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Abstract

Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing
these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be
beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small
intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular
pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified
mice lacking cholecystokinin, Tumor necrosis factor a receptors and T and B-cells, we observed a biphasic hypophagic
response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone
cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the
second hypophagic response is extra-intestinal and due to the anorectic effects of TNFa during peripheral infection of the
muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we
demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight
loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during
infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or
peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce
the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to
infection.
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Introduction

Intestinal inflammation is commonly associated with reduced

feeding (hypophagia) and weight loss [1,2], yet the mechanisms

and underlying principles of these responses is unknown. Infection

with the intestinal parasites Ascaris suum and Trichostrongylus

colubriformis results in hypophagia that is coupled with an increase

in cholecystokinin (CCK) released from I-cells [3,4]; a subset of

intestinal epithelial enteroendocrine cells (EECs). Despite only

comprising 1% of the epithelium, EECs collectively form the

largest mammalian endocrine system. Regulatory peptides and

amines are released from EECs in response to luminal nutrients

[5] and these peptides signal via vagal afferent fibers to feeding

control centers in the brain. These EEC signals in concert with

leptin, produced from adipose tissues indicating levels of fat

deposits, ultimately control our daily short-term feeding patterns.

However, the true biological function and molecular mechanisms

that orchestrate the pathways driving hypophagia and weight loss

during inflammation have not been addressed.

The nematode Trichinella spiralis produces a well characterized

CD4+ T-cell, Th2 driven transient inflammation in the small

intestine culminating in worm expulsion via a mast cell dependent

process [6]. Recently we have observed a hypophagic response

during the Th2 driven enteritis induced by T. spiralis infection [7].

However, the full mechanisms controlling hypophagia during

enteritis and the precise effects reduced feeding have on immunity

to intestinal infection require further elucidation. T. spiralis is

experimentally highly attractive since the enteritis fully resolves,

but is closely followed by a peripheral inflammatory phase

characterized by skeletal muscle invasion and myositis as part of

the parasite’s life cycle.

Here, we demonstrate that this two step inflammatory process

following T. spiralis infection is mirrored by a biphasic hypophagic

response, and mediated by two separate adaptive immune driven

mechanisms. We have characterized these two phases using

genetically modified mice lacking functional CCK or adaptive

immunity and demonstrated that CD4+ T-cells drive I-cell

hyperplasia and the resulting CCK is an essential mediator of

the initial hypophagia observed during enteritis. Conversely the

second phase of hypophagia during skeletal peripheral myositis is

CCK-independent but mediated by the anorectic actions of TNFa
signaling. Furthermore, we demonstrate for the first time that this
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immune-EEC driven alteration in feeding also contributes a

protective role during gastrointestinal infection. The hypophagia

and resulting weight loss causes a reduction in fat secreted leptin,

and the reduction in this hormone, which also acts as an

inflammatory adipokine, augments the protective Th2 immune

response aiding parasite expulsion. These results highlight the

importance of the immunoendocrine axis in the gut during

infection induced immunity and provide a biological function and

associated mechanism for commonly associated infection induced

weight loss. These data have wide-acting implications for the

biology of gut infection and inflammation, and may inform new

leptin-derived therapeutic strategies. Furthermore, the T. spiralis

infected mouse presents a novel preclinical platform to study the

biological mechanisms affecting food intake in inflammatory

disorders, and has the unique potential to experimentally

dissociate gastrointestinal from peripheral signals in an individual

model.

Results

T. spiralis induced enteritis and myositis induces a
biphasic hypophagic response, for which CCK is crucial
for the initial period during enteritis

Proximal enteritis induced by T. spiralis has been associated with

a period of hypophagia and an increase in CCK and serotonin

secreting EECs [7]. Here, mice were examined for alterations in

feeding during T. spiralis induced inflammation. Interestingly, a

biphasic response in feeding was observed following infection

(Fig. 1A). Mice became hypophagic from days 6–10 post infection

(p.i.), during the transient period of T. spiralis induced enteritis, and

we observed a significant increase in CCK positive I-cells in wild-

types (Fig. 1C and E) mirroring hypophagia at days 6 and 9 p.i.

Feeding then returned to baseline levels until undergoing a second

period of hypophagia from day 18–19 p.i. The secondary period of

hypophagia occurs during the period of muscle invasion and

peripheral myositis, caused when larvae form the ‘‘nurse cell’’ in

which the parasite resides. To further investigate the biological

mediators of the hypophagic responses the two phases were

mechanistically explored using a panel of genetically modified

mouse strains.

CCKlacZ mice, which do not express or secrete CCK peptide

due to a knock in of a LacZ cassette [8], were infected with T.

spiralis and their food intake monitored. Strikingly, the initial

period of hypophagia was completely absent in infected CCKlacZ

Figure 1. T. spiralis induced enteritis and peripheral myositis
produces a CCK dependent and independent bi-phasic hypo-
phagia. Food intake of naı̈ve and infected wild-type (A) and CCKlacZ (B)
mice, derived via weighing chow daily. Representative CCK (C) and lacZ
(D) I-cell staining from day 9 p.i. wild-type and CCKlacZ duodenum
respectively. Black arrows indicate I-cells. Black bar = 100 mm. (E)
Number of CCK/LacZ positive I-cells/20 VCU in wild-type and CCKlacZ

mice as determined from immunohistochemistry or immunofluores-
cence respectively. Data (n = 8–10 mice/group) from two independent
experiments. *, P,0.05; **, P,0.01; or ***, P,0.005 between naı̈ve and
infected groups, error bars represent SE of means.
doi:10.1371/journal.ppat.1003122.g001

Author Summary

Infection with intestinal parasites often results in a period
of reduced appetite which can result in weight loss;
however the factors which control these feeding alter-
ations and the reason why they occur is unknown. We
used the nematode parasite Trichinella spiralis, which
during its life cycle causes intestinal and muscular
inflammation, as a mouse infection model to study the
factors which alter feeding during infection. We found that
the mouse immune response to the parasite was driving
two periods of reduced feeding by two distinct immune
mediators during the intestinal and muscular periods of
infection. Interestingly, the immune system was utilizing a
hormone which usually terminates feeding during our
daily meals to cause a reduction in weight and fat
deposits. Furthermore, we found that a reduction in these
fat deposits and their associated hormones actually helped
the mouse expel the parasite from the intestine. Hence the
immune driven weight loss was actually beneficial to the
mouse’s ability to resolve an infection. Our study provides
novel insights into how the immune system interacts with
feeding pathways during intestinal inflammation and may
help us design new strategies for helping people with
parasitic infections of the gut.

Immunoendocrine Cross-Talk Mediates Infection
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mice (Fig. 1B). LacZ positive I-cell hyperplasia was indistinguish-

able from that of the ‘‘natural’’ I-cell response in wild-type mice

(Fig. 1D and E). However, the absence of CCK during this I-cell

hyperplasia resulted in the complete absence of initial hypophagia

in CCKlacZ mice, despite comparable enteritis (Fig. S1). Even with

the absence of CCK and initial hypophagia, CCKlacZ mice still

exhibited secondary hypophagia from day 18–19 p.i. and this was

comparable to infected wild-type mice (Fig. 1B). The second

period of hypophagia occurred in wild-type and CCKlacZ mice

despite the resolution of enteritis (Fig. S1) and transpires during

the period of larvae encysting within skeletal muscle, representing

an extraintestinal inflammatory response to the same biological

agent. The lack of I-cell hyperplasia in wild-type mice at day 20

p.i. (Fig. 1E) and the presence of the second phase of hypophagia

in CCKlacZ mice (Fig. 1B) confirm this extraintestinal period of

hypophagia during myositis as CCK independent.

Taken together, these data demonstrate a biphasic hypophagia

correlating to T. spiralis induced enteritis and peripheral myositis,

respectively. Furthermore, increased I-cell function, through the

release of CCK, is essential for the initial hypophagia during

enteritis, but not the secondary episode during peripheral myositis.

The adaptive immune system drives biphasic
hypophagia during T. spiralis induced enteritis and
peripheral myositis

As EEC hyperplasia during inflammation has been previously

linked to T-lymphocytes [7,9], the biphasic hypophagia generated

by T. spiralis was examined in severe combined immunodeficient

(SCID) mice, which lack B and T-cells. SCID mice demonstrated

a complete absence of initial hypophagia during T. spiralis induced

enteritis and secondary hypophagia during peripheral myositis

(Fig. 2A and B). The lack of hypophagia was mirrored by a

complete lack of I-cell hyperplasia in parasitized SCID mice

(Fig. 2C). This absence of hyperplasia was not seen in all epithelial

secretory cells as, concurrent with previous findings [10],

indistinguishable goblet cell hyperplasia occurred in infected

SCID, adoptively transferred SCID and wild-type animals

(Fig. 2D).

CD4+ T-cells play a key role in the resolution of T. spiralis

infection [11], so to assess if CD4+ T-cells could restore I-cell

hyperplasia and hypophagia in SCID mice, CD4+ T-cells (.90%

purity; Fig. S2A), were adoptively transferred into SCID recipients

before infection. Successful reconstitution was evident from CD4+
splenocytes present post-transfer and via successful worm expul-

sion kinetics (Fig. S2B and C).The adoptive transfer of CD4+ T-

cells into SCID mice restored I-cell hyperplasia (Fig. 2C) and

initial hypophagia during T. spiralis induced enteritis. Recipient

mice began to eat less from day 4 p.i., with significant hypophagia

at days 6 and 7 (Fig. 2E). This hypophagia was not a direct result

of cell transfer alone, as uninfected reconstituted mice displayed no

hypophagia (Fig. 2E). Interestingly, the adoptive transfer did not

restore the secondary period of hypophagia during the peripheral

inflammation induced by T. spiralis (Fig. 2A).

Collectively, these data confirm that the biphasic alterations in

feeding behavior during T. spiralis induced gastrointestinal and

peripheral inflammation is mediated by the adaptive immune

system. Furthermore, CD4+ T-cells are identified as the key

initiator in I-cell hyperplasia and resulting CCK driven hypopha-

gia during T. spiralis induced enteritis. However, the adoptive

transfer of functional CD4+ T-cells did not restore the second

phase of hypophagia occurring during nurse cell formation-

induced myositis. Therefore CD4+ T-cells are not sufficient for

this secondary hypophagic period, during T. spiralis induced

myositis.

The secondary period of hypophagia seen during T.
spiralis induced peripheral inflammation is caused by the
cachectic cytokine TNFa

We next sought to investigate which factors of the adaptive

immune response were responsible for the second phase of

hypophagia seen during peripheral inflammation induced during

the period of nurse cell formation. Both CD4+ and CD8+ T-cells

are present during parasite encystation [12] and many apoptotic

factors, including TNFa, are detected during nurse cell formation

Figure 2. Adoptive transfer of CD4+ T-cells to SCID mice
restores hypophagia during enteritis. Food intake of naı̈ve and
infected wild-type (A), SCID (B) and adoptively transferred SCID mice (E),
derived via weighing chow daily. Number of CCK positive I-cells in wild-
type, SCID and adoptively transferred SCID mice (C) and number of
goblet cells in wild-type SCID and adoptively transferred SCID mice (D);
cells/20 VCU accessed via immunohistochemistry and periodic acid-
Schiff’s histology staining respectively. Data (n = 4 mice per group) from
2 independent experiments. *, P,0.05; **, P,0.01; or ***, P,0.005
between naı̈ve and infected groups, error bars represent SE of means.
doi:10.1371/journal.ppat.1003122.g002

Immunoendocrine Cross-Talk Mediates Infection
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[13]. Interestingly, TNFa is associated with cachexia in parasite

infections [14,15]. Consequently, we examined serum cytokine

levels throughout T. spiralis infection. Indeed, TNFa was

significantly increased in the serum of infected mice at the time

of secondary hypophagia (Fig. 3A), comparable to levels known to

directly cause cachexia in mouse infection models [16]. To test the

function of increased TNFa during myositis we infected p55/

p752/2 mice, which lack functional TNFa receptors, and

assessed if TNFa was responsible for hypophagia during T. spiralis

infection. Although initial I-cell hyperplasia and hypophagia

during enteritis were present in infected p55/p752/2 mice

(Fig. 3B, C and D), remarkably, infected p55/p752/2 mice

displayed no period of secondary hypophagia (Fig. 3B and C).

Therefore, although the initial CD4+ T-cell and CCK driven

hypophagia during enteritis is independent of TNFa, a peripheral

peak in TNFa during myositis is functionally responsible for the

second phase of hypophagia, via the receptors p55 and/or p75,

during T. spiralis induced peripheral inflammation.

CD4+ T-cell mediated hypophagia results in an
augmented protective immune response, through
reduction in the pro-inflammatory adipokine leptin

Secretory cell hyperplasia during intestinal infection is known to

be advantageous during infection. Various goblet and Paneth cell

products have been show to have anti-parasitic affects [17,18]. We

therefore tested whether I-cell hyperplasia and hypophagia are

simply by-products of a parallel switch towards this secretory

lineage, or whether I-cell hyperplasia is in itself advantageous during

infection. A link between hypophagia, weight loss and immunity is

the adipokine leptin; produced mainly by adipose tissue it is a

peripheral signal to the body of fat mass deposits but also acts as a

pro-inflammatory Th1 cytokine [19]. Therefore reductions in leptin

would be anticipated to occur following CCK induced hypophagia

and consequent weight loss in this experimental model. Loss of

leptin may consequently enhance Th2 immune responses which are

protective during nematode infection.

CD4+ T-cell mediated I-cell driven hypophagia during enteritis

was seen to result in significant weight loss at days 8 and 12 p.i.,

accompanied by a visible reduction in abdominal fat pads,

whereas the brief TNFa driven secondary hypophagia produced

no significant alteration in weight at day 20 p.i. (Fig. 4a). This

weight loss was correlated with a reduction in serum leptin levels

from day 6 p.i. (Fig. 4B). To determine whether alterations in

leptin could influence a protective Th2 driven intestinal I immune

response, mesenteric lymph node (mLN) cells were polarized

towards a Th2 phenotype in the presence or absence of leptin. The

addition of leptin resulted in a significant increase in the amount of

intracellular pro-inflammatory IFN-y detectable in CD4+ T-cells,

as well as a significant reduction in the protective Th2 cytokine IL-

4 (Fig. 4C). To assess if the reduction in leptin during T. spiralis

induced enteritis enhances immunity to infection, leptin levels

were maintained at basal levels during hypophagia via recombi-

nant leptin injection (Fig. 5A). Strikingly, the restoration of basal

leptin levels resulted in delayed expulsion of adult worms and a

corresponding increase in nurse cell encystation (Fig. 5B).

Although no increase in IFN-y levels was seen in re-stimulated

mLNs of leptin treated mice, a significant decrease in both Th2

cytokines IL-4 and IL-13 was seen at day 8 p.i (Fig. 5C). A key

Th2 driven expulsion mechanism of T. spiralis is mastocytosis and

this was seen to be significantly reduced upon the restoration of

basal leptin levels analogous to delayed adult worm expulsion

(Fig. 5D). Taken together this suggests that CD4+ T-cells drive a

cascade in which I-cell hyperplasia produces hypophagia and

weight loss, lowering pro-inflammatory leptin levels which feed

back to influence the protective Th2 immune response, augment-

ing mastocytosis and allowing parasite expulsion.

Discussion

During enteritis food intake is often significantly reduced,

perhaps serving to inhibit consumption of contaminated food or to

prevent further gut injury. EECs are implicated in this response:

elevated I-cell produced CCK and hypophagia have been

demonstrated during Ascaris suum and Trichostrongylus colubriformis

infection, leading to the hypothesis that CCK was responsible for

inflammation induced alterations in feeding [3,4] However, the

true biological function and molecular mechanisms that orches-

trate the pathways driving hypophagia and weight loss during

inflammation have not been addressed. The life cycle of T. spiralis

has uniquely allowed us to investigate these questions during both

intestinal and peripheral inflammation. Our data demonstrate that

these separate inflammatory episodes are mirrored by a biphasic

hypophagia driven by two independent immune mediated

Figure 3. Secondary hypophagia during T. spiralis induced
peripheral inflammation is absent in p55/p75 2/2 mice. (A)
TNFa serum levels during infection in wild-type mice determined via
cytometric bead array (B) Number of CCK positive cells/20 VCU, as
determined from immunohistochemistry in wild-type and p55/p75 2/2
mice. Food intake of naı̈ve and infected wild-type (C) and p55/p75 2/2
(D) mice, derived via weighing chow daily. Data (n = 7–16 mice per
group) are from three independent experiments. *, P,0.05; **, P,0.01;
or ***, P,0.005 between naı̈ve and infected groups, error bars
represent SE of means.
doi:10.1371/journal.ppat.1003122.g003

Immunoendocrine Cross-Talk Mediates Infection
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mechanisms. I-cell hyperplasia and CCK are essential for the

initial hypophagia during enteritis, which is orchestrated by CD4+
T-cells. Importantly, we have also identified the second phase of

hypophagia during the period of nurse cell formation to be

mediated by a separate myositis-induced immune mechanism,

fully dependent on the actions of TNFa.

Furthermore we show for the first time that immune driven

weight loss during enteritis results in reduced levels of the Th1

adipokine leptin augmenting a protective Th2 response during

infection. Intestinal inflammation is often associated with hypo-

phagia and weight loss [1,2] and we have now determined an

important immune driven mechanism to explain why this is

biologically functional. We have therefore identified a novel

molecular pathway and can include I-cell hyperplasia and weight

loss as an adaptively driven immune response which, through

alterations in leptin, is beneficial during intestinal infection.

Our finding that T. spiralis infected mice lacking CCK

(CCKlacZ) do not undergo initial hypophagia correlates with our

own and other previous findings that a single treatment with the

CCK1 receptor antagonist loxiglumide partially restores food

intake in parasitized animals [7,20]. This partial restoration now

seems likely a result of the short half-life of loxiglumide as opposed

to alternative satiety factors playing an essential role. The previous

characterization of CCKlacZ mice demonstrated normal food

intake, fat absorption and mass compared to wild-types [21,22].

This coupled with our own observations rules out any underlying

defect in feeding of CCKlacZ mice being responsible for the

absence of hypophagia during infection. An alternative possibility

is that the loss of CCK in brain neurons, rather than gut EECs,

underpins the complete absence of hypophagia. However, the

persistence of the second phase of hypophagia in CCKlacZ mice

and our previous findings involving loxiglumide [7] which does not

cross the blood brain barrier, make I-cell hyperplasia and CCK-

vagal interactions most likely to mediate gut-induced hypophagia.

T. spiralis infected SCID mice were seen to display I-cell

hyperplasia and hypophagia only upon reconstitution of CD4+ T-

cells. These data clearly indicate that CCK induced satiety, via

vagal afferent fibers signaling to feeding control centres in the

brain [5], is an inherent pathway that is utilized by the adaptive

immune system to bring about hypophagia and weight loss. This

finding corresponds to recent studies showing that CD4+ T-cells

restore 5-HT cell hyperplasia in Trichuris muris infected SCID mice

[23]. The precise mechanism by which CD4+ T-cells cause EEC

hyperplasia during infection remains to be elucidated. EECs have

been shown to possess functional TLRs [24] and IL-13 receptors

are present on 5-HT cells [9]. However, it has previously been

established that during T. spiralis infection in SCID mice NK cells

produce ample levels of IL-13 to induce goblet cell hyperplasia

[10] yet this IL-13 appears not sufficient to cause EEC

hyperplasia. We also detected mRNA for both TNFa receptors

p55 and p75 on EECs, yet mice genetically deficient in TNF

Figure 4. Hypophagia and weight loss during T. spiralis induced
enteritis reduces the pro-inflammatory adipokine leptin. (A)
Change in basal weight during infection. (B) Serum leptin levels during
infection, determined via ELISA. (C) Representative CD4+ intracellular
IFN-y and IL-4 flow cytometry plots during Th2 polarization in control
and leptin treated mLN cells. Data (n = 4–8 mice per group) are from
two independent experiments. *, P,0.05; **, P,0.01; or ***, P,0.005
between naı̈ve and infected groups or for indicated comparisons, error
bars represent SE of means.
doi:10.1371/journal.ppat.1003122.g004

Figure 5. The maintenance of basal leptin levels during T.
spiralis infection results in delayed parasite expulsion. (A) Serum
leptin levels in PBS and leptin treated mice, determined via ELISA. (B)
Adult and larval worm burdens in infected mice. (C) IFN-y, IL-4 and IL-13
cytokine levels from Ag-specific re-stimulation of day 8 p.i. mLN cells
from PBS and leptin treated mice, grey lines represent naı̈ve levels;
determined via cytometric bead array. (D) Mast cells/20 VCU in PBS and
leptin treated mice; accessed via toludine blue staining. Data (n = 9 mice
per group) are from two independent experiments. *, P,0.05; **,
P,0.01; or ***, P,0.005 between naı̈ve and infected groups or for
indicated comparisons, error bars represent SE of means.
doi:10.1371/journal.ppat.1003122.g005

Immunoendocrine Cross-Talk Mediates Infection
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receptor signaling demonstrated initial hypophagia and enteritis

(Fig. S3A–C) arose independently of its actions.

As all gut epithelial subtypes are derived from pluripotent crypt

stem cells [25], immune cell mediators may alter the transcription

factors at the stem cell level leading to altered EEC hyperplasia

during infection. Alternatively, analogous alterations in the post-

stem cell, neurogenin+, EEC specific progenitor cells could alter

EEC proliferation. BrdU labeling studies in experimentally-

induced inflammation demonstrated EEC hyperplasia does occur

at the level of the stem/progenitor cell rather than fully

differentiated epithelial cells [26]. Indeed, the uncoupling of

goblet and I cell hyperplasia seen here in infected SCID mice

supports the hypothesis that neurogenin+ EEC precursors, rather

than the stem cell itself, is targeted by an unknown CD4+
dependent mechanism during T. spiralis driven I-cell hyperplasia.

Identifying which factors drive this CD4+ T-cell-stem/progenitor

cell interaction is an exciting area for further study.

We have identified a novel and specific role for TNFa in

hypophagia during T. spiralis induced peripheral inflammation. The

absence of the second phase of hypophagia from p55/p75 2/2 mice

suggests that the drop in food intake during this extra-enteric

inflammatory period is due to the anorexic effects of systemic TNFa
or downstream targets. The significant peak of serum TNFa seen in

mice correlated with the second period of hypophagia, occurring

during nurse cell development and myositis, and strongly supports

this notion. Indeed, we observed serum levels comparable to levels

known to directly cause cachexia in mouse infection models [16].

Furthermore, TNFa is associated with cachexia in Trypanosoma cruzi

infection [14] and during schistosomiasis [15]. There are numerous

modes of action by which TNFa could cause anorexia [27]. Although

central TNFa levels were not directly monitored, the 20 pg/ml

serum TNFa measured during secondary hypophagia is below the

levels required to induce anorexia by central administration [28]. It is

therefore most likely that TNFa is acting on peripheral afferent

nerves, as low level localized cytokine production can trigger afferent

nerves without causing an increase in circulating cytokine levels [29].

It is also possible that myalgia and malaise may have contributed to

reduced food intake: appetite per se cannot be measured in mice.

The observed systemic peak in TNFa occurs during the period

of encystation of T. spiralis new born larvae in cells of the striated

muscle. Encystations are likely to arise from day 4–10 post-

infection with rapid growth of the parasite occurring over the

following 20 days as terminally differentiated muscle cells re-enter

the cell cycle and establish a niche for the parasite [12]. Early non-

significant increases in systemic TNFa were seen as early as day 8

post-infection; day 18–21 post-infection may therefore indicate a

‘‘tipping point’’ in peripheral TNFa levels, where significant

myositis breaches the threshold required to produce anorexia.

TNFa has been shown to be involved in nurse cell formation [13],

yet we observed no alteration in nurse cell development in p55/

p752/2 mice that could alternatively explain the observations

seen (Fig. S3C–E). The cellular source of TNFa remains to be

elucidated. CD4+ and CD8+ T-cells are reported to be present

during parasite encystation [12], as are macrophages interestingly

peaking during hypophagia [30]. However, as we illustrate here,

given the absence of secondary hypophagia in SCID mice

reconstituted with CD4+ T-cells, where macrophages are present,

the likelihood is that CD8+ T-cells may be the source of cachectic

TNFa. Further studies are therefore required to ascertain the

cellular source of TNFa which drives the hypophagia during

T. spiralis induced myositis.

Immune mediated secretory cell hyperplasia during intestinal

infection is advantageous as goblet and Paneth cell products have

been show to have anti-parasitic affects [17,18]. We therefore

postulated whether I-cell hyperplasia and hypophagia are simply

by-products of a parallel switch towards these beneficial secretory

lineages or whether I-cell hyperplasia is in itself advantageous in

nematode expulsion. Stimulation of the vagus nerve via nutritional

release of CCK has also been shown to protect against

hemorrhagic shock [31]. Therefore I-cell hyperplasia during

nematode infection may represent a previously unidentified anti-

inflammatory response. We therefore hypothesized that a reduc-

tion in weight as a result of I-cell induced hypophagia may alter

the levels of the Th1 adipokine leptin [19]. A reduction in leptin

could enhance the protective Th2 immune response to nematode

infection. Indeed significant weight loss and reduced leptin levels

did occur during T. spiralis induced hypophagia. Recent data on

splenocytes demonstrated that leptin alters polarized CD4+ T-cells

towards a Th1 phenotype via alterations in proliferation in vitro

[32] and we demonstrated parallel results in mLN cells for the first

time. Unfortunately CCKlacZ mice have overall reduced basal

levels of leptin [33] and were hence unsuitable to study the affect

of reduced leptin on intestinal inflammation. We therefore

maintained basal leptin levels in infected hypophagic mice and

strikingly saw a significant reduction in Th2 cytokines and

mastocytosis culminating in delayed worm expulsion. Interestingly

mastocytosis was similar in both leptin reconstituted and wild-type

mice at day 8 p.i. demonstrating that initially mastocytosis can

establish, but without the I-cell driven reduction in Th1 polarizing

leptin it is blunted later in infection. These results complement

other recent studies in identifying the adipokine leptin as a

molecule which can greatly influence the response to infection.

Mice lacking the leptin receptor are highly susceptible to infection

from protozoa [34], pneumonia [35] and Listeria [36] demon-

strating how malnutrition can compromise Th1 driven immunity.

However, our data demonstrate that brief alterations in leptin can

benefit immunity in terms of Th2 driven resistance to infection.

Indeed, a recent study has demonstrated that leptin receptor

deficient mice are resistant to experimentally induced Th2-

mediated colitis [32]. The precise action of leptin in our studies

may be as a direct result of effects on CD4+ T-cell IL-4 production

altering mast cell differentiation, proliferation and migration [37]

or due to direct effects on mast cells which have recently been

shown to express leptin receptors [38]. Leptin may also directly act

on Th2 cytokine production itself as opposed to indirect alterations

on Th1 cytokine production [32]. Further study is therefore

required to address the leptin-mast cell axis which alters parasite

expulsion in our model.

In conclusion, we have identified two separate immune

mediated mechanisms of hypophagia during infection induced

gastrointestinal and peripheral inflammation, which act via the

distinct pathways of I-cell hyperplasia and TNFa cachexia.

Furthermore, we demonstrate for the first time an immunoendo-

crine feedback loop, in which CD4+ T-cell driven weight loss via

CCK reduces leptin levels which impinge on CD4+ T-cell driven

effector mechanisms for gastrointestinal infection resolution. Our

data elucidate inflammation and weight loss, not just as

commonly associated phenomena, but highlights them as a

novel immune driven mechanism in parasite expulsion. These

data offer potential specific treatment targets to modulate

feeding and immune function during inflammatory diseases of

the intestine.

Materials and Methods

Ethics statement
Mice were housed in specific pathogen free conditions and

experiments were carried out in accordance with the United
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Kingdom Home Office Scientific Procedures Act (1986) under

Department for Environment, Food and Rural Affairs license.

Animals
Male C57BL/6 and BALB/c mice were obtained from Harlan-

Olac Ltd. CCKlacZ mice have a LacZ cassette knocked into the

CCK locus on a C57BL/6 background, so homozygote animals

are CCK null but faithfully express LacZ in the I cell population

[8]. TNFa receptor null p55/p75 2/2 (C57BL/6 background)

and severe combined immunodeficient mice (SCID, BALB/c

background) were generated as previously described [8,39].

Parasites
The maintenance, infection and recovery of T. spiralis were

carried out as previously described [40].

Food intake and body weight
Mice were individually weighed on a daily basis. Food intake

per mouse was derived by weighing the chow (B and K, Hull, UK)

daily.

Immunohistochemistry and histology
Proximal small intestine was fixed and stained and I-cells were

enumerated using, CCK specific, L421 anti-proCCK as previously

described [7]. For CCKlacZ detection, transverse 12 mm sections of

tissue were cut and fixed in 0.2% glutaraldehyde and stained with

X-gal as previously described [8]. Mast or goblet cell sections were

stained in toludine blue or Schiff’s reagent, respectively. After

mounting, positive cells were enumerated in 20 randomly selected

villus crypt units (VCU) and results presented as mean number of

positive cells/20 VCU (6 s.e.).

Adoptive transfer of CD4+ T-cells to SCID mice
Mesenteric lymph node (mLN) cells were prepared from day 7

p.i. BALB/c mice, in RPMI-1640, supplemented with 10% fetal

calf serum, 100 mg/ml penicillin/streptomycin and 1 mM L-

glutamine (complete media). CD4+ T-cells were isolated via

negative selection using an isolation kit (Miltenyi Biotec).

Evaluation of CD4+ purity was via flow cytometry. SCID mice

received 46106 cells in P.B.S. via intraperitoneal (i.p.) injection 2

days before infection.

Isolation and in vitro restimulation of mLN cells
mLN cells at 56106 cells/ml in complete media received 50 mg/

ml of T. spiralis antigen (Ag). Supernatants were collected after

24 hrs and cytokines measured using a cytometric bead array kit

(BD).

Serum cytokine detection
Serum was obtained from blood at the time of sacrifice via

centrifugation at 150006g and cytokines measured using a

cytometric bead array kit (BD).

Leptin ELISA
Mouse leptin ELISA (Linco) was used to detect mouse serum

leptin according to manufacturer’s instructions.

Restoration of basal leptin levels during hypophagia
During the period of significant hypophagia, mice were treated

at 10 a.m. and 6 p.m. via an i.p. injection of recombinant leptin (R

and D) at 0.5 mg/g of initial body weight or control vehicle PBS

[41].

In vitro Th2 polarization of mLN cells
26106/ml mLN cells were stimulated via 5 mg/ml aCD28,

3 mg/ml aCD3 (BD) and polarized via 50 ng/ml IL-4 (Peprotech),

50 mg/ml anti-IFN-c with/without 500 ng/ml recombinant

leptin. At 120 hrs 1 mg/ml Brefeldin A/1 mg/ml monensin

(Sigma-Aldrich) for IFN-y/IL-4 staining was added for 4 hrs

before blocking with anti-FccR (BD). Cells were stained for CD4

(BD) for 30 mins at 4uC before fixing in FACS fix buffer (1%

formaldehyde, 0.1% BSA and 0.05% NaN3 in PBS). Cells were

permeabilised in 0.1% saponin (Sigma-Aldrich) and stained with

biotinylated anti-IFN-c/anti-IL-4 (BD) for 25 mins at RT.

Controls were stained with isotype controls (BD). Biotinylated

antibodies were detected by streptavidin APC conjugate (Caltag)

at 1/200 in saponin for 25 minutes RT. Cells were analyzed on a

FACScalibur using Flowjo.

Statistics
Two experimental groups were compared using Student’s t-test.

Three or more groups were compared using the Kruskal-Wallis

test, Dunn’s multiple comparison post-test. A p value of #0.05 was

considered statistically significant. *, P,.05; **, P,.01; or ***,

P,.005 for indicated comparisons, error bars represent SE of

means.

Supporting Information

Figure S1 Enteritis in Wild-type and CCKlacZ mice is
comparable during T. spiralis infection. (A) Comparison of

crypt and villus length in wild-type and CCKlacZ mice at naı̈ve, 6,

12 and 20 days p.i. mice, quantified using Image J software. (B)

Number of goblet and (C) mast cells/20 VCU in wild-type and

CCKlacZ mice in naı̈ve, 6, 12 and 20 days p.i.; accessed via

periodic acid-Schiff’s and toludine blue histology staining

respectively. Data (n = 4–8) from 2 independent experiments. *,

P,0.05; **, P,0.01 or ***, P,0.005 between naı̈ve and infected

groups, error bars represent SE of means.

(TIF)

Figure S2 Conformation of adoptive transfer of CD4+ T-
cells in SCID mice. Flow cytometry plot of (A) MACS purified

donor CD3/CD4+ T-cells from day 6 p.i. wild-type mice and (B)

representative plot of reconstitution into SCID mice on day 8

recipient splenocytes. Numbers represent percentage of cells in

gate of overall lymphocyte gated cells. (C) Worm burdens

recovered from wild-type, SCID and SCID adoptively transferred

mice at days 6 and 20 p.i. Data (n = 4 mice per group). *, P,0.05;

**, P,0.01 or ***, P,0.005 for the indicated comparisons, error

bars represent SE of means.

(TIF)

Figure S3 Enteropathy and nurse cell formation during
T. spiralis infection is not altered in p55/p752/2 mice.
(A) Comparison of crypt and villus length in wild-type and p55/

p752/2 mice at naı̈ve, 6 and 21 days p.i., quantified using Image

J software. (B) Number of goblet and (C) mast cells/20 VCU in

wild-type and p55/p752/2 mice in naı̈ve, 6, 12 and 21 days p.i.;

accessed via periodic acid-Schiff’s and toludine blue histology

staining respectively. (D) Number of nurse cells visible in field of

view in the diaphragm and rectus femoris of infected mice at 21

and 32 days p.i. (E) Cellular infiltration of eosinophils of nurse cells

in the diaphragm and rectus femoris of infected mice at days 21

and 32 p.i. (F) Representative haematoxylin and eosin stained

images from (E) Black bar = 100 mm. A–D determined via

haematoxylin and eosin histological staining. A–F values represent

the means 6 SE (n = 4) from 2 independent experiments. *,
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P,0.05; **, P,0.01 or ***, P,0.005 between naı̈ve and infected

groups, error bars represent SE of means.

(TIF)
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