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ABSTRACT

We consider inference for demographic models and parameters based upon post-processing

the output of an MCMC method that generates samples of genealogical trees (from the

posterior distribution for a specific prior distribution of the genealogy). This approach

has the advantage of taking account of the uncertainty in the inference for the tree when

making inferences about the demographic model; and can be computationally efficient

in terms of re-analysing data under a wide variety of models. We consider a (simulation

consistent) estimate of the likelihood for variable population size models, which uses

importance sampling, and propose two new approximate likelihoods, one for migration

models and one for continuous spatial models.

INTRODUCTION

There are two common approaches to analysing population genetic data. The first ap-

proach involves (i) inferring a genealogical or phylogenetic tree for the data, and (ii)

making inferences about demographic or other parameters conditional on this tree. Ex-

amples of this include inference of the demography (Underhill et al., 2001), nested clade

analysis (Templeton et al., 1987) and phylogeographic and spatial analysis (Emerson

and Hewitt, 2005; French et al., 2005). Often this approach is applied informally, with

the qualitative features of the inferred tree being used to suggest plausible demographic

histories for the sample (Shen et al., 2000).

The second approach involves joint inference of the genealogical tree and the param-

eters. In many cases the genealogical tree is a nuisance parameter, and calculation of

the likelihood for the parameters involves integrating out the unknown tree. For ex-

ample, inference about various demographic models under a coalescent prior, including

variable population sizes (Griffiths and Tavaré, 1994a; Kuhner et al., 1998; Drummond

et al., 2005), and population structure (Beerli and Felsenstein, 1999; Bahlo and Grif-

fiths, 1998); inference for selection (Coop and Griffiths, 2004); dispersal of a population

(Brooks et al., 2007); and inference for recombination rates (Griffiths and Marjoram,

1996; Kuhner et al., 2000; Fearnhead and Donnelly, 2002). (In the latter case the

genealogical information is contained in a graph, and not a tree.)

The advantage of the second approach is that, assuming the model for the genealogical

tree is reasonable, the uncertainty in this genealogy is correctly incorporated into the
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inference about the parameters of interest. This is particularly important for data where

there is considerable uncertainty in the genealogy (which is common for many datasets).

The first approach of conditioning on a single estimate of the genealogy can sometimes

lead to biases in estimates and, more generally, underestimates of the uncertainty in the

parameters. These problems often mean that analysis conditional on the tree is often

used primarily to test hypotheses (Templeton et al., 1987; French et al., 2005), rather

than for estimating parameters of appropriate models.

However, implementing the second approach is considerably more challenging, and gen-

erally requires the use of modern computationally-intensive statistical methods (Stephens

and Donnelly, 2000). In particular this often requires the development of customised

programs to analyse the data under the specific model or models of interest, and the

application of this approach can be limited by the availability of suitable software.

In this paper we consider a new approach, which lies between these two approaches.

The basic idea is (i) to perform inference for the genealogical/phylogenetic tree using a

suitable Bayesian approach, obtaining a sample of trees from the posterior; (ii) perform

inference on the parameters of interest using this sample of trees. The idea is that by

using a sample of trees in an appropriate way we can still take account of the uncertainty

within the inference for the tree, but that this approach will be less computationally-

intensive and more widely applicable than the second approach above.

We consider inference under three different demographic models: (a) variable popu-

lation size; (b) migration between discrete subpopulations; and (c) continuous spatial

structure. For (a) we present a simple importance sampling approach that can re-weight

a sample of trees so that the resulting weighted sample approximates the posterior dis-

tribution of the genealogy under any variable population size model. For (b) and (c)

we propose approximate likelihood functions based on specifying a probability model

for the population or spatial information of the sample given the genealogy.

Our aim is to evaluate the potential for this approach of post-processing a sample

of genealogical trees. As such we focus on the specific case of inference for a non-

recombining DNA region with infinite-sites data and known topology. The advantage

of focussing on this special case is that there exists an algorithm for simulating directly

from the posterior distribution of the coalescence times of the tree, under a specific prior

(see METHODS). Thus we can focus on the computational and statistical efficiency of

the post-processing methods, without any need to take into account the possible effects
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of any inaccuracies in the method for generating the sample of trees. However, in

theory the ideas of post-processing can be applied to the output of any MCMC or other

approach for generating samples of trees from a known posterior distribution.

METHODS

Infinite Sites Data and Phylogenetic Prior

We focus on analysing data from m chromosomes sampled from a population. We

assume we have infinite-sites data from a non-recombining region of the genome, and

that the genealogy is known. The infinite-sites data means that we will know the number

of mutations that have occurred on each branch of the genealogy. Our mutation model

is that (for our chosen scaling of time) these mutations occur at a constant rate θ/2

along each branch of the genealogy.

We assume some labelling of the nodes in the genealogy, and denote by t = (t1, . . . , tm−1)

the coalescent times for these nodes. We also introduce the notation t′ = (t′1, . . . , t
′

m−1)

to denote the ordered coalescent times (so t′1 < t′2 < · · · < t′m−1). In the genealogy

there are 2(m − 1) branches. The branch lengths, which will be denoted by b =

(b1, . . . , b2(m−1)), and sequence data can be summarised by the number of mutations on

each branch: n = (n1, . . . , n2(m−1)). The branch lengths, b, are uniquely determined

by the coalescent times, t; and the likelihood of the data, n, can be written as:

p(n|t, θ) =

2(m−1)
∏

i=1

(

θ

2

)ni

bni

i exp{−biθ/2}. (1)

Now we use the pure birth process prior of Rannala and Yang (1996) for the coalescent

times, which assumes that the length of each branch has an exponential distribution

with rate φ,

π1(t|φ) ∝
m−1
∏

i=1

(m + 1 − i)φ exp
{

(m + 1 − i)φ(t′i − t′i−1)
}

. (2)

Under this prior the posterior distribution for t (given φ and θ) is

p(t|n, θ, φ) ∝ φm−1

2(m−1)
∏

i=1

(

θ

2

)ni

bni

i exp{−(φ + θ/2)bi}. (3)

Note that setting φ = 0 produces a posterior that is proportional to the likelihood

function.
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By introducing new variables s = (s1, . . . , sm−1), which satisfy si = (φ + θ/2)ti we

obtain

p(s|n, θ, φ) ∝

(

φ

φ + θ/2

)m−1 2(m−1)
∏

i=1

(

θ/2

φ + θ/2

)ni

(b′i)
ni exp(−b′i), (4)

where b′i = (φ + θ/2)bi. Fearnhead and Meligkotsidou (2004) show how to draw inde-

pendent and identically distributed (iid) samples from this density, and hence (through

rescaling) from the posterior (3). Furthermore this gives that the likelihood for φ is

proportional to
(

φ

φ + θ/2

)m−1( θ/2

φ + θ/2

)n

, (5)

where n is the total number of mutations.

Variable Population Size

Consider a panmictic population of current effective population size N chromosomes,

time measured in units of N generations, and let the effective population size at time t

in the past be N/λ(t). The distribution for the coalescence times for a random sample

of m chromosomes from such a population (Griffiths and Tavaré, 1994a) is

π2(t|λ(t)) =

m−1
∏

i=1





m + 1 − i

2



λ(t′i) exp











m + 1 − i

2





(

Λ(t′i) − Λ(t′i−1)
)







, (6)

where Λ(s) =
∫ s
0 λ(u)du.

Interest lies in generating samples from the posterior distribution of the coalescent times,

p(t|λ(t), θ,n) and for calculating the marginal likelihood p(n|λ(t), θ). The former allows

us to perform inference for a given demographic model, and the latter is required for

choosing between different demographic models.

Both these can be achieved through an algorithm which generates samples of the coa-

lescent times from (3) and then reweights these samples:

(A) Generate an iid sample of size K from (3) using the method of Fearnhead and

Meligkotsidou (2004). Denote the sample as t(1), . . . , t(K).

(B) For k = 1, . . . .K assign t(k) a weight wk = π2(t
(k)|λ(t))/π1(t

(k)|φ). Let C =
∑K

k=1 wk.

(C) The weighted sample, t(1), . . . , t(K) with corresponding weights w1/C, . . . , wK/C,

approximates the posterior p(t|λ(t), θ,n). Furthermore an estimate of the marginal

likelihood p(n|λ(t), θ) is given by C/K.
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The advantage of this approach is that the costly, in terms of CPU time, step of gen-

erating the sample of coalescent times in (A) is required only once. Calculating the

importance sampling weights in (B) has negligible CPU cost, and thus can be repeated

easily for a wide-range of possible models for how the population size has varied through

time. For informative data, the hope is that (3), which is closely related to the likeli-

hood, will be a good proposal density for a wide-range of λ(t)s. However the efficiency

of this method is likely to depend crucially on the sample size m, which affects the

dimension of t.

Migration Models

We now consider inference for a structured population model. We consider a model

with D demes, each with constant population sizes N1, . . . , ND respectively, and D ×

D backward migration matrix M = {Mij}. Under this model, backwards in time a

chromosome currently in deme i will migrate to deme j with rate Mij/2. The diagonal

elements are defined so that rows of the matrix sum to zero,
∑D

i=1 Mij = 0. We will

assume the population is at stationarity, so that the expected number of migrants leaving

a deme is equal to the expected number entering, which corresponds to
∑D

i=1 NiMij =

0, and thus the model is parameterised by the migration matrix M , and the total

population size N =
∑D

i=1 Ni.

The data now includes the deme in which each of the chromosomes was sampled. We

propose an approximate likelihood approach to estimating the migration rates. We first

introduce an approximate likelihood function conditional on t, l̃(M |t). To define this

we define γi = Ni/N for i = 1, . . . , D, and introduce a forward migration matrix F

whose entries satisfy Fij = NjMji/Ni, for i, j = 1, . . . , D. So that the probability of a

chromosome in deme y having a specific descendant in deme x at a time t in the future

is

pyx(t) = (exp{Ft})yx .

We introduce a vector x = (x1, . . . , x2m−1), where (x1, . . . , xm) denotes the deme of the

m chromosomes in the sample, and (xm+1, . . . , x2m−1) are the demes of the internal

nodes of the genealogy. We assume x2m−1 is the deme of the most recent common

ancestor. Finally for i = 1, . . . , 2m − 2 we let bi be the branch length connecting node

i to its parent, and yi the deme of the parent of node i. Then we define a joint density

p(x) = γx2m−1

2m−2
∏

i=1

pyixi
(bi).
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Finally the likelihood conditional on t is

l̃(M |t) =
∑

xm+1

· · ·
∑

x2m−1

p(x). (7)

Note that this likelihood is uninformative about the total population size N . Calculating

(7) is possible using the peeling algorithm of Felsenstein (1981).

Our approximate likelihood is then obtained by averaging l̃(M |t) over samples of t from

(3). So given a sample t(1), . . . , t(K) from (3), we get

l̃(M) =
1

K

K
∑

k=1

l̃(M |t(k)).

The approximation here is due to averaging over the wrong distribution for t.

Continuous Spatial Models

Finally we consider inference for samples obtained across a continuous spatial habi-

tat. We will assume that the data now includes a spatial location for each sampled

chromosome. We will focus on inference under an isolation-by-distance model.

For simplicity we will first describe the model assuming a 1 dimensional location. We

assume that the displacement of the location of a chromosome from the location of its

ancester at time t in the past has a univariate Gaussian distribution, with zero mean,

and variance σ2t. First condition on the genealogy of the sample. Furthermore, let µ

be the location of the most recent common ancestor (MRCA), T be the time to the

MRCA, and tij be the time back to the first common ancestor of chromosomes i and

j. Then, conditional on this, the spatial data X = (X1, . . . , Xm) has a multivariate

normal distribution with

E(Xi) = µ, and Cov(Xi, Xj) = σ2(T − tij),

for all i, j = 1, . . . , m. The intuition here is that as dispersion is unbiased, the expected

location of each sampled chromosome will be the location of the MRCA; whereas the

covariance between the locations of two chromosomes is proportional to the amount

of shared ancestry they have back to the most recent common ancestor. This model

trivially extends to the case of 2 dimensional locations where the dispersion in each

direction is independent and identically distributed.

To perform inference we then introduce a prior distribution on the genelogy of the

sample, and a prior distribution on µ. We use (2) as the prior on the genealogy and

we choose an improper uniform prior on µ. For this choice of prior on µ it possible to
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analytically integrate out µ conditional on the genealogy (Rue and Held, 2005). We

will write p(x|t, σ) to be the resuting conditional probability of the data given just the

genealogy and σ, and p(µ|x, t, σ) the corresponding conditional distribution for µ.

For many spatial genetic studies, samples are generated by first choosing the locations,

and then sampling chromosomes at those locations. Thus it makes sense to perform

inference under a conditional likelihood, where we condition on the spatial location.

More generally, use of the conditional likelihood means the results should depend less on

the choice of prior on the genealogy (as in the limit as the data becomes less informative,

the conditional likelihood will also become uninformative about the parameters). If as

before we denote the genetic data by n, and the spatial data by x then the conditonal

likelihood can be written as

CL(σ) = p(n|x, σ) =
p(n,x|σ)

p(x|σ)
.

If we use the prior (2), but rather than specifying a value of φ use the uninformative

hyperprior π(φ) ∝ 1/φ, then the denominator is constant (see the Appendix), which

greatly simplifies the calculation of this conditional likelihood.

We calculate CL(σ) by simulation as follows.

(A) We simulate K iid samples of times, by repeatedly (i) simulating φ from its pos-

terior, and (ii) simulating t from (3) conditional on that φ. Denote the sample as

t(1), . . . , t(K).

(B) For k = 1, . . . , K assign t(k) a weight wk = p(x|t(k), σ). Let C =
∑K

k=1 wk.

(C) An estimate of CL(σ) is C/K, and the posterior distribution for µ is approximated

by the mixture
K
∑

k=1

wk

C
p(µ|x, t(k), σ).

Simulation in part (i) of (A) is straightforward, as the posterior for φ is proportional to

(

φ

φ + θ/2

)m−2( θ/2

φ + θ/2

)n

,

and can be related to a Beta distribution through the transformation γ = φ/(φ + θ/2).

Simulation of Continuous Spatial Data

Simulating data under an appropriate continuous spatial model is difficult. There ap-

pear to be two approaches, firstly those based on the isolation-by distance model of
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Wright (1943), which ignores any regulation of population density, and thus produces

populations with infinite density (Felsenstein, 1975). Secondly, is to use models which

assume a constant population density (Wilkins and Wakeley, 2002; Wilkins, 2004), and

require the population to live on some closed finite region.

As our inference model ignores any restriction on the location of chromosomes as re-

quired for these latter models, we simulated data under a version of the isolation-by

distance model of Wright (1943). In particular, we simulated the genealogical tree for

our data under a coalescent model with exponential population growth, and then condi-

tional on this simulated the spread of the chromosomes from the model described above.

The idea is to model a situation where the effect of population density regulation is less:

that of a population growing in size to fill a new habitat. Note that we are simulating

the data under a different model to that which we are analysing it, as the distributions

on the genealogy differ.

RESULTS

Variable Population Size

The importance sampling approach we propose for analysing data under a range of

variable population size scenarios is simulation consistent. That is, as the number of

samples, K, of the coalescence times tends to infinity then the estimate of the likelihood

of a given scenario, or the likelihood curve for a given set of parameters will converge to

the true likelihood or likelihood curve. Similar results hold for the posterior distribution

of the coalescence times. Thus the practicability and efficiency of the approach relies

on the Monte Carlo error in these estimates, and how large K will need to be to obtain

good estimates.

One way of empirically testing the accuracy of these estimates is to use the effective

sample size (ESS) of Liu (1996) (see also Fearnhead and Donnelly, 2001). The ESS is

defined as
(
∑K

k=1 wk)
2

∑K
k=1 w2

k

.

The ESS lies between 1 and K, and has the interpretation that if an importance sampling

scheme has an ESS of E, then inference based on this scheme is roughly as accurate

as inference based on E independent draws from the full posterior distribution. As a

rough guide we would want E > 100 and preferably E > 1, 000 for the inferences to be

reliable. (Increasing K by a factor should increase E by the same constant factor.)
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Figure 1: ESS for analysing data sets of size m = 10, 15, 20, 30, 40 simulated from the

exponentially growing population size model with β = 0.7 and θ = 10, 20, 30.

We investigated how the ESS of our method depends on the values of the mutation

rate, θ, and the sample size, m. We simulated data from the exponentially growing

population size model with rate of exponential growth β = 0.7 and various values of

θ, namely θ = 10, 20, 30. Figure 1 shows the ESS values for analysing data sets of size

m = 10, 15, 20, 30, 40; using K = 10, 000 weighted samples sampled from (3). (Here and

below we set φ to the value which minimises the likelihood in Eq. 5; though results are

insensitive to this choice.) It can be seen that the ESS decreases with m, but increases

with θ. The results suggest that for θ = 10 analysing sample sizes of up to 20–40

is reasonable, with slightly larger sample sizes possible for the larger θ values. The

speed of this approach means that analysis for larger values of m should be possible by

increasing K.

To demonstrate the potential usefulness of our method we consider analysing the data

shown in Figure 2, under a variety of scenarios for the variable population size. We

fix the parameters within our model (though our approach can equally be used to

calculate likelihood surfaces for parameters of a given model). Our reason for focussing

on different scenarios is that this is a situation where existing methods may not be able

to be used (as existing software may only allow analysis for a certain class of models, or

would require being re-run for each model that is considered). Specifically, we consider

the following models.
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(a) The constant population size model. For this model λ(t) = t.

(b) The exponentially growing population size model. For this model λ(t) = eβt.

(c) The constant population size followed by exponential growth model. For this

model we assume

λ(t) =







se−βt, t < s

se−βs, t ≥ s
.

(d) The bottleneck model. For this model we assume

λ(t) =



















1, t < s1

α, s1 ≤ t < s2

2, t ≥ s2

.

For the analysis below we fixed (a) θ = 15, (b) θ = 15 and β = 0.7, (c) θ = 15, s = 0.1

and β = −10 log(0.05), and (d) θ = 15, s1 = 0.165, s2 = 0.175 and α = 10. We focus

on inferring the time to the most recent common ancestor (TMRCA); and in particular

looking at how robust these inferences are to the specific choice of model.

We simulated K = 10, 000 sets of coalescence times from (3), which took under 2

minutes on a desktop PC. Reweighting this sets of times took around 1 second for each

model. The resulting Histograms of the samples of the TMRCA for all models are shown

in Figure 3, and the respective estimates of the marginal likelihood are (a) 0.4308, (b)

0.6248, (c) 0.0362, and (d) 2.4191 × 10−6. The ESS of the weights were between 1,000

and 5,000 for models (a) – (c), and was 98 for (d). The histograms shows that the

esimate of the TMRCA appears robust across these different models.

Note that inference for the bottleneck model is more challenging than for the other mod-

els as the importance sampling weights depend crucially on the number of coalescences

that lie within the period of the bottleneck; and thus can have a large variance (and

hence small ESS). The effect of a bottleneck depends primarily on its severity, defined

as the product α(s2 − s1). Having a bottleneck with similar severity but larger α and

smaller (s2 − s1) will lead to a more poorly behaved importance sampler.

Migration Models

Here we examine the performance of our approach at analysing migration models. Note

that we can only estimate migration rates relative to our choice of units for time, which

is defined by our specification of the mutation rate θ. Therefore, we fix θ to its true

value and look at estimates of the migration rates.
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Figure 2: The coalescent tree for a sample of m = 10 chromosomes from the constant

population size model. The mutations are depicted by black dots on the branches of

the tree.
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Figure 3: Histograms of the samples of the TMRCA for the coalescent tree analysed

under the (a) constant population size model, (b) exponentially growing population size

model, (c) constant population size followed by exponential growth model, and (d) the

bottleneck model. The true value of the TMRCA is indicated in each plot by a circle.
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Our approach for migration models is based on an approximate likelihood, and firstly

we need to check the validity of this approach. To do this we calculated the mean

log-likelihood over a set of independent data. The shape of the mean log-likelihood

governs the asymptotic behaviour of the method, and in particular for an approximate

likelihood method to produce consistent esimates it is required that the mean log-

likelihood curve attains its maximum at the true value of the parameters (see Fearnhead,

2003; Smith and Fearnhead, 2005, for further discussion). Thus an important property

of an approximate likelihood method is that the mean log-likelihood curve attains its

maximum at a value close to the true value.

We simulated 100 coalescent trees with sample size of m = 10 from the migration model

with D = 2 demes, N1 = 3000, N2 = 7000, M12 = 1.2 and M21 = 2.8. The mutation

rate used was θ = 30. For each data set we based inferences on 2, 000 sets of coalescence

times simulated from (3), again with φ set to the value that maximises (5). We have

estimated the mean log-likelihood at a grid of values of M12, M21. A contour plot of this

log-likelihood surface is shown in figure 4. The maximum of this curve is indeed close

to the true parameter value (maximum at M12 = 1.02, M21 = 2.52). Similar results are

obtained for a range of migration models (results not shown).

In Table 1 we present results on the performance of our approach, obtained from simu-

lated data of size m = 10, 20 from the migration model with D = 2 demes for different

values of the model parameters. We consider 2 sets of parameters; (a) N1 = N2 = 5000,

M12 = M21 = 0.4, and (b) N1 = 3000, N2 = 7000, M12 = 1.2, M21 = 2.8. In each

case we report the average of the most likely parameter values across 100 data sets, the

standard errors of these estimates (in parentheses) and the associated coverage of the

95% likelihood-based confidence intervals (CIs). The average CPU cost of analysing a

data set on a laptop PC is 30sec for the m = 10 case and 50sec for the m = 20 case.

For comparison we reanalysed the m = 10, M12 = M21 = 0.4 data sets using genetree

(Griffiths and Tavaré, 1994b; Bahlo and Griffiths, 1998), which approximates the true

likelihood curve. To use a single run of genetree required that we fix the relative

populations sizes in the two populations. So we ran genetree and reran our approach

assuming that both θ and the relative population sizes were known, and considered

estimates of the single migration parameter. We ran genetree for 100,000 iterations,

which took around an order of magnitude longer to run than our approach. The median

of ESSs of the estimate of the likelihood at the true migration rate was 15 across the
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Figure 4: Contour plot of the mean log-likelihood surface of M12, M21 obtained from 100

simulated coalescent trees under the migration model with D = 2 demes (each contour

corresponds to 0.05 units of log-likelihood). The true parameter values are M12 = 1.2

and M21 = 2.8.

Case (a) Case (b)

m θ M̂12 coverage M̂21 coverage M̂12 coverage M̂21 coverage

10 15 0.46 100% 0.48 100% 1.02 92% 2.50 89%

(0.26) (0.26) (0.64) (1.30)

10 30 0.42 100% 0.46 100% 1.08 95% 2.62 97%

(0.22) (0.26) (0.62) (1.22)

20 15 0.36 99% 0.38 99% 1.04 87% 2.42 82%

(0.24) (0.24) (0.72) (1.46)

20 30 0.38 97% 0.38 97% 1.06 90% 2.66 88%

(0.30) (0.30) (0.70) (1.36)

Table 1: Performance of our approximate likelihood approach for simulated data under

the migration model with D = 2 demes for different scenarios; (a) N1 = N2 = 5000,

M12 = M21 = 0.4, and (b) N1 = 3000, N2 = 7000, M12 = 1.2, M21 = 2.8. In each case

we report the estimates of the parameters based on 100 data sets, the standard errors

(in parentheses) and the associated coverage of the 95% CIs.
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100 simulations (in comparison with an ESS of > 1, 000 for our method). The estimates

from the two methods were highly correlated (correlation co-efficient 0.77). The root

mean square error of our estimates was about 10% higher than that of genetree. This

maybe due to the extra statistical efficiency of the true mle, or it be partly due to our

choice of driving value (see discussion of Fearnhead and Donnelly, 2001); and rerunning

genetree with a driving value that is away from the truth (1.0 as opposed to 0.4) gives

estimates with root mean square error that is 30% greater than our estimates.

Continuous Spatial Models

Finally we present results for the continuous spatial models. Again here we can only

estimate the parameters of the spatial model relative to the mutation rate θ. There-

fore, we fix the parameters of the demographic model to their true values and look at

estimates of the spatial parameters.

Firstly we check the validity of the approximate likelihood through calculating the mean

log-likelihood for a range of parameters. For each set of parameters we simulated 100

data sets and then used our approximate approach with K = 5000 to estimate the like-

lihood curve of σ, the parameter governing the rate of spatial dispersion, and to obtain

samples from the posterior distribution of the location of the MRCA. Combining infor-

mation from all of the 100 simulated trees we have estimated the average log-likelihood

at a grid of values of σ. Figure 5 shows the resulting mean log-likelihood curves for a

range of values of the sample size, m, the mutation rate, θ, and the population growth

parameter, β. In each case σ = 1. The accuracy of the method appears to be primarily

dependent on m; with the asymptotic bias of the method increasing as m increases (as

the value of σ for which the maximum of the mean log-likelihood curve is attained gets

further away from σ = 1 as m increases). For values of m up to 10 this bias appears

small.

In Table 2 we present a summary of the estimates of σ across the 100 data sets for each

set of parameter values; and in Table 3 we give the mean square error of the estimate

of the position of the MRCA (these estimates had negligible bias); due to symmetry we

show only the mean square error for esimating one co-ordinate of the position.

We see that the estimates of σ are accurate for values of m up to 10; beyond this we

notice a bias in our estimates, and the root mean square error actually increases when

we move from m = 10 to m = 40. Coverage properties also appear good for values of

m up to 10; but beyond this the confidence intervals are subtantially anti-conservative.
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Figure 5: Plots of the log-likelihood surface of σ for a range of parameter values, each

obtained from 100 simulated data sets. Left-hand plot: θ = 15, β = 1 and m = 10

(blue) m = 20 (red) and m = 40 (green); right-hand plot: m = 20 and θ = 30, β = 1

(black), θ = 30, β = 2 (blue), θ = 15, β = 1 (red), and θ = 15, β = 2 (green).

The values of β and θ appear to have had little effect on the results. These results are

consistent with those from Figure 5, with the bias of the estimator starting to dominate

its performance for m = 20 and particularly m = 40.

For comparison with our estimate of the position of the MRCA, we also calculated a

simple unbiased estimate for each data set which is obtained by taking the average of

the locations of the sample. The mean square error of one co-ordinate of the position is

also shown in Table 3. Our approach is uniformly more accurate - with quite noticeable

reduction in mean square error for m = 20 and m = 40. Note that the estimates are

more accurate for β = 2 due to the tree being shorter, and thus the spatial spread of

the data less, than for β = 1.

To demonstrate the advantage of post-processing a sample of genealogical trees, rather

than conditional analysis based on a single tree, we considered the alternative approach

of inferring σ given a single estimate of the genelogy. Such an approach (i) obtains an

estimate of the coalescent times t̂; and (ii) bases inference on the conditional likelihood

p(x|̂t, σ). We used the maximum likelihood estimator of t̂ (which for these models can

be calculated using the method of Meligkotsidou and Fearnhead, 2005).

Here we present results for the m = 2 and m = 5 cases, though similar results are
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obtained for larger values of m. One difficulty with using the maximum likelihood

esimate of t is that this is 0 for identical sequences, which leads to an invalid conditional

likelihood (p(x|̂t, σ) = 0, for all x and σ). Thus in our analysis below we simulate data

conditional on a sample having no identical sequences.

Figure 6 gives Probability-Probalitiy (PP) plots of the Likelihood Ratio statistics for

testing σ = 1 against draws from a chi-squared distribution with one degree of freedom.

We show this plot as this PP plot is related to the coverage properties of confidence

intervals for the parameter, and if the Likelihood Ratio statistic is approximately dis-

tributed as a chi-squared distribution with one degree of freedom, then it shows that

the likelihood method is correctly quantifying the uncertainty in the parameter. This

analysis is slightly complicated for the m = 2 case, as the sample size is too small for

the asymptotic limit of the Likelihood ratio statistic to be a very good approximation -

thus we also show the PP plot for the Likelihood Ratio statistic conditional on knowing

the true coalescence time. For each value of θ we give PP plots for the new approx-

imate likelihood method, the conditional analysis for the data sets with at least one

segregating site. For smaller values of θ the approach that conditions on the mle for

the coalescence time substantially under-estimates the uncertainty of the estimate for

σ. As θ increases the distribution of the LR statistics approaches the distribution of

the LR statistic for the likelihood of σ conditional on the true value of the coalescence

time.

The effect of conditioning on the mle of the times is less pronounced on the point

estimates of σ. For the m = 5 case, the two sets of mles are highly correlated (correlation

0.96), and give almost identical root mean square error, though conditioning on the mle

appears to give slight underestimates of σ. A measure of the efficiency of this approach

can be seen by looking at the correlation of the esimates from our method with those

conditional on the true coalescence times, this again is high (correlation 0.80).

DISCUSSION

We have considered post-processing of samples of genealogies, in particular to learn

about the demographic parameters for a sample, and the robustness of inference to

changes in the demographic model. While in our applications we have considered

infinite-sites data from a non-recombining region of DNA, the ideas can be applied

much more generally. (For example for the variable population size analysis, chang-
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β = 1 β = 2

m θ E(σ̂) RMSE coverage E(σ̂) RMSE coverage

5 2 0.99 0.45 95% 1.00 0.42 96%

5 5 1.09 0.46 93% 0.99 0.38 94%

10 5 1.02 0.28 95% 1.04 0.29 95%

10 15 1.05 0.24 94% 1.03 0.23 94%

20 15 1.13 0.22 83% 1.18 0.26 79%

20 30 1.14 0.27 79% 1.20 0.29 73%

40 15 1.22 0.31 57% 1.23 0.30 51%

40 30 1.22 0.30 45% 1.28 0.32 40%

Table 2: Performance of our conditional likelihood approach at estimating σ for the

spatial model. We report the mean of the estimates of σ (truth σ = 1), the root

mean square error of the estimates, and the coverage probability of 95% approximate

confidence intervals. (The grid of σ values ranged from 0–4 for m = 5 and m = 10; and

0–2 for m > 10.)

β = 1 β = 2

m θ CL SM CL SM

5 2 0.39 0.53 0.23 0.27

5 5 0.29 0.39 0.26 0.31

10 5 0.45 0. 49 0.26 0.28

10 15 0.43 0.44 0.30 0.31

20 15 0.37 0.44 0.27 0.34

20 30 0.31 0.38 0.27 0.35

40 15 0.44 0.48 0.21 0.26

40 30 0.46 0.51 0.30 0.39

Table 3: Performance of our conditional likelihood (CL) method and the sample mean

(SM) at estimating the position of the MRCA. Figures show mean square error for

inferring a single co-ordinate of the position.
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Figure 6: Probability-Probability (PP) plots of a χ2
1 distriution against the Likelihood

Ratio (LR) statistics for (red) our conditional likelihood method; (blue) analysis condi-

tional on the maximum likelihood estimate of the coalescence times; and (green) analysis

conditional on the true coalescence times. Plots (a)–(c) are based on 1,000 data sets,

with m = 2, β = 1 and (a) θ = 1, (b) θ = 2, (c) θ = 4; plot (d) is based on 100 data sets

with m = 5, θ = 2 and β = 1. We simulated all data sets conditional on there being no

identical sequences in the data set.
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ing the method of simulating the data will only affect step (B) of the algorithm, with

the denominator of the importance sampling weights being the prior of the model un-

der which the sample of genealogies was generated.) All that is required is that the

there is computational machinery (e.g. MCMC algorithms) that can produce samples

of genealogies for the data. For example, analysis of more general mutation models

is possible using the Bayesian phylogenetic packages such as MrBayes (Ronquist and

Hulsenbeck, 2000) and Bambe (Larget and Simon, 1999), while analysis of(recombining)

bacterial MLST data is possible using ClonalFrame (Didelot and Falush, 2006).

We first considered inference for a variable population size, and robustness of inference

of coalescence times to changes in the model for the population size. An importance

sampling approach, which is “exact” in the limit as the computational cost increases,

is possible here. In practice the efficiency of this method will depend on the sample

size and the mutation rate; efficiency decreasing as sample size increases or mutation

rate decreases. Our results suggest that this approach is practicable for sample sizes

of up to 50 chromosomes. The advantage of this post-processing is that it enables a

data set to be analysed quickly under a range of different models. As such we view

that this approach will be useful in terms of a preliminary analysis of a potentially

large data set. We can first subsample an appropriate number of chromosomes (of the

order of 10–50), and analyse these under a variety of models. This will help inform us

as to what are the appropriate models for analysing the complete data (using a more

dedicated/computationally-intensive approach), and also give insights as to how robust

the results about the coalescence times of the tree will be.

We also considered inference in structured populations: both discrete subpopulations

and continuous spatial models. There are similarities in the approximate likelihood

approach we consider for both of these cases. We first simulate a sample of genealogies

and then average over the conditional likelihood of the spatial data given the genealogy.

This approach is implicitly assuming a conditional independence structure to the data:

that the spatial and genetic data are conditionally independent given the genealogy.

As such our model assumes a prior for the genealogy and then conditional models

for the spatial/genetic data given the genealogy. The prior for the genealogy is that

assumed within our computational method for producing the sample of genealogies

(in our case the phylogenetic prior described in METHODS). Under the conditional

independence assumption, this approximate likelihood approach should tend to the

true likelihood as the mutation rate increases (as in this case the posterior distribution
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of the genealogy will converge to a point mass on the true genealogy). In practice we

observe the approximate likelihood method performs well for relatively small sample

sizes (up to 20 chromosomes). For larger sample sizes, the genealogical prior we use is

not correctly capturing the distribution of some of the coalescence times, and this then

starts to introduce biases into the method.

However, our method can be applied to large data using a composite likelihood ap-

proach. A large data set can be split into smaller subsamples (with the possibility

of each chromosome appearing in many subsamples); the approximate log-likelihood

calculated for each subsample; and these approximate log-likelihood curves combined

through adding them together. An estimate of the parameter(s) is given by the value(s)

that maximise this composite log-likelihood. The performance of such a method is

governed by the shape of the mean of the log of the approximate likelihood, such as

shown in Figures 5 (see Fearnhead, 2003). And these results suggest that the methods

should perform well is the composite likelihood is based upon analysisng subsamples of

relatively small size (with m up to 10).

In particular a pairwise likelihood approach is likely to be a simple method for analysing

continuous spatial data sets (currently there are few methods for analysing such models).

For such a pairwise approach it is simple to allow for quite general models of the spatial

spread of the population through time, all that is required is the specification of a family

of densities, p(x1, x2; t), for the probability of two chromosomes which share a common

ancestor at time t in the past being located at positions x1 and x2.
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Griffiths, R. C. and Tavaré, S. (1994b). Simulating probability distributions in the

coalescent. Theoretical Population Biology 46, 131–159.

Kuhner, M. K., Yamato, J. and Felsenstein, J. (1998). Maximum likelihood estimation

of population growth rates based on the coalescent. Genetics 149, 429–434.

Kuhner, M. K., Yamato, J. and Felsenstein, J. (2000). Maximum likelihood estimation

of recombination rates from population data. Genetics 156, 1393–1401.

Larget, B. and Simon, D. L. (1999). Markov chain Monte Carlo algorithms for the

Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16, 750–

759.

Liu, J. S. (1996). Metropolised independent sampling with comparisons to rejection

sampling and importance sampling. Statistics and Computing 6, 113–119.

Meligkotsidou, L. and Fearnhead, P. (2005). Maximum likelihood estimation of coales-

cence times in genealogical trees. Genetics 171, to appear.

Rannala, B. and Yang, Z. (1996). Probability distribution of molecular evolutionary

trees: A new method of phylogenetic inference. Journal of Molecular Evolution 43,

304–311.

Ronquist, F. and Hulsenbeck, J. P. (2000). MrBayes3: Bayesian phylogenetic recon-

struction under mixed models. Bioinformatics 19, 1572–1574.

25



Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applica-

tions. CRC Press/Chapman and Hall.

Shen, P., Wang, F., Underhill, P. A., Franco, C., Yang, W., Roxas, A., Sung, R., Lin,

A. A., Hyman, R. W., Vollrath, D., Davis, R. W., Carvalli-Sforza, L. and Oefner, P. J.

(2000). Population genetic implications from sequence variation in four Y chromosome

genes. Proceedings of the National Academy of Science 97, 7354–7359.

Smith, N. G. C. and Fearnhead, P. (2005). A comparison of three estimators of the

population-scaled recombination rate: accuracy and robustness. Genetics 171, 2051–

62.

Stephens, M. and Donnelly, P. (2000). Inference in molecular population genetics (with

discussion). Journal of the Royal Statistical Society, Series B 62, 605–655.

Templeton, A. R., Boerwinkle, E. and Sing, C. F. (1987). A Cladistic Analysis of

Phenotypic Associations With Haplotypes Inferred From Restriction Endonuclease

Mapping. I. Basic Theory and an Analysis of Alcohol Dehydrogenase Activity in

Drosophila. Genetics 117, 343–351.

Underhill, P. A., Passarino, G., Lin, A. A., Shen, P., Lahr, M., Foley, R. A., Oefner,

P. J. and Cavalli-Sforza, L. L. (2001). The phylogeography of Y chromosome binary

haplotypes and the origins of modern human populations. Annals of Human Genetics

65, 43–62.

Wilkins, J. F. (2004). A separation-of-timescales approach to the coalescent in a con-

tinuous population. Genetics 168, 2227–2244.

Wilkins, J. F. and Wakeley, J. (2002). The coalescent in a continuous, finite, linear

population. Genetics 161, 873–888.

Wright, S. (1943). Isolation by distance. Genetics 28, 114–138.

26



APPENDIX

The prior (2) can be obtained by simulating s from the prior with φ = 1, and then

letting t = φs. Thus if we define S and sijs to satisfy T = φS and tij = φsij , so they

are the respective times obtained from s, we get that

Cov(Xi, Xj) = σ2φ(S − sij).

Thus the intuition behind the result is that, as under the prior the data is solely infor-

mative about the product σ2φ, using the scale invariance prior for φ will result in no

information about σ.

Formally we use the fact that

p(x|σ) =

∫ ∫

p(x|σ, φ, s)p(φ)dφp(s)ds.

We consider the integral with respect to φ, assuming a given s, and demonstrate that

this does not depend on σ, from which the fact that p(x|σ) does not depend on σ follows.

For notational simplicity we assume µ = 0 in the following.

Now for our given s let Σ be the covariance matrix obtained when σ = φ = 1, so

Σij = (S − sij) for i, j = 1, . . . , m. Further let Q = Σ−1 and A = xT Qx/2. Then

∫

p(x|σ, φ, s)p(φ)dφ

∝

∫

(σ2φ)−m/2 exp{−A/(σ2φ)}φ−1dφ.

= σ−m

∫

γm/2−1 exp{−γA/(σ2)}dγ

= σ−mΓ(m/2)(A/σ2)−m/2.

For the second equality we have used the transformation γ = 1/φ. The final expression

does not depend on σ as required.
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