly by the provision of an ISC for another component (Kovářová et al., 2014; Paris et al., 2010).

With the help of the Hsp70 chaperones Ssq1 and Jac1, the nascent [2Fe-2S] cluster is temporarily transferred to the monothiol glutaredoxin Grx5, from which it can be directly handed over to target [2Fe-2S] apoproteins (Uzarska et al., 2013). While the trypanosome mtHsp70 is mostly involved in mitochondrial DNA maintenance, its presence is also required for ISC synthesis (Týč et al., 2015). The mitochondrial
glutaredoxin Grx1 can bind a [2Fe-2S] cluster *in vitro* and plays an important role in iron metabolism of the parasite (Comini et al., 2008). The Isa1, Isa2 and Iba57 proteins participate in the conversion of [2Fe-2S] to [4Fe-4S] clusters, which are eventually transferred to distinct apoproteins with the help of ISC targeting factors such as Nfu1, BolA3 or Ind1 (Lill et al., 2012). Putative homologs of all these proteins are present in *T. brucei* but, with the exception of the Isa1 and Isa2 proteins (Long et al., 2011), have thus far not been experimentally studied (Lukeš and Basu, 2015). The mitochondrial ISC biogenesis machinery is also essential for the synthesis of cytosolic and nuclear Fe-S proteins, since it depends on the export of a still unknown sulfur-containing compound to the cytosol. The so-called CIA (for cytosolic ISC assembly) pathway is outside the scope of this research and will hence not be discussed here.

There is still a certain lack of knowledge about how discrete subsets of Fe-S cluster apoproteins are recognised by specific targeting factors such as Nfu1. This protein shows homology to the C-terminal domain of NifU, which is a scaffold in ISC biogenesis in nitrogen-fixing bacteria (Fig. 2A) (Smith et al., 2005). In humans and yeast, Nfu1 is responsible for the transfer of [4Fe-4S] clusters to a small subset of mitochondrial proteins, which include components of respiratory complexes I and II and lipoic acid synthase (LipA) (Cameron et al., 2011; Navarro-Sastre et al., 2011). What makes Nfu1 particularly compelling to study is its involvement in human disease. Point mutations in or deficiencies of the protein cause a fatal mitochondrial disease called Multiple mitochondrial dysfunction syndrome with functional Nfu1 deficiency (MMDS1), which is characterized by symptoms such as lactic acidosis, hyperglycinemia, and reduced activities of respiratory chain complexes I and II (Cameron et al., 2011; Navarro-Sastre et al., 2011). Somewhat surprisingly, given the severity of the human phenotype, depletion or deletion of Nfu1 from HeLa cells (Navarro-Sastre et al., 2011) and yeast
Saccharomyces cerevisiae (Schilke et al., 1999) respectively, causes only a very mild growth phenotype in culture. However, a specific impact on several enzymatic activities has been detected. The levels of lipoic acid-bound enzymes (E2 subunits of pyruvate dehydrogenase [PDH], alpha-ketoglutarate dehydrogenase [α-KGDH] and the H protein of the glycine cleavage system [GCS]), as well as the amount and activity of complex II (succinate dehydrogenase [SDH]) were decreased in HeLa cells (Navarro-Sastre et al., 2011), while a significant depletion of SDH activity was also described in yeast (Schilke et al., 1999).

Unlike the situation in the benchmark eukaryotes yeast and man, the genomes of plants including Arabidopsis thaliana contain five genes with similarity to the C-terminus of NifU. Two of these Nfu homologs (AtNfu4 and AtNfu5) have such a NifU domain at the C-terminus, as well as a N-terminal Nfu1-like region, thus closely matching the domain organisation of typical mitochondrial Nfu1 proteins from other eukaryotes, while the other three proteins (AtNfu1, 2 and 3) contain well-defined predicted plastid targeting sequences (Fig. 2A) (Léon et al., 2003). Most of these plant Nfu proteins where able to complement a yeast deletion mutant when targeted to the mitochondrion. Localization studies showed that AtNfu1, 2 and 3 are localized in the plastid, while AtNfu4 was shown to be confined to the mitochondrion, and AtNfu5 was predicted to have the same localization (Léon et al., 2003).

Interestingly, cytosolic and nuclear localization of some of the mitochondrial ISC pathway members has been documented, suggesting a partial redundancy of the CIA and ISC pathways (reviewed in Rouault, 2012). HeLa cells are reported to contain two Nfu1 isoforms, which are created by differential splicing of a common precursor mRNA, and which localise to the mitochondrion and cytosol, respectively (Tong et al., 2003).

Hitherto, no specific targets for the non-mitochondrial isoform have been identified.
Trypanosomatid flagellates, represented in this study by the genetically tractable *T. brucei*, belong to the eukaryotic supergroup Excavata and hence, the emergence of multiple copies of Nfu in their genomes must have occurred independently of plants. Here we show that at least two out of three *TbNfu* proteins localize to the mitochondrion in both life stages of *T. brucei*. These two *TbNfu* proteins (*TbNfu2* and 3) can functionally replace yeast Nfu1 when targeted to its mitochondrion suggesting a conserved function. Moreover, the same two *TbNfu* proteins are essential for the BSF and PCF life stages, suggesting that they are non-redundant and target specific apoproteins for ISC transfer. This is especially intriguing for the BSF trypanosome, where only a small subset of Fe-S containing mitochondrial proteins is expected to be essential (Lukeš and Basu, 2015; Basu et al., 2016).

2. Materials and methods

2.1 Cells and plasmids

T. brucei BSF 427 cells, BSF single-marker cells and PCF 29:13 (Wirtz et al., 1999) cells were cultured as described elsewhere (Changmai et al., 2013). For RNAi against *TbNfu1* (*Tb927.7.1720*) a 573 bp region (nt 1 – 573) was PCR amplified using primers Nfu1_F and Nfu1_R (see Supplementary Table 1 for all oligonucleotide sequences used and plasmids generated in this study). For *TbNfu2* (*Tb927.10.11160*), a 480 bp region (nt 1 – 480) was amplified using primers Nfu2_F and Nfu2_R, and for *TbNfu3* (*Tb927.10.5290*), a 480 bp region (nt 1 – 480) was amplified using primers Nfu3_F and Nfu3_R. All amplicons were cloned into p2T7-177 vector (Wickstead et al., 2002) to create the *TbNfu1-3* RNAi plasmids. An additional plasmid for RNAi of *TbNfu1* was generated by amplifying nt 45-395 of the gene’s 3’UTR, followed by ligation to p2T7-
177 (generating plasmid pCR49). NotI was used to linearize all RNAi plasmids prior to electroporation.

To create plasmids for endogenous tagging of TbNfu1, TbNfu2 and TbNfu3 at the N-terminus with PTP, a region of the 5’end of the open reading frames (ORFs) was inserted into the plasmid p2678 (Kelly et al., 2007). Plasmids generated were pCR34 (TbNfu1), pCR37 (TbNfu2) and pCR39 (TbNfu3) and enzymes used for linearization were BplI (TbNfu1), XcmI (TbNfu2) and SpHI (TbNfu3). For C-terminal endogenous tagging with the PTP tag, a fragment of the 3’end of the TbNfu1-3 ORFs lacking the stop codon was amplified from trypanosome genomic DNA and cloned into a derivative of pC-PTP-Neo with the antibiotic resistance changed to puromycin (Schimanski et al., 2005). Plasmids generated were pCR35 (TbNfu1), pCR38 (TbNfu2) and pCR36 (TbNfu3), while enzymes used for their linearization were SalI (TbNfu1), BsgI (TbNfu2) and NsiI (TbNfu3), respectively. To create plasmids for tagged overexpression of TbNfu1 and TbNfu3, both full length ORFs were amplified from T. brucei genomic DNA and cloned into pJH54 (C-terminal HA3 tagging vector kindly provided by Christine Clayton) and pT7V5 (adding a C-terminal V5 tag), respectively (Surve et al., 2012). All plasmids were linearized with NotI prior to transfection.

Linearized plasmids were electroporated into PCF cells using the standard procedure (Vondrušková et al., 2005). TbNfu1-3 RNAi plasmids stably integrated in 29:13 cells were selected by the addition of 5 µg/ml phleomycin. In all cases, RNAi was induced by the addition of 1 µg/ml tetracycline to the medium and growth curves performed in triplicate (a representative experiment is shown for each construct and life cycle stage).

PCF 427/29:13 cells transfected with pCRs 34, 37, 39 (PTP-TbNfu1-3) and pCRs 35, 38, 36 (TbNfu1-3-PTP) were all treated with 0.5 µg/ml puromycin. PCF 29:13 cells transfected with constructs overexpressing TbNfu1 and TbNfu3 were selected with 5
µg/ml phleomycin (pJH54-based construct) and 0.5 µg/ml puromycin (pT7V5-based construct). BSF 427 and BSF single-marker cells were electroporated using the Amaxa Nucleofector II electroporator and program X-001. BSF 427 cells were transfected with pCR38 and BSF single-marker cells with the TbNfu1-3 RNAi plasmids and pCRs 36-39. Selection was with 0.2 µg/ml phleomycin (TbNfu1-3 RNAi) and 0.2 µg/ml puromycin (pCRs 36-39). BSF single-marker cells were also transfected with an overexpression construct for TbNfu1 (TbNfu1-V5, pCR43) and selected with 0.2 µg/ml puromycin.

2.2 Bioinformatics

The Nfu homologs were identified by BLAST search of the NCBI non-redundant protein database and aligned using MAFFT (Katoh et al., 2005). The alignment was manually edited in BioEdit (Hall, 2011). The phylogenetic tree was constructed in PhyML 3.1 (Guindon et al., 2010) using the default settings and the robustness of individual branches was evaluated by SH-like approximated likelihood ratio test and bootstrap after 100 iterations.

2.3 Antibody production

Specific polyclonal antibodies were commercially produced for two of the TbNfu proteins. For TbNfu1, two synthetic oligopeptides were used (CSGKSSQRSIVVEKNE and RRKLKKDEVASASQS) corresponding to amino acids 52 – 67 and 266 - 279, respectively, of the T. brucei Nfu1 protein. The polyclonal antibodies were raised in a rabbit over 87 days, and subsequently affinity purified by Eurogentec. Similarly, oligopeptide SSTYDNFIPDGQTC, corresponding to amino acids 30 – 43, was used for production of the anti-TbNfu3 antibody by GenScript.

2.4 Immunofluorescence
Following staining with mitotracker red (Sigma-Aldrich), BSF 427, BSF single-marker cells and PCF 29:13 cells were fixed for 30 min in either 2.3% (w/v) paraformaldehyde at room temperature or in methanol at -20°C. Following permeabilization (paraformaldehyde fixation only) in phosphate buffered saline (PBS) with 0.1% (v/v) Triton-X100 or overnight in methanol at -20°C, slides were incubated with the primary antibody, either anti-protein A (1:5,000, Sigma-Aldrich) or anti-V5 (1:500, Invitrogen) in PBS for 1 hr. Following two washes with PBS, the slides were incubated with the secondary antibody, either AlexaFluor488 goat anti-rabbit (1:200, Molecular Probes) or AlexaFluor488 goat anti-mouse (1:200, Molecular Probes) in PBS for 1 hr. The slides were washed twice in PBS, then 10 µg/ml 4',6-diamidino-2-phenylindole (DAPI, Fisher Scientific) was added for 5 min. After two more PBS washes, the cells were examined under an Axioscope II fluorescent microscope.

2.5 Western blot analysis

Cell lysates corresponding to 2 x 10^6 cells were loaded into each lane and separated by SDS-PAGE. The proteins were transferred to a nitrocellulose or a PVDF membrane (previously activated for 5 min in methanol) by wet transfer. The membrane was blocked for 1 hr at room temperature with blocking buffer (5% (w/v) milk powder in PBS). The primary antibody (anti-protein A 1:20,000, anti-TbNfu1, or anti-TbNfu3 1:1,000) was diluted to the appropriate concentration and added to the membrane. Incubation was overnight at 4°C. The membrane was washed 2 x 5 min with PBS and then incubated with the secondary antibody (anti-rabbit HRP conjugate 1:2,000, Sigma-Aldrich) in blocking buffer for 1 hr at room temperature. Finally, the membrane was washed 2 x 5 min in PBS and antibodies were detected by enhanced chemiluminescence (Clarity Western ECL Substrate, BioRad).
2.6 Digitonin fractionation

For digitonin fractionation, 10^7 cells per sample were collected, incubated in STE-NaCl buffer (250 mM sucrose; 25 mM Tris-HCl, pH 7.4; 1 mM EDTA; 150 mM NaCl) with 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, and 1.5 mM digitonin (Sigma-Aldrich) for 4 min at room temperature. Subsequently, samples were centrifuged (13,000 rpm for 2 min), and the obtained supernatants were used for Western blot analysis. For detection of tagged proteins, anti-protein A antibody (Sigma-Aldrich) was used at a 1:20,000 dilution. As controls, antibodies against mitochondrial Hsp70 (1:1,000) (mitochondrial marker, (Panigrahi et al., 2008)), and cytosolic enolase (1:10,000) (cytosolic marker) were used.

With the aim to separate their cytosolic and mitochondrial fractions, digitonin fractionation of Nfu1-HA$_3$ and Nfu3-V5 expressing flagellates was performed as follows: cells were harvested, washed twice with SHE buffer (250 mM sucrose, 25 mM HEPES, 1 mM EDTA) and an equivalent of 1 mg of cellular protein was resuspended in 200 µl of HBSS buffer (136.9 mM NaCl; 5.37 mM KCl; 0.81 mM MgSO$_4$; 1.26 mM CaCl$_2$; 0.44 mM KH$_2$PO$_4$; 0.33 mM Na$_2$HPO$_4$; 4.17 mM NaHCO$_3$; 5.55 mM glucose, pH 7.3) with the addition of 80 µg digitonin (Sigma-Aldrich). Samples were briefly vortexed and following incubation for 5 min at room temperature centrifuged (13,000 rpm, 2 min). Supernatant was collected as the cytosolic fraction and pellet was washed with HBSS buffer and then resuspended in 200 µl of the same buffer supplemented with 0.1 % Triton X-100. Following incubation on ice for 5 min, samples were centrifuged (13,000 rpm, 2 min) and the obtained supernatant was collected as the mitochondrial fraction. Anti-HA and anti-V5 antibodies (Invitrogen) were used in dilution 1:2,000 and anti-MRP2 (Vondrušková et al., 2005) at 1:2,000.

2.7 Yeast complementation assay
A ΔIsu1 yeast W303 strain described elsewhere (Gerber et al., 2004) was further modified by a second deletion of Nfu1. This was introduced by PCR amplification of the nourseothricin resistance gene using flanking primers, which contained fragments corresponding to the 50 nucleotides down- and upstream of the S. cerevisiae NFU1 gene, and which was transformed into the ΔIsu1 strain as described elsewhere (Janke et al., 2004). Successful homologous recombinants in which the NFU1 gene was replaced by the nourseothricin cassette were selected by growth with 100 µg/ml nourseothricin and subsequent PCR-analysis of chromosomal DNA of restreaked clones. Full length ORFs (TbNfu2 and 3) and the ORF lacking the predicted mitochondrial targeting sequence (TbNfu1) were amplified from T. brucei genomic DNA and cloned into the so-called yeast mitocyto expression vector (p426-TDH-F1β-HIPiP-Myc) (Mühlenhoff et al., 2011) from which the HiPIP-encoding gene was replaced with the TbNfus. All TbNfu containing vectors as well as a positive control vector (encoding yeast Nfu1, (Navarro-Sastre et al., 2011)) were transformed into the ΔIsu1ΔNfu1 strain (for description, see above) and the expression of C-terminally myc-tagged TbNfu proteins was verified by Western blot analysis. A similar sized colony was picked from each clone as well as from the parental strain and re-suspended in 100 µl of distilled water. Serial 1:10 dilutions were made and about 10 µl of each dilution was spotted onto two identical SC-Galactose plates. One set of plates was incubated for 3-4 days at the permissive temperature of 30 °C and the other one at the restrictive temperature of 34 °C.

3. Results

3.1 Bioinformatics
All three trypanosome Nfu proteins are small (around 30 kDa) and have the typical domain architecture of this family with a conserved cysteine motif (CxxC) at their C-termini, thus theoretically enabling them to bind a Fe-S cluster (Fig. 2A). TbNfu1 and TbNfu2 sequences share 24.5% identity (38.7% similarity), TbNfu1 and TbNfu3 share 24.5% identity (41.7% similarity), with TbNfu2 and TbNfu3 being least homologous (19.5% identical, 31.2% similar) according to the EMBOSS stretcher algorithm (Rice et al., 2000). Phylogenetic analysis of the Nfu proteins sampled from across all eukaryotic super-domains shows that there are two eukaryotic lineages of Nfu. The first lineage is present across all eukaryotes and branches along with alpha-proteobacteria, indicative of its mitochondrial origin. Phototrophic eukaryotes also acquired a Nfu gene with a different lineage, which groups with cyanobacteria and has very likely a plastidial origin (Fig. 2B). In all trypanosomatids sequenced so far, the mitochondrial Nfu protein underwent a triplication (Fig. 2B), suggesting that this multiplication event occurred already in the common ancestor. Indeed, the trypanosomatid Nfu group clusters with mitochondrial Nfu proteins from other eukaryotes including A. thaliana Nfu4 and 5, while the plastid Nfu proteins from this plant species are more distantly related (Fig. 2B).

TbNfu1 (Tb927.7.1720) encodes a protein with a molecular mass of 31.1 kDa including the predicted mitochondrial targeting sequence. Cleavage at amino acid position 23 (probability 0.9880, MitoProt (Claros and Vincens, 1996)) would result in a mature protein mass of 28.25 kDa. TbNfu2 (Tb927.10.11160) has a predicted molecular mass of 26.7 kDa following the original annotation; however, this short version of the protein lacks the N-terminal Nfu1-like domain. Analysis of the trans-splice sites suggests an upstream start codon (Parsons et al., 2015) which would result in a larger protein of 37.6 kDa. This longer version of TbNfu2 is predicted to be mitochondrial with a cleaved size of 31.78 kDa (probability 0.869, TargetP 1.1 (Emanuelsson et al., 2000)). C-
terminal, endogenous PTP tagging of the protein suggests that it is in fact the longer version that is produced, since the observed size including the tag is around 52 kDa, which is close to the expected size of 50.8 kDa. Tagging with PTP at the N-terminus produces a slightly bigger protein of about 55 kDa consistent with a non-cleaved species (Suppl. Fig. 1). Finally, TbNfu3 (Tb927.10.5290) has a predicted molecular mass of 29.5 kDa and is predicted to be mitochondrial with rather low confidence scores (probability: 0.374, MitoProt; probability: 0.438, TargetP1.1 (Claros and Vincens, 1996; Emanuelsson et al., 2000)).

3.2 Localization in PCF cells

Cell lines carrying TbNfu proteins either tagged at their endogenous locus with the PTP tag or overexpressed and containing either the HA³- or V5-epitope tag were used for localization studies. Both immunofluorescence analysis and digitonin fractionation techniques were employed to corroborate results in PCF. All proteins were tagged at their C-termini since two TbNfu proteins are predicted to have an N-terminal mitochondrial targeting signal and all three belong to the mitochondrial lineage. Importantly, PTP-tagging at the N-terminus at the endogenous locus apparently masked the critical endogenous N-terminal mitochondrial targeting sequences since diffuse cytoplasmic staining due to mistargeting was observed (data not shown).

TbNfu1-PTP detected with an antibody against protein A clearly localized to the elaborate PCF mitochondrion where it was evenly distributed and completely overlapped with mitotracker red staining (Fig. 3A, top row). This result was confirmed by digitonin fractionation, where an overexpressed, HA-tagged TbNfu1 protein was clearly mitochondrial (Fig. 3B, left panel). Finally, the same HA-tagged protein also localized to the mitochondrion by immunofluorescence analysis (data not shown).
TbNfu2-PTP detected with an antibody against protein A also localized to the mitochondrion, although the distribution of the tagged protein was more punctate than that of its tagged TbNfu1 counterpart (Fig. 3A, middle row). Digitonin fractionation of the same cell line using increasing concentrations of digitonin showed a higher amount of the protein in fractions with increased concentration of the detergent, corresponding to the mitochondrial compartment, while some of it was also present in other fractions (Fig. 3B, middle panel). This suggests that an - albeit small - amount of the TbNfu2 protein may also be cytosolic. Another possible explanation of this observation would be the presence of TbNfu2 processing intermediates in the cytosol.

The same approach was used to localize the third TbNfu homologue, which was endogenously PTP-tagged and detected with an antibody against protein A. Indeed, all TbNfu3 clearly localized to the reticulated mitochondrion where it showed a staining pattern reminiscent of TbNfu2, with the obtained signal having a more focal distribution in the organellar lumen (Fig. 3A, bottom row). Mitochondrial localization was further confirmed by digitonin fractionation, where an overexpressed, V5-tagged protein was also found exclusively in the organelle (Fig. 3B, right panel). This result was corroborated when TbNfu3-V5 was localized to the mitochondrion by immunofluorescence analysis in the same cell line (data not shown).

3.3 Localization in BSF cells

Localization of both endogenously tagged TbNfu2-PTP and TbNfu3-PTP detected with an antibody against protein A in BSF cells was highly similar to PCF cells with the proteins distributed unevenly throughout the mitochondrial lumen (Fig. 4). We have thus far been unable to localize either tagged or endogenous versions of TbNfu1 in the BSF cells by immunofluorescence and currently have no explanation for this.
3.4 Functional complementation in yeast

A *S. cerevisiae* ∆Isu1∆Nfu1 strain was generated by introducing the Nfu1 deletion into an existing ∆Isu1 strain (Gerber et al., 2004) and data not shown. This strain shows temperature-dependent slow growth, especially on non-fermentable carbon sources as well as minor defects in aconitase and succinate dehydrogenase activities (Schilke et al., 1999). In our hands the ∆Isu1∆Nfu1 strain already showed a severe phenotype at 30 °C when compared with the W303 parent strain. The ability of *Tb*Nfu1-3 to rescue this growth phenotype was assessed following transformation with plasmids separately encoding each of these proteins. The N-terminal *Neurospora crassa* F1ß-presequence was employed to guide the *Tb*Nfu proteins efficiently into yeast mitochondria. For *Tb*Nfu1 the predicted trypanosomal mitochondrial targeting sequence was excluded, while full-length *Tb*Nfu2 and *Tb*Nfu3 were cloned into the yeast expression vector since a putative presequence could not be predicted with as much confidence as for *Tb*Nfu1. Different dilutions of the strains were spotted on SC-Gal plates and grown at 30 °C (Fig. 5). Following 3 to 4 days of incubation, *Tb*Nfu2 and *Tb*Nfu3 protein-expressing transformants as well as a control strain expressing *S. cerevisiae* Nfu1 grew well, while the parental ∆Isu1∆Nfu1 or *Tb*Nfu1 expressing strain showed a growth defect (Fig. 5). This experiment strongly suggests that at least two of the three *Tb*Nfu proteins are functional scaffolds of ISC biosynthesis; moreover, they can operate out of context in a heterologous system and complement the ∆Isu1∆Nfu1 strain.

3.5 RNAi in PCF cells

We employed the RNAi strategy to analyse the function of *T. brucei* Nfu proteins. Results for *Tb*Nfu1 were somewhat ambiguous with growth being affected very late upon RNAi induction (from day 7 post-induction onwards, Fig. 6A). Moreover, the
phenotype was unstable. In order to confirm the efficiency of RNAi, a specific antibody
against a TbNfu1-derived oligopeptide was generated (see Materials and methods),
and an RNAi cell line also carrying a C-terminally PTP-tagged endogenous copy of
TbNfu1 was prepared. Both approaches indicate that despite a marked decrease of the
TbNfu1 protein level, the depletion did not trigger a stable phenotype (Fig. 6A; Suppl.
Fig. 2A). However, we suspect that our cell lines became refractory to RNAi over time
and also note a loss of phenotype after storage in the frozen state, both phenomena
that are commonly observed in T. brucei.

Depletion of TbNfu2 in PCF started to show a growth phenotype between day 3 and 5
of RNAi induction. From day 6 post-induction onwards, cells grew extremely slowly after
which growth almost completely ceased (Fig. 6B). A PTP-tag was introduced into one
allele of TbNfu2 in this RNAi cell line and depletion of the tagged protein was monitored
by Western blot analysis with anti-protein A antibodies which recognize the PTP-tag.
Consistent with the severe growth phenotype observed, depletion of the protein
became apparent on day 6 and the protein remained undetectable for the rest of the
induction time course (Fig. 6B). RNAi against TbNfu3 in PCF produced a growth
phenotype similar to that of TbNfu2 with growth slowing down around day 4 post RNAi-
induction and more or less arresting around day 5 (Fig. 6C). Efficient depletion of the
TbNfu3 protein was confirmed by Western blot analysis (Fig. 6C) using a specific
polyclonal antibody developed against part of the endogenous TbNfu3 protein (see
Materials and methods).

3.6 RNAi in BSF cells

A relatively mild growth defect was observed with BSF clones induced for TbNfu1 RNAi
immediately after transfection (Fig. 7A); this could, however, not be reproduced in later
experiments with frozen cell lines. A Western blot produced at the same time as the
initial growth curve and probed for endogenous TbNfu1 showed temporary and mild
depletion of the protein at day 3 post-induction (Fig. 7A). New cell lines were generated
targeting the TbNfu1 3'UTR to also enable rescue of the potential phenotype by
overexpression of the TbNfu1 ORF from mRNA with a non-endogenous 3'UTR. RNAi of
cell lines with or without TbNfu1-V5 rescue gave a very similar result with no persistent
growth defect observed in either case (data not shown). Prolonged cultivation as
required for subsequent transfection and freezing might have abolished the growth
phenotype which was transient and not very stable. Western blots using anti-TbNfu1
antibody showed inefficient depletion of the protein in cell lines recovered from liquid
nitrogen, similar to the situation in PCF (Suppl. Fig. 2B).

Down-regulation of TbNfu2 in the BSF cells caused a slower growth around day 3, with
cells escaping from RNAi at day 6. Western blot analysis using a cell line also carrying
an endogenously C-terminal PTP-tagged allele showed depletion of the protein after 4
and 5 days of induction (Fig. 7B). Targeted depletion of TbNfu3 gave similar results with
BSF trypanosomes showing a growth phenotype at day 3 post RNAi-induction and
eventual escape from the RNAi response between days 5 and 6 (Fig. 7C). Western blot
analysis with specific antibodies showed efficient depletion of the endogenously tagged
protein at days 3 and 4 with the cells re-expressing TbNfu3-PTP upon escape from
RNAi (Fig. 7C). These RNAi revertants are frequently observed in *T. brucei*, especially
in the BSF cells, and are no cause for concern (Chen et al., 2003). Regardless of these
findings, our experiments clearly show that TbNfu2 and TbNfu3 are critical for fitness in
procyclic and bloodstream form parasites.
4. Discussion

Although the increasingly complex synthesis of Fe-S clusters in eukaryotes has been studied primarily in model organisms such as yeast, *A. thaliana*, rats and humans, the ISC pathway has been dissected to a considerable detail also in *T. brucei*, which is in this respect the best studied representative of the eukaryotic supergroup Excavata (Lukeš and Basu, 2015). Despite frequent and substantial departures from even the most basic mechanisms and processes in this diverged parasitic protist, as compared to a typical eukaryotic cell, this does not seem to be the case when ISC synthesis is concerned. Indeed, trypanosomes contain all components of the mitochondria-localized Fe-S synthesis pathway. However, the Nfu proteins are an exception, since three homologues have apparently emerged in the ancestor of the kinetoplastid flagellates, as both trypanosomes and leishmanias harbor the same set of three Nfu genes. Such an amplification of ISC components is rare, and when Nfu proteins are concerned, is known only from higher plants (Balk and Schaedler, 2014).

Since the plant Nfu proteins show different localizations, we wondered if this was also the case with the Nfu proteins in *T. brucei*. All three Nfu1 homologs were, however, localized to the mitochondrion in PCF and, at least in the case of the latter two Nfu proteins, also in the BSF flagellates. This is in agreement with the localization of the single homologue in other non-plant eukaryotes (Schilke et al., 1999; Tong et al., 2003). Even though repeated attempts to determine the subcellular localization of *TbNfu1* in BSF were unsuccessful, its mitochondrial localization is highly anticipated due to the presence in mitochondria in PCF, the easily discernible mitochondrial targeting sequence, and the observation that so far all components of the ISC machinery had the same localization in both trypanosome life stages (Changmai et al., 2013; Kovářová et al., 2014; Paris et al., 2010).
Our results suggest that at least two (TbNfu2 and TbNfu3) out of the three trypanosome proteins are capable of transferring ISCs to target proteins in the yeast mitochondrion, even though these might be very different from their endogenous targets in *T. brucei*. This is in good agreement with rescue assays performed with the *A. thaliana* Nfu proteins (Léon et al., 2003), suggesting that even though a divergence in function might result in the creation of different isoforms of a protein in a given organism, these different isoforms are still capable of fulfilling at least some of their evolutionary ancestral functions.

The essentiality of a Nfu1 homolog is expected in PCF, especially bearing in mind that the *TbNfu* proteins likely serve as specific targeting factors for the same enzymes as in other organisms, namely complexes I and II and lipoic acid synthase (LipA). The Fe-S co-factors are crucial for proper function of the respiratory chain, thus rendering their transfer factors essential in any organism that depends on oxidative phosphorylation for energy generation, such as the PCF of *T. brucei*. However, this fails to explain the indispensability of the Nfu scaffold proteins in the BSF stage, where the known Nfu1 targets, just like most Fe-S proteins, are not likely to be essential (Lukeš and Basu, 2015; Surve et al., 2012; Tielens and Van Hellemond, 1998). Moreover, the amounts of ferredoxin, glutaredoxin and lipoic acid, which might be affected by depletion of a component of the [4Fe-4S] ISC biosynthesis machinery, are rather low in the BSF stage and potentially not required for cell survival (Basu et al., 2016; Lukeš and Basu, 2015; Stephens et al., 2007). Preliminary studies to assay aconitase activity and tRNA thiolation in the *TbNfu* RNAi cells did not show any departure from the wild type situation (data not shown). Measuring aconitase activity is a generic test, used for assaying the functionality of the core ISC machinery. However, it is unlikely to be affected by the depletion of specific targeting factors such as the Nfu proteins, which is
indeed the case in yeast and humans (Navarro-Sastre et al., 2011; Schilke et al., 1999).

An additional possible explanation for the indispensability of the TbNfu proteins – particularly in the BSF stage – is their involvement in hitherto unknown or trypanosome-specific holoenzyme synthesis.

One of the biggest gaps in our understanding of the ISC pathway is what causes the specificity of Fe-S clusters transfer, i.e. why a given dedicated ISC factor such as Nfu1 transfers clusters to distinct target protein(s) and not to others. These cluster transfer reactions might be too transient for their identification by protein pull-downs, and hence phenotypical analyses of depletion/deletion mutants may provide the only clues towards identifying affected molecules and pathways.

None of the other putative mitochondrial ISC targeting factors (BoI3-Tb927.8.6190 and Ind1-Tb927.11.11730) has thus far been investigated in T. brucei, despite their presence in the parasite genome and their conservation in trypanosomatid flagellates.

Bearing in mind the extra-mitochondrial localization of the core ISC biosynthesis components Isu and Nfs which are also found in the nucleolus of T. brucei (Kovářová et al., 2014), it is tempting to speculate that the parasite has diversified its repertoire of ISC targeting factors even further to meet the needs for specific ISC transfer in different pathways.

It is quite counterintuitive that a parasitic protist carries in its mitochondrion more dedicated late-acting targeting factors than all multicellular organisms in which the ISC pathway has been examined (Lill, 2009). It indicates that although the core ISC machinery is highly conserved throughout the investigated eukaryotic superkingdoms (Basu et al., 2016; Lukeš and Basu, 2015), it is flexible in its peripheral elements, where gene duplications, expansions or perhaps even novel acquisitions can accommodate
for special requirements of lineage-specific Fe-S cluster proteins. Since there are only
two intron-containing genes in *T. brucei* (Siegel et al., 2010), alternative splicing to
generate protein diversity as has been observed for human Nfu1 (Tong et al., 2003) is
not likely to occur in the parasite. We therefore hypothesize that contrary to higher
eukaryotes, *T. brucei* has instead evolved to produce multiple Nfu gene copies
dedicated to different target proteins.

Altogether, the *T. brucei* Nfu2 and Nfu3 proteins are *bona fide* ISC targeting factors, but
each of them has a specific essential function, possibly distinct from the Nfu functions
known from other organisms. *Tb*Nfu1 might be different, since it does not appear to be
essential in either trypanosome life stage or rescue the yeast ΔIsu1ΔNfu1 mutant.
However, we cannot exclude that the depletion of *Tb*Nfu1 by RNAi was simply
insufficient to cause a phenotype, and the protein might still be required for normal
trypanosome growth. As for the yeast assay, removal of the putative mitochondrial
targeting sequence might have caused inactivity of the protein and could explain the
failed rescue. Overall, our results concerning *Tb*Nfu1 are rather inconclusive. Future
work to establish the exact roles played by the *Tb*Nfu proteins in the mitochondrion will
require further analysis of the mitochondrial Fe-S metalloproteome of *T. brucei*, which is
currently in progress.

Acknowledgements

We thank Zuzana Vávrová-Bláhová (Institute of Parasitology) for her valuable
contributions at the beginning of the project, Luděk Kořený (University of Cambridge)
for help with phylogenetic analysis, and Paul A.M. Michels (University of Edinburgh) for
kindly providing anti-enolase antibody. The ΔIsu1 yeast strain and the *S. cerevisiae*
Nfu1 rescue plasmid were kindly provided by Roland Lill (Philipps University). This work was supported by Czech Grant Agency 16-18699S, and Bioglobe grant CZ.1.07/2.3.00/30.0006 to CB and JL. We acknowledge the use of research infrastructure that has received funding from the EU 7th Framework Program (FP7/2007-2013) under agreement no. 316304.

Author contributions

Planned experiments: CB, JL, JK, AP; performed experiments: CB, JK, IK-H; analyzed data: CB, JL, JK, AP, contributed reagents: JL, AP; wrote the paper: CB, JL, JK, AP. All authors agreed on the final version of the manuscript.

References

Katoh, K., Kuma, K., Miyata, T., Toh, H., 2005. Improvement in the Accuracy of Multiple Sequence Alignment Program MAFFT. Genome Inf. 16(1), 22-33. doi.org/10.11234/gi1990.16.22

doi:10.1038/nature08301

Lill, R., Hoffmann, B., Molik, S., Pierik, A.J., Rietzschel, N., Stehling, O., Uzarska, M. a.,
Webert, H., Wilbrecht, C., Mühlenhoff, U., 2012. The role of mitochondria in cellular iron-
1823, 1491–1508. doi:10.1016/j.bbamcr.2012.05.009

Long, S., Changmai, P., Tsaousis, A.D., Skalický, T., Verner, Z., Wen, Y.Z., Roger, A.J., Lukeš,
J., 2011. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of
Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues.

Makiuchi, T., Nozaki, T., 2014. Highly divergent mitochondrion-related organelles in anaerobic

283–90. doi:10.1242/jcs.01649

dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815–4825.
doi:10.1093/emboj/cdg446

286, 41205–41216. doi:10.1074/jbc.M111.296152

Navarro-Sastre, A., Tort, F., Stehling, O., Uzarska, M. a., Arranz, J.A., Del Toro, M., Labayru,

chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation.

Mol. Biol. Cell, 24, 1830-41. doi:10.1091/mbc.E12-09-0644

Figure legends

Fig. 1: Scheme of the mitochondrial ISC assembly pathway in *T. brucei*. Components essential in PCF are indicated in orange, dispensable ones are in green, Nfu proteins in blue, and proteins present in the genome but not assayed so far in grey. *TbGrx1* is homologous to yeast Grx5. The Nfs-Isd11 desulfurase complex (Paris et al., 2010) provides sulfur on the Isu scaffold (Smid et al., 2006), while ferredoxins A and B facilitate its reduction (Changmai et al., 2013), and frataxin probably provides iron (Long et al., 2008). Heat shock proteins (Týč et al., 2015) facilitate transfer of newly created [2Fe-2S] on the Grx1 glutaredoxin (Comini et al., 2008). *Isa1/2* and *Iba57* proteins enable formation of [4Fe-4S] clusters (Long et al., 2011). A still unknown S-containing component is exported into the cytosol via the inner membrane transporter *Atm1* (Horáková et al., 2015), the sulfhydryl oxidase *Erv1* of the intermembrane space and glutathione (Basu et al., 2013), and utilized in the CIA pathway.

Fig. 2: Bioinformatic analysis of Nfu proteins in prokaryotes and eukaryotes/ Position of the *TbNfu* proteins among related prokaryotic and eukaryotic proteins.

A) The bacterial NifU protein consists of three domains. The N-terminal part (in green) contains three highly conserved cysteine residues, which are involved in formation of a new ISC, and is highly similar to the Isu proteins. The central part of NifU (in blue) is called ferredoxin-like domain, contains a permanent ISC and shows similarity to nitrate reductases. The C-terminal part (in yellow) accommodates a conserved motif CXXC, which is presumed to be involved in formation of a new ISC and is found in the Nfu proteins as well. The conserved aspartate residues were proposed to mediate the transfer of newly formed ISCs. The red bars represent N-terminal mitochondrial
targeting sequences (the sequence is not well predicted in TbNfu3), and the green bar represents a plastid targeting sequence from A. thaliana, respectively. Dark blue boxes mark Nfu1-like domains in the T. brucei proteins and AtNfu4 and 5, while the maroon box shows a B domain specific for AtNfu1-3. B) Scheme of maximum-likelihood phylogenetic tree of Nfu homologs. The prokaryotic taxa are in black, while eukaryotes are highlighted in colors (green for chloroplast-containing photoautotrophs and blue for heterotrophs). The bootstrap/SH-like aLRT branch supports are shown for the cyanobacteria/chloroplasts clade and the alpha-proteobacteria/mitochondria clade.

Fig. 3: Localisation of TbNfus in PCF cells.

A) Immunofluorescence analysis of endogenously PTP-tagged TbNfu proteins. DAPI, anti-protein A, mitotracker, a merge of protein A and mitotracker and a phase contrast image of a representative cell are shown. Scale bar = 5µm. B) Subcellular fractionation of cell lines expressing tagged TbNfu proteins. Fractionation into cytosolic and mitochondrial fractions (TbNfu1-HA and TbNfu3-V5), and fractionation with increasing concentrations of digitonin (TbNfu2-PTP) are shown.

Fig. 4: Localisation of TbNfus in BSF cells.

Immunofluorescence analysis of endogenously PTP-tagged TbNfu proteins. DAPI, anti-protein A, mitotracker, a merge of protein A and mitotracker and a phase contrast image of a representative cell are shown. Scale bar = 5µm.
Fig. 5: Complementation of ∆Isu1∆Nfu1 yeast strain.

∆Isu1∆Nfu1 strain transfected or not with the indicated rescue plasmids encoding TbNfu and S. cerevisiae Nfu1 incubated at 30 °C.

Fig. 6: RNAi against the TbNfu proteins in PCF cells.

A) Cumulative growth of TbNfu1 RNAi cell line, in the presence (open squares, dashed line) or absence of tetracycline (tet) in the medium (solid squares, unbroken line). Western blot shows depletion of the endogenous TbNfu1 protein detected with anti-TbNfu1 antibodies. B) Cumulative growth of TbNfu2 RNAi cell line, in the presence (open squares, dashed line) or absence of tetracycline (tet) in the medium (solid squares, unbroken line). Western blot shows depletion of the endogenously PTP-tagged TbNfu2 protein detected with anti-protein A. C) Cumulative growth of TbNfu3 RNAi cell line, in the presence (open squares, dashed line) or absence of tetracycline (tet) in the medium (solid squares, unbroken line). Western blot shows depletion of the endogenous TbNfu3 protein detected with anti-TbNfu3 antibodies. Cytosolic enolase was used as a loading control in all three panels.

Fig. 7: RNAi against the TbNfu proteins in BSF cells.

A) Cumulative growth of TbNfu1 RNAi cell line, in the presence (open squares, dashed line) or absence (solid squares unbroken line) of tetracycline (tet). Western blot shows depletion of endogenous TbNfu1 protein detected with anti-TbNfu1. B) Cumulative growth of TbNfu2 RNAi cell line, in the presence (open squares, dashed line) or absence (solid squares, unbroken line) of tetracycline (tet). Western blot shows
depletion of endogenously PTP-tagged TbNfu2 detected with anti-protein A. C)

Cumulative growth of TbNfu3 RNAi cell line, in the presence (open squares, dashed line) or absence (solid squares, unbroken line) of tetracycline (tet). Western blot shows depletion of endogenously PTP-tagged TbNfu3 with anti-protein A. Cytosolic enolase was used as a loading control in all three panels.

Supp. Table 1:

Oligonucleotides used and plasmids generated in this study

Fig. 1: Apparent molecular weight of TbNfu2

Western blot of N- and C-terminally PTP-tagged TbNfu2. The protein was visualized with an antibody against the PTP tag (anti-protein A).

Supp. Fig.2: Loss of RNAi response in BSF and PCF TbNfu1 RNAi lines.

A) Western blot of PCF TbNfu1 RNAi cell line also bearing a PTP-tagged allele. Cells were induced for 10 days with tetracycline and protein samples prepared at the indicated time intervals. TbNfu1 was visualized with an antibody against the PTP tag (anti-protein A). B) Western blot of BSF TbNfu1 RNAi cell line. Cells were induced for 7 days with tetracycline and protein samples prepared every day. TbNfu1 was visualized with the TbNfu1 antibody.
Figure

A

<table>
<thead>
<tr>
<th>NifU</th>
<th>XD</th>
<th>C</th>
<th>C</th>
<th>X</th>
<th>XD</th>
<th>C</th>
<th>C</th>
<th>DXXD</th>
<th>CXXC</th>
<th>transient 2Fe-2S</th>
<th>permanent 2Fe-2S</th>
<th>transient 2Fe-2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isu</td>
<td>XD</td>
<td>C</td>
<td>C</td>
<td>X</td>
<td>XD</td>
<td>C</td>
<td>C</td>
<td>DXXD</td>
<td>CXXC</td>
<td>transient 2Fe-2S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TbNfu1,2,3</td>
<td>DXXD</td>
<td>CXXC</td>
<td>transient 2Fe-2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AtNFu4,5</td>
<td>DXXD</td>
<td>CXXC</td>
<td>transient 2Fe-2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AtNFu1,2,3</td>
<td>DXXD</td>
<td>CXXC</td>
<td>transient 2Fe-2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2

B

Cyanobacteria & Phototrophic Eukaryotes (Chloroplast origin)

AtNFu3

AtNFu1

other bacteria

AtNFu4

AtNFu5

α-proteobacteria & Eukaryotes (Mitochondrial origin)

TbNFu1

TbNFu2

TbNFu3
Figure 4
$\Delta I_s u_1 \Delta N_f u_1 + S_c N_f u_1$

$\Delta I_s u_1 \Delta N_f u_1$

$\Delta I_s u_1 \Delta N_f u_1 + T_b N_f u_1$

$\Delta I_s u_1 \Delta N_f u_1 + T_b N_f u_2$

$\Delta I_s u_1 \Delta N_f u_1 + T_b N_f u_3$
Figure 6

A

B

C

- tet
- tet
- tet

+ tet
+ tet
+ tet

log cells / ml
log cells / ml
log cells / ml

time (days)
time (days)
time (days)

0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10 11
0 1 2 3 4 5 6 7 8 9 10

- 1 2 3 4 5 6 7 8 days + tet
- 1 2 3 4 5 6 7 8 days + tet
- 1 2 3 4 5 6 7 8 days + tet

Figure
Figure 7

A

B

C

- 3 5 7 days + tet

TbNfu1

enolase

- 1 2 3 4 5 days + tet

TbNfu2

enolase

- 1 2 3 4 5 days + tet

TbNfu3

enolase
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Sense oligo</th>
<th>Antisense oligo</th>
<th>Plasmid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNAi against 3'UTR</td>
<td>CB104: GTCAGGATCCgctgacgacggtgctgtcgt</td>
<td>CB105: GTACCTCGAGgttttcccgttaaccgactaacc</td>
<td>pCR49 (Nfu1 RNAi)</td>
</tr>
<tr>
<td>RNAi against Nfu1</td>
<td>Nfu1_F: CTCGAGATGATAAAAGTTCACTCTG GGTACCTTT</td>
<td>Nfu1_R: GGATCCGAGCAACTCCTTCCACTGG</td>
<td>Nfu1 RNAi</td>
</tr>
<tr>
<td>Endogenous tagging – PTP(N)</td>
<td>CB51: ctaagcttTGATAAAAGTTCACTCTGG TAC</td>
<td>CB52: tagatatcCGTCTCGTCAAGAAGCC</td>
<td>pCR34 (PTP-Nfu1)</td>
</tr>
<tr>
<td>Endogenous tagging – PTP(C)</td>
<td>CB53: taggtaccGGGTTCCCTCGACCCGACG</td>
<td>CB77: tcgcggccgcTTTGATTGTGAAGGCGTCAC</td>
<td>pCR35 (Nfu1-PPT)</td>
</tr>
<tr>
<td>yeast rescue</td>
<td>CB93: atggtaGGATCCCTAACCCTGATTG CCTTCCGG</td>
<td>CB94: ATGGTAgaattcGTGGTATTGAGGGCGCTCAC</td>
<td>Nfu1-reverse</td>
</tr>
<tr>
<td>Overexpression – 3xV5 (C)</td>
<td>CB106: GTCAaagcttATGATAAAGTTCACTCTGGG</td>
<td>CB107: GTACggatccGTTTGATTGTGAGGCACGTCAC</td>
<td>pCR43 (Nfu1-V5)</td>
</tr>
<tr>
<td>RNAi against Nfu2</td>
<td>Nfu2_F: CTCGAGATGGTGAGGAAGTTAC</td>
<td>Nfu2_R: GGATCCGAGCACTCCTTCCACTACC</td>
<td>Nfu2 RNAi</td>
</tr>
<tr>
<td>Endogenous tagging – PTP(N)</td>
<td>CB76: gcaagcttTgcgggtcgtctggtgtt</td>
<td>CB56: tagatatcGCGTGGACGTGAAACTTCGACG</td>
<td>pCR37 (PTP-Nfu2)</td>
</tr>
<tr>
<td>Endogenous tagging – PTP(C)</td>
<td>CB79: caGGGCCCgattttgtgacggtgctgggcg</td>
<td>CB80: tagcgccggtctgcttctgcgtctgcgttgc</td>
<td>pCR38 (Nfu2-PPT)</td>
</tr>
<tr>
<td>yeast rescue</td>
<td>CB95: atggtaGGATCCcgggtcgtctggttgt</td>
<td>CB96: ATGGTAgaattcgtcctgcttgctgggtggttggtt</td>
<td>Nfu2-reverse</td>
</tr>
<tr>
<td>RNAi against Nfu3</td>
<td>Nfu3_F: CTCGAGATGCTACGGGCACACAG</td>
<td>Nfu3_R: GGATCCGAGTTAAGGAGTTCCAACG</td>
<td>Nfu3 RNAi</td>
</tr>
<tr>
<td>Endogenous tagging – PTP(N)</td>
<td>CB59: ctaagcttTGCTACGTTGGCACACGCG</td>
<td>CB60: tagatatcCCTCTGAGTCAACTCTGGGGCC</td>
<td>pCR39</td>
</tr>
<tr>
<td>Endogenous tagging – PTP(C)</td>
<td>CB61: taggtaccCGGTGCGACTGAAACCTGC</td>
<td>CB78: atgcggccgcTCATCCCCCATCGGCTCA</td>
<td>pCR36</td>
</tr>
<tr>
<td>yeast rescue</td>
<td>CB97: ATGGTAgaattcCTACGTTGGCACACGG GCTCAG</td>
<td>CB98: ATGGTAgaattcCTACGTTGGCACACGG GCTC</td>
<td>Nfu3-reverse</td>
</tr>
</tbody>
</table>
Supp. Fig. 1

N- C- terminally tagged TbNfu2
Supp. Fig.2

A

- 4 6 8 10 days + tet

TbNfu1
enolase

B

- 1 2 3 4 5 6 7 days + tet

TbNfu1
enolase