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Abstract

We address the problem of developing a well-performing and implementable scheduler of users
with wireless connections to the central controller, which arise in areas such as mobile data
networks, heterogeneous networks, or vehicular communications systems. The main feature
of such systems is that the quality of each user’s channel is time-varying due to fading.
The evolution of the channel over its quality states thus causes a time-varying transmission
rate of each user. We consider Markovian channel dynamics, relaxing the common but
unrealistic assumption of i.i.d. channels. We first focus on three-state channels and show
that threshold policies (of giving higher priority to users with higher transmission rate) are
not necessarily optimal. For the general case we design a scheduler which generalizes the
recently proposed Potential Improvement (PI) scheduler, which gives priority to the users
who are unlikely to improve their actual transmission rate soon by much. We propose two
practical approximations of PI, whose performance is analyzed and compared to existing
alternative schedulers in a variety of simulation scenarios. Our computational experiments
indicate that the variant of PI, which only relies on the steady-state distribution of the
channel, is robust and performs extremely well, and therefore we recommend its use for
practical implementation.
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1. Introduction

This paper is motivated by the need of designing an efficient scheduler for wireless systems
such as mobile data networks (4G LTE, 5G), heterogeneous networks (HetNet), or vehicular
communications systems. Such a scheduler must be capable of exploiting the system capac-
ity to serve the heterogeneous demands of the users that are within the base station’s power
range in such a way so as to optimize the system performance and user experience. We
model such a system as a discrete-time multi-class queue with multiple preemptive servers,
in which users of different classes arrive randomly and depart once their job is completed.
Each user transmission is assumed as occurring through a dedicated fading channel, whose
quality evolution is class-dependent with Markovian memory. Different classes of users may
have different sets of accessible transmission rates associated with the modulation and cod-
ing schemes (MCSs) of the system. That is, each user’s channel is characterized by a set of
accessible channel quality conditions (a.k.a. channel states). The user classes have hetero-
geneous waiting costs and mean job sizes. The objective is to (nearly-)optimize primarily
the expected time-average waiting cost per user, but keeping in mind the trade-off with
other performance objectives (e.g., fairness). Such a model covers both the downlink and
synchronized uplink wireless systems.

Several schedulers have been proposed recently for such a flow-level scheduling prob-
lem based on ad-hoc arguments, simulation outcomes or approximate optimization, e.g.,
in Knopp and Humblet (1995); Borst (2005); Bonald (2004b); Aalto and Lassila (2010);
Ayesta et al. (2010); Jacko (2011). The seminal work by Knopp and Humblet (1995) showed
that system capacity can be improved by opportunistically serving users with maximal cur-
rent transmission rate. Such a scheduler, known as the Max Rate scheduler in the wireless
networks literature, is thus naively opportunistic: it is myopically throughput optimal (maxi-
mizing one-slot transmission rate) and simple to implement, but it ignores the possible future
evolution and was shown to perform bad in the long-term. For instance, it may quickly be-
come unstable (i.e., the number of waiting users explodes) as the load increases, while other
schedulers may keep the system stable (Aalto and Lassila, 2010; Ayesta et al., 2010). It may
also be extremely unfair to users who have their highest accessible transmission rates lower
than the typical transmission rates of others. This scheduler is also known as the cµ-rule in
the stochastic scheduling literature, and we will adopt this name in this paper.

Gradient-based schedulers are the state-of-the-art in opportunistic scheduling, in par-
ticular, the Proportionally Fair (PF) scheduler patented in Chaponniere et al. (2002), was
proposed to be implemented in the CDMA 1xEV-DO system of 3G cellular networks (Bender
et al., 2000). PF maximizes the sum of logarithmic throughputs of the network, providing
an improved fairness over the cµ-rule (Kushner and Whiting, 2004). Borst (2005) analyzed
flow-level stability of PF by approximating it by the Relatively Best (RB) scheduler, which
gives priority to users according to their ratio of the current transmission rate to the mean
accessible transmission rate. This scheduler is thus fairly opportunistic: it takes the channels’
transmission rate distribution into account, is not myopically throughput optimal, and guar-
antees a minimal throughput to the users with low accessible transmission rates. However,
it is not maximally stable at flow-level (Aalto and Lassila, 2010).
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The schedulers proposed in Bonald (2004b,a); Aalto and Lassila (2010); Ayesta et al.
(2010); Ayesta and Jacko (2013), called the Score Based (SB), Proportionally Best (PB)
and Potential Improvement (PI) schedulers, respectively, belong to the family of the best-
condition schedulers1. A best-condition scheduler gives absolute priority to the users who are
in their respective best accessible channel quality conditions over the others, hence ignoring
the actual transmission rate associated with those best conditions. Such a scheduler is thus
smartly opportunistic: it takes into account whether an improvement is possible, yet it still
ignores the possible future evolution in detail. Overall, it turns out to perform well in the
long-term and in heavily loaded systems, for being maximally stable (Ayesta et al., 2013;
Kim et al., 2013).

The PI scheduler was designed based on optimally solving a Lagrangian relaxation of
a stochastic optimization problem (Ayesta et al., 2010). The other schedulers were either
designed in an ad hoc way (Bonald, 2004b; Aalto and Lassila, 2010), or based on solving
an optimization problem under the time-scale separation assumption (Aalto et al., 2011).
Fairness of best-condition schedulers has not been addressed adequately yet, only Ayesta
et al. (2010) illustrated in one simulation scenario that PI maintained the average number
of uncompleted jobs significantly more balanced than other schedulers.

Previous work on scheduling typically assumed that the channel evolution is independent
and identically distributed (i.i.d.) from slot to slot, which greatly facilitates analysis. Con-
sidering a non-i.i.d. evolution of the channel quality condition is however important. It is
known that channels do have a memory, although the precise evolution is usually not known
explicitly and, moreover, it can change over time, so only easy-to-compute estimates can be
available. For a broader discussion see, e.g., the literature on finite-state Markov modeling of
fading channels (Bai and Atiquzzaman, 2003; Sadeghi et al., 2008; Wang and Moayeri, 1995;
Zorzi et al., 1995; Wang and Chang, 1996; Wei et al., 2010; Zheng et al., 2013), autoregressive
modeling for channel estimation (Ghandour-Haidar et al., 2012), Markov decision processes
for adaptive control (Chen et al., 2013), and the references therein.

This paper provides insight into the complex nature of the fundamental questions (listed
below) about scheduling under Markovian channels dynamics. We are still far from providing
definite answers, but we aim at giving suggestions for practical implementation of schedulers
and at pointing out the main issues for future research in this area.

What is the structure of an optimal policy? The structure of an optimal scheduler is
extremely complicated and not necessarily intuitive. We show in an example that if there
is a single user in the system it may be optimal to serve her in a certain channel quality
condition and not to serve her when the condition is better. That is, an intuitive threshold
policy is not always optimal. However it is always optimal to serve the single user in her
best channel quality condition.

Why are there no optimality results available? Results of maximal stability have only
been established. Even in the single-user system with three channel quality conditions it is

1Ayesta et al. (2013) used the term best-rate scheduler, but we found that term misleading, especially
w.r.t. the Max Rate scheduler, therefore we suggest the term best-condition scheduler.
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difficult to characterize when the optimal policy has the structure of a threshold policy. How-
ever, we give sufficient conditions that are likely to be satisfied in practice, which guarantee
optimality of a threshold policy.

How do the actions taken in the non-best channel quality conditions influence the perfor-
mance? Maximal stability only indicates what to do in the channel quality condition with
the highest transmission rate. In the multi-user system, the condition for maximal stability
is to give highest priority to the users in their best channel quality conditions. However,
nothing has been established for the users which are not in their best conditions. Comparing
in simulations the maximally stable schedulers, we observe that the actions taken in the non-
best conditions may strongly influence the performance in light and medium traffic, while
the differences are not significant in heavy traffic.

(When) are the maximally stable schedulers preferable in practice? There are cases, when
an unstable scheduler results in a lower mean delay than a stable scheduler in the mid-term.
For instance, when the mean job size of one class is significantly larger than of others, the cµ-
rule slowly accumulates long jobs in the system, while maximally stable schedulers maintain
a large number of short jobs.

Do the maximally stable schedulers perform well even in case of class-dependent waiting
costs? SB and PB were designed to minimize the number of uncompleted jobs (i.e., assumed
unitary waiting costs), so it is not obvious how to extend them to the case with heterogeneous
waiting costs. If their priority formula is multiplied by the waiting cost, these schedulers
may no longer be maximally stable. In fact, our simulations show that they do not perform
well, especially in heavier traffic. Only the PI scheduler remains maximally stable in case of
heterogeneous waiting costs.

How to resolve the trade-off between being naively opportunistic, smartly opportunistic,
and prioritizing “short” jobs? We propose a robust and reasonably simple-to-implement
variant of the PI scheduler, which relies on the steady-state distribution of the Markov chain
governing the evolution of the channel quality condition.

How fair are the maximally stable schedulers? We observe interesting fairness properties
in simulations of this variant of the PI scheduler.

In section 2 we formalize the system and the scheduling problem. An MDP approach is
described in section 3 in order to formulate a single-user optimization problem in which a
price must be paid for service. This problem is addressed in section 4, where we develop index
policies and study the solvability of the problem by threshold policies. We solve the problem
for channel evolution over three quality conditions and partially characterize the optimal
solution in general. Some further examples and special cases are given in section 5. Based
on these results, we propose a new scheduler and two practical approximations in section 6.
Their performance is evaluated and compared with schedulers proposed in previous literature
in section 7. Finally, section 8 concludes. The proofs and a detailed indexability analysis
can be found in Appendix A.
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2. Problem Description

We consider a time-slotted system, which gives rise to a discrete-time job scheduling
problem. Decisions are taken at the beginning of every time slot and are applied during the
whole time slot. With an abuse of notation, t ∈ T := {0, 1, . . . } will denote both the decision
time (epoch) and the corresponding time slot. Each slot has a duration of τ seconds.

2.1. Job-Channel-User Classes

Suppose that there are K classes of users, labeled k ∈ K := {1, 2, . . . , K}. Each user
of class k is uniquely associated with a job of class k which she requests to download, and
with a dedicated wireless channel of class k through which the transmission connection is
established. A class of users could, for instance, identify users located at the same physical
properties (e.g. distance, obstacles), requesting to download the same type of file (e.g.,
video, mp3, web page, etc.), using the same connection technology, and having the same
importance for the system operator. See Table A.2 and Table A.3 for examples we used in
our simulations.

User Arrivals. For each class k ∈ K, the number of class-k users arriving to the system,
Ak(t), during the time slot t ∈ T , creates an i.i.d. arrival process {Ak(t)}t∈T with generic
element Ak and mean λk := E0[Ak] <∞, where E0[·] denotes the expectation conditional on
information available at time epoch 0. The arrivals are assumed to be mutually independent
across user classes.

Job Sizes. The (integer-valued) job/flow size bk of class-k user is measured in bits and is
geometrically distributed with mean E[bk] < ∞ for classes k ∈ K. This assumption is the
main limitation of existing models (including this paper), but to the best of our knowledge
there has not been any attempt to analytically approach the case of non-geometric job sizes
in the literature.

Channel Quality Conditions. For each user, the quality condition of her channel (or simply
the channel condition) is varying from slot to slot, independently of all other users present in
the system (including other users of the same class). For each class-k user, the set of accessible
quality conditions of the channel is finite and denoted by N ′k := {1, 2, . . . , Nk}. The channel
quality conditions typically correspond to modulation and coding schemes (MCSs) of the
user’s transmission technology. Moreover, the channel quality condition of a just arrived
class-k user is n ∈ N ′k with probability qk,n ≥ 0, which satisfies

∑
n∈N ′k

qk,n = 1. Note that

this is independent of other users’ channel quality conditions and of the slot it arrives at.

Channel Quality Condition Evolution. We assume that at each slot, the channel condition of
every user in the system evolves according to a class-dependent (time-homogeneous) Marko-
vian chain. Thus, for each user of class k ∈ K, we can define a Markov chain with state
space N ′k.

We define by qk,n,m := P(Zk(t + 1) = m|Zk(t) = n), where Zk(t) denote the channel
condition of a class-k user at time t. So, qk,n,m represents the probability that the channel
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of a class-k user moves from condition n to condition m in one slot. The class-k channel
condition transition probability matrix is thus

Qk :=



1 2 . . . Nk

1 qk,1,1 qk,1,2 . . . qk,1,Nk

2 qk,2,1 qk,2,2 . . . qk,2,Nk

...
...

...
. . .

...

Nk qk,Nk,1 qk,Nk,2 . . . qk,Nk,Nk


where

∑
m∈N ′k

qk,n,m = 1 for every condition n ∈ N ′k. We emphasize that the channel

condition transitions are independent across users.

Transmission Rates. Each channel condition corresponds to a particular MCS, which in turn
determines the transmission rate while the channel is in this condition. When a class-k user
is in channel condition n ∈ N ′k, she can receive data at transmission rate sk,n bits per second.
We assume that the higher the label of the channel condition, the higher the transmission
rate, i.e., 0 ≤ sk,1 < sk,2 < · · · < sk,Nk

.
To avoid trivial cases, we assume that each class k can be served, i.e., sk,Nk

> 0, and that
at least one class k is time-varying, i.e., sk,1 < sk,Nk

.

Waiting Costs. For every user of class k the system operator accrues waiting cost ck > 0 at
the end of every slot while her job is uncompleted.

2.2. Server

The server (e.g., a base station) has full knowledge of the above-defined parameters. At
the beginning of every slot, the server observes the actual channel conditions of all the users
present in the system, and decides which of them to serve during the slot. At every time,
no more than C users can be served in parallel, i.e. C is the capacity of the server. We
assume that the server is preemptive, that is, at every epoch it is permitted to interrupt the
service of a user whose job is not yet completed. The server is also allowed to idle, and note
that it is not work-conserving because of the time-varying transmission rate. Motivated by
practical implementation, the observations of the processes defined above at epoch t always
include arrivals at epoch t, while between two consecutive epochs, only service but no new
arrivals occur.

2.3. Objectives

The aim is to identify scheduling policies that perform well with respect to the following
objectives (or their combination):

• minimization of the expected average waiting cost per user;

• minimization of the expected time-average number of uncompleted jobs;

• maximization of some time-average fairness function across classes.
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The approach we undertake in this paper is to minimize the expected average waiting
cost per user, which as a special case covers also the second criterion. The performance of
the suggested scheduler will be evaluated in relation to the fairness criterion in simulations.

3. MDP Approach

In this section we employ a Markov decision process (MDP) approach to design a well-
grounded scheduling policy. Indeed, we extend the modeling framework introduced for the
scheduling problem with i.i.d. channel condition evolution in Ayesta et al. (2010) based on
restless bandits (Whittle, 1988).

Whittle (1988) suggested for the restless bandits an approach that leads to a per-user
decomposition of the relaxed problem in which the constraint of the server’s per-slot capacity
is C in expectation rather than pointwise. This approach decomposes the original infinitely-
dimensional problem into infinite number of parametric optimization problems of a single
user of each class k. This approach of relaxation and decomposition was shown useful for
designing a scheduler (Ayesta et al., 2010) that is well-performing, maximally stable and
fluid-optimal under arbitrary arrivals in the special case of i.i.d. channels (Ayesta et al.,
2013). The approach requires to analyze a single-user problem in which one pays price ν for
service. This parameter appears as the Lagrange multiplier from the Lagrangian relaxation,
e.g., see Ayesta et al. (2010).

In order to admit an analytical approach, we introduce discounting of the waiting costs,
with discount factor 0 ≤ β < 1. The results for the undiscounted case, which corresponds
to the time-average criterion, will be obtained in the limit β → 1.

We further need to characterize the departure probabilities. We denote by µk,n the
probability that the job requested is completed within the current time slot when the server
is allocated to a class-k user in channel condition n ∈ N ′k. Since we consider jobs with
geometric size, we can employ the results from Ayesta et al. (2010); Jacko (2011) that
µk,n = min{1, 1− (1−1/E0[bk])

τsk,n} which can be approximated, if jobs are sufficiently long
(in particular, if τsk,n/E0[bk] ≈ 0) by

µk,n ≈ τsk,n/E0[bk]. (1)

We remark that the departure probabilities are increasing in the channel condition, i.e.,
0 ≤ µk,1 < · · · < µk,Nk

≤ 1, because the transmission rates sk,n are so.

3.1. Job-Channel-User Restless Bandit Definition

At every time epoch, the generic class-k user can be allocated with zero capacity of the
base station or be one of the users served. We denote by Ak the action space of user k, in
particular Ak := {0, 1} where the action 0 means not serving, while action 1 means serving.

Every job-channel-user of class k is characterized by the tuple

(Nk, (W a
k)a∈A, (R

a
k)a∈A, (P

a
k)a∈A) ,

where

7



• Nk := {0} ∪ N ′k is the state space of a user, where state 0 indicates that the job is
completed, and state n ∈ N ′k indicates that the current channel condition is n and the
job is uncompleted;

• W a
k := (W a

k,n)n∈Nk
, where W a

k,n is the expected one-slot capacity consumption, or work
required by a user at state n if action a is selected at a time epoch. Specifically, for
every state n ∈ Nk,

W 1
k,n := 1, W 0

k,n := 0;

• Ra
k := (Ra

k,n)n∈Nk
, where Ra

k,n is the expected one-slot reward earned by a user at state
n if action a is selected at a time epoch. Specifically, for every state n ∈ N ′k, it is the
negative of the expected waiting cost,

Ra
k,0 := 0, R1

k,n := −ck(1− µk,n), R0
k,n := −ck;

• P a
k := (pak,n,m)n,m∈Nk

, where pak,n,m is the probability for a user of evolving from state
n to state m if action a is selected at a time epoch. The one-slot transition probability
matrices are

P 0
k =


1 0 0 0
0 qk,1,1 · · · qk,1,Nk

0 qk,2,1 · · · qk,2,Nk

...
...

. . .
...

0 qk,Nk,1 · · · qk,Nk,Nk

 ,

P 1
k =


1 0 0 0
µk,1 µ̃k,1qk,1,1 · · · µ̃k,1qk,1,Nk

µk,2 µ̃k,2qk,2,1 · · · µ̃k,2qk,2,Nk

...
...

. . .
...

µk,Nk
µ̃k,Nk

qk,Nk,1 · · · µ̃k,Nk
qk,Nk,Nk

 ,

where we have denoted by µ̃k,n := 1− µk,n.
The dynamics of user j of class-k are captured by the state process Xj(·) and the action

process aj(·), which correspond to state Xj(t) ∈ Nk and action aj(t) ∈ A at all time epochs
t ∈ T . At time slot t the choice of action aj(t) in user state Xj(t) entails the consumption
of the allocated capacity (work), the gain of the reward and the evolution of the state to
Xj(t+ 1) ∈ Nk.

3.2. Restless Bandit Optimization Problem

We consider the following optimization problem for a job-channel-user defined as a restless
bandit. Let ΠXk,ak be the space of all randomized, history dependent and non-anticipative
policies, depending on the state-process Xk(·) and deciding the action-process ak(·).
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Let Eπ0 denote the expectation over the future state process Xk(·) and the action process
ak(·), conditioned on the initial state Xk(0) and on the policy π ∈ ΠXk,ak . For a given
discount factor β and for every value of price ν paid in every slot when serving, the aim is to
find a policy minimizing the expected total discounted waiting cost over an infinite horizon,

max
π∈ΠXk,ak

∞∑
t=0

βt Eπ0
[
R
ak(t)
k,Xk(t) − νW

ak(t)
k,Xk(t)

]
. (2)

We remark that this optimization problem is for a single user and independent of all the
others. Nevertheless, its solution will be the basis of our multi-user scheduling policy.

4. Index-Based Solution

In this section we address the single-user subproblem (2) for a generic user, so we drop
the user subscript k to simplify the notation.

4.1. Index Values and Threshold Policies

Let us adapt to our setting the definition of index values and indexability, following Jacko
(2010).

Definition 1 (Indexability). We say that problem (2) is indexable if there exist values
ν∗n ∈ R ∪ {−∞,∞} for all n ∈ N such that

1. it is optimal to serve the user in state n if ν∗n ≥ ν, and

2. it is optimal not to serve the user in state n if ν∗n ≤ ν.

Such values ν∗n are called the (Whittle) index values, and define an optimal index policy for
the problem.

As described in Gittins (1979); Whittle (1988); Niño-Mora (2007) the optimal solution
can in some cases be found by means of index policies. Index values ν∗n are break-even values
of the parameter ν which define an optimal solution and they can be interpreted as the
benefit which is obtained by serving a user in a certain state (dynamic shadow prices). It
has been shown that for some non-trivial problems such index values may however not exist,
i.e., indexability may not hold.

From the point of view of intuition and implementability, one is often interested in solving
the problem by threshold policies.

Definition 2 (Solvability by threshold policies). We say that problem (2) is solvable by
threshold policies if for any value of ν, there exists a threshold state n(ν) such that

1. it is optimal to serve the user in state n if n ≥ n(ν), and

2. it is optimal not to serve the user in state n if n < n(ν).

Such policies are called threshold policies.
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The indexability property is much more general than solvability by threshold policies.
Indeed, if the problem is indexable and the index values are non-decreasing in n, then it is
solvable by threshold policies. However, an indexable problem is not solvable by threshold
policies if the index values are not non-decreasing in n; then the optimal solution may be
counter-intuitive and significantly harder to identify.

The restless bandit problem and its index-based solution was introduced in Whittle
(1988), generalizing the so-called Gittins index (Gittins and Jones, 1974). Whittle (1988)
gave an intuitive definition of indices. An algorithm for computing index values and sufficient
indexability conditions were introduced much later; see Niño-Mora (2007) for a survey. The
algorithm that computes the index if a problem is indexable values is called Adaptive-Greedy,
shortly the AG-algorithm.

Indexability was established and index values were characterized in closed form in two
important special cases in Ayesta et al. (2010); Jacko (2011). We state them below for
completeness.

Theorem 1 (Ayesta et al. (2010)). If the channel condition evolves in an i.i.d. fashion, i.e.,
qn,m = qm for each n ∈ N ′, then problem (2) is indexable and the index values are

ν∗n =
cµn

1− β + β
N∑

m=n+1

qm(µm − µn)

.

Theorem 2 (Jacko (2011)). If the channel evolves according to the Gilbert-Elliot model, i.e.,
N = 2, then problem (2) is indexable and the index values are

ν∗2 =
cµ2

1− β
ν∗1 =

cµ1

1− β + βq∗1,2(µ2 − µ1)
,

where

q∗1,2 =


1

β(1−µ2)

qSS2
+ 1−β(1−µ2)

q1,2

if q1,2 > 0,

0 if q1,2 = 0,

and qSS2 denotes the steady-state probability of channel condition 2, i.e.,

qSS2 =
q1,2

1 + q1,2 − q2,2

.

Establishing indexability of our general model by the currently known approaches is
likely to be technically extremely tedious, as these approaches require to establish certain
monotonicity properties, see Niño-Mora (2007) for a survey. However, we believe in its
validity based on the computational testing we have performed using the AG-algorithm on
many random problem instances. We formally conjecture it next.

Conjecture 1. Problem (2) is indexable.

In the rest of this section we thus focus only on characterization of index values, assuming
that Conjecture 1 holds.
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4.2. Characterization of the Highest Index Value

It is important to understand which channel condition has the highest index value. The
following theorem identifies the highest index value in closed form.

Theorem 3. Under Conjecture 1, the index value ν∗N =
cµN

1− β
and we have that ν∗N ≥ ν∗n

for every n ∈ N ′.
This result is thus an extension to the Markovian setting of the characterization of the

highest index value in the i.i.d. and 2-conditions special cases stated above. What we can
see is that the highest index value is always associated with the channel condition with the
highest transmission rate, N , and, rather surprisingly, it always has a simple expression,
which grows to +∞ as β → 1. Note also that the proof of this theorem is valid for any
matrix Q without restrictions.

4.3. Characterization of the Second Highest Index Value

In the rest of the section we focus on the undiscounted case (β = 1), which is the most
relevant in practice.

Let us state a conjecture concerning the second highest index value. Suppose that the
steady-state distribution vector of matrix Q, denoted by qSS, exists and is unique. Let for
any m < N , q∗m be the weighted harmonic mean of qSS

N (the N -th element of qSS) and qm,
(the expected weighted one-slot probability to reach channel condition N from the set of the
remaining channel conditions), defined by

q∗m :=
1

1−µN
qSSN

+ µN
qm

, qm :=
N−1∑
h=1

qh,Np
(m)
h ,

where the weights p
(m)
h are the elements of the steady-state probability vector p(m) (assumed

to exist and be unique) of the (N − 1) × (N − 1) matrix Q(m) created from Q by merging
column N with m and omitting row N ,

Q(m) :=



1 · · · m · · · N − 1

1 q1,1 · · · q1,m + q1,N · · · q1,N−1

2 q2,1 · · · q2,m + q2,N · · · q2,N−1

...
... · · · ... · · · ...

N − 1 qN−1,1 . . . qN−1,m + qN−1,N · · · qN−1,N−1

.
Conjecture 2. Under Conjecture 1, suppose that the steady-state distribution vector qSS

exists and is unique with qSSN > 0, and that p(m) exists and is unique with qm > 0 (hence,
q∗m > 0) for all m < N . Then, the second highest index value in the undiscounted case
(β = 1) is of (every) state n which satisfies

n ∈ arg max
m∈N ′\{N}

{
cµm

q∗m(µN − µm)

}
,

and the index value ν∗n of such state(s) n is the corresponding maximum (possibly +∞).
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Figure 1: Histogram of the relative error between the second highest index computed by AG-algorithm
with β = 1 − 106 and the formula given in Conjecture 2. The distribution has been computed sampling
3000 random matrices Q and vectors µ (both using the uniform distribution and normalizing). The curves
correspond to N = 3 (navy blue), N = 4 (light blue), N = 5 (yellow) and N = 6 (brown).

If this conjecture is true, then we can observe that the expression of the second highest
index value and most likely also all the remaining index values might not admit a simple
closed-form characterization, and thus might be prohibitively computationally expensive for
practical implementation. In the following we give support for Conjecture 2 by showing that
it is true in the i.i.d. and in the 2-conditions Markovian special cases, and that it remains
numerically precise in the general case as N grows. In the next subsection we will further
prove its validity for the 3-conditions Markovian case.

Theorem 4. Conjecture 2 holds in the following cases:

1. If the channel condition evolves in an i.i.d. fashion, i.e., qn,m = qm for each n ∈ N ′,
then the second highest index value corresponds to state N − 1 and equals

ν∗N−1 =
cµN−1

qN(µN − µN−1)
.

2. If the channel evolves according to the Gilbert-Elliot model, i.e., N = 2, then the second
highest index value corresponds to state N − 1 = 1 and equals

ν∗N−1 =
cµN−1

q∗N−1,N(µN − µN−1)
,

where

q∗N−1,N =
1

1−µN
qSSN

+ µN
qN−1,N

.

Conjecture 2 remains numerically precise in the general case with more than two channel
conditions. In Figure 1 we plot the histogram of the relative error between the second highest
index computed by AG-algorithm with β = 1− 10−6 and the formula given in Conjecture 2

12



(which assumes β = 1). Specifically, the vertical axis represents the probability that such an
error belongs to intervals [10−i, 10−i+1]. We can observe that the precision of the formula is
not very sensitive to change in N , and the relative error most often remains in the interval
[10−6, 10−3], which we believe is an acceptable numerical error given that the AG-algorithm
computes inverse matrices. The figure includes the relative error for N = 3, for which we
prove validity of Conjecture 2 in the next subsection.

4.4. Index Values for Channel with Three Quality Conditions

Now we focus on problem (2) in the caseN = 3. We will prove validity of Conjecture 2 and
derive closed-form expressions of the index values together with their useful approximations.

Let us first give a closed form characterization of the steady-state vector. Let

α = q2,1q3,2 − q2,2q3,1 + q3,1 − q1,1q3,2 + q1,2q3,1 + q3,2

+ q1,1q2,2 − q1,2q2,1 − q1,1 − q2,2 + 1.

Lemma 1. If the steady-state vector of matrix Q with N = 3 exists and is unique, then it is

qSS =
1

α

 q2,1q3,2 − q2,2q3,1 + q3,1

−q1,1q3,2 + q1,2q3,1 + q3,2

q1,1q2,2 − q1,2q2,1 − q1,1 − q2,2 + 1

 .

If Conjecture 1 holds, we already know (by Theorem 3) that the highest index value is
the one associated with state 3. There are therefore two possibilities: the index value of
state 2 is greater than that of state 1 (i.e., the problem is solvable by threshold policies), or
vice versa.

Theorem 5. Conjecture 2 holds for problem (2) with N = 3. Thus, if ν∗2 ≥ ν∗1 (i.e., it is
solvable by threshold policies), then

ν∗2 =
cµ2

q∗2(µ3 − µ2)
,

where

q∗2 :=
1

1−µ3
qSS3

+ µ3
q2

, q2 := q1,3p
(2)
1 + q2,3p

(2)
2 ,

where the weights p
(2)
1 = q21

1−q11+q21
and p

(2)
2 = 1−q11

1−q11+q21
. If the problem is solvable by threshold

policies after relabeling states 1 and 2, then these results hold as well (for the relabeled states).

We can further characterize the index value of state 1. Let us denote by

U = (1− µ2)(1− µ3)α + µ3(1− µ2)(1− q2,2 + q1,2)

+ µ2(1− µ3)(1− q3,3 + q1,3) + µ2µ3,

V = (µ2 − µ1)[(−q1,1q3,2 + q1,2q3,1 + q3,2)(1− µ3) + q1,2µ3]

+ (µ3 − µ1)[(q1,1q2,2 − q1,2q2,1 − q1,1

− q2,2 + 1)(1− µ2) + q1,3µ2].

13



Theorem 6. If Conjecture 1 holds for problem (2) with N = 3 in the undiscounted case
(β = 1) and ν∗2 ≥ ν∗1 (i.e., it is solvable by threshold policies), then the index value of state
1 is

ν∗1 =
cµ1U

V
. (3)

Unfortunately, we have not been able to write this formula in a more intuitive form.
However, an interesting approximation can be obtained for large jobs.

Theorem 7. Let us fix a bound M such that µ3 ≤ M ≤ 1, i.e., in view of (1) the expected
job size is approximately at least τsN/M bits. Then we have that the index value of state 1,

ν∗1 =
c (µ1 +O (M2))∑

m=2,3

qSSm (µm − µ1) +O
(
M2
) , (4)

and of state 2,

ν∗2 =

c

(
µ2

qSS3

+O
(
M2
))

µ3 − µ2

. (5)

As a consequence, if M is small enough so that terms O(M2) can be neglected, then we
have the following approximation for the index value of state 1,

ν∗1 ≈
cµ1∑

m=2,3

qSS
m (µm − µ1)

, (6)

and of state 2,

ν∗2 ≈
cµ2

qSS
3 (µ3 − µ2)

. (7)

This characterization is nothing but the index value in the i.i.d. setting (cf. Theorem 1),
where the steady-state distribution is employed while the underlying Markovian channel
evolution is irrelevant. The precision of this approximation is excellent for large jobs, as
showed in Table 1 for channel condition 1. Both the absolute error and the relative error
increase approximately linearly in M , i.e., decrease hyperbolically in job size.

Note that the larger the job, the smaller the parameter M , and the precision of this
approximation could be interpreted as a sort of time-scale separation effect arising naturally
in the solution: the steady-state channel distribution approximates well in which channel
conditions the job will be served, whereas for shorter jobs the Markovian channel evolution
may be more important indicating which channel condition is achieved first if starting from
the current condition. However, note that this phenomenon differs from the time-scale
separation as often simplistically assumed in other literature, which implies that the jobs
realize the time-average throughput, see Aalto et al. (2011).
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M Absolute Error Relative Error ε

1 0.3880 14.08% +∞
0.5 0.1854 7.424% 0.16667
0.3 0.1273 4.498% 0.04286
0.1 0.0399 1.571% 0.00370
0.05 0.0237 0.828% 0.00088
0.01 0.0051 0.176% 0.00003
0.001 0.0005 0.017% 0.00000

Table 1: Mean absolute and relative errors of the approximation (6) in a sample of 2000 job-channel-user
instances for each upper bound M ≥ µ3.

4.5. Solvability by Threshold Policies for Channel with Three Quality Conditions

We have given in the previous subsection formulae for computing the index values of a
3-conditions channel assuming they are solvable by threshold policies in the undiscounted
case (β = 1). We will give now two sufficient conditions for having such property satisfied
and we will observe that they are satisfied in a large number of problem instances.

Theorem 8. If Conjecture 1 holds for problem (2) with N = 3 in the undiscounted case
(β = 1), then we have that q13 ≥ q23 implies that the index value of state 2 is greater than
or equal to the index value of state 1, i.e., the problem is solvable by threshold policies.

This fact seems quite evident, indeed q13 ≥ q23 means that the one-slot probability to
move to any better channel condition is surely higher if the user is in condition 1 than in
condition 2. Observe that this inequality is satisfied for the i.i.d. special case, recovering
again the result of solvability by threshold policies by Ayesta et al. (2010).

Theorem 9. Let us denote by ∆ := min{µ3 − µ2, µ2 − µ1}, let M be such that 1 > M ≥ µ3

and denote by

ε :=
M2

3(1−M)
.

If Conjecture 1 holds for problem (2) with N = 3 in the undiscounted case (β = 1), then we
have that ∆ ≥ ε implies that the index value of state 2 is greater than or equal to the index
value of state 1, i.e., the problem is solvable by threshold policies.

In the last column of Table 1 we show how small could ∆ ≥ ε be given a range of upper
bounds M . This condition seems to be really strong if M is small, which is the requirement
to employ the approximation of ν∗1 in the previous subsection. We emphasize that this is
still quite a rough sufficient condition (see the proof). Finally, we remark that the counter-
intuitive case that the index value of state 1 is greater than the index value of state 2 happens
in our numerical testing with frequency of around 2.5% for β = 0.999.

5. Special Cases and Examples

We now complement the results of the previous section by some examples and special
cases. All the results reported are for the undiscounted case (β = 1).
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5.1. Examples of General Channel

Interesting simplifications can be obtained when the channel dynamics is relatively sparse,
as we illustrate in the following three examples.

Example 1: Channel with Birth-Death Dynamics. We consider the channel with N conditions
and birth-death dynamics given by matrix

Q =


y + x z 0 . . . 0

x y z
. . .

...

0
. . . . . . . . . 0

...
. . . x y z

0 . . . 0 x y + z

 ,

with x, y, z > 0. Note that standard results on M/M/1/K system yield that

qSS
N =


1− x

z

1−
(
x
z

)N if x 6= z

1

N
if x = z.

(8)

Numerical testing with the AG-algorithm reveals that, although indexable, this kind of
problem is not always solvable by threshold policies. For instance, if c = 1, N = 3, µ1 =
0.195, µ2 = 0.2, µ3 = 0.3 and

Q =

0.65 0.35 0
0.35 0.30 0.35

0 0.35 0.65

 ,

the AG-algorithm (with β = 1 − 10−8) gives index values ν1 = 14.80, ν2 = 13.02, ν3 =
30′000′000. Note that the departure probabilities in channel conditions 1 and 2 are very
similar, but the potential improvement from condition 2 is much greater than from condition
1, resulting in a lower index value in condition 2.

The following proposition characterizes the second highest index value when it is associ-
ated with channel condition N − 1.

Theorem 10. Under Conjecture 2, if the second highest index value is associated with chan-
nel condition N − 1, then

ν∗N−1 =
cµN−1

q∗N−1(µN − µN−1)

where

q∗N−1 =


1− x

z(
1−

(
x
z

)N)
(1− µN) +

(
1−

(
x
z

)N−1
)
µN
z

if x 6= z

1

N(1− µN) + (N − 1)µN
z

if x = z.
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Example 2. Suppose that channel conditionN merged withN−1 is absorbing (so, qN−1,N−1+

qN−1,N = 1) and accessible from all conditions h < N − 1, then p
(N−1)
N−1 = 1 and p

(N−1)
h = 0

for all h < N − 1, hence qN−1 = qN−1,N , and therefore we can simplify

1

q∗N−1

=
1− µN
qSS
N

+
µN

qN−1,N

.

Example 3. If the only possibility to reach channel condition N is from N − 1, then we can
simplify qN−1 = qN−1,Np

(N−1)
N−1 .

5.2. Examples of Channel with Three Quality Conditions

First, we study two cases where matrix Q is periodic.

Example 4. Let

Q =

0 1 0
0 0 1
1 0 0

 , i.e., qSS =
1

3
(1, 1, 1).

We can prove that the problem is solvable by threshold policies and the index values are

ν∗2 =
cµ2

(µ3 − µ2)

3(1− µ3) + µ3

=
cµ2

(µ3 − µ2)
1−µ3
qSS3

+ µ3
q2

,

ν∗1 =
cµ1

(µ2 − µ1) + (µ3 − µ1)(1− µ2)

3(1− µ2) + µ2 − µ3(1− µ2)

,

where we have used that q2 := q1,3p
(2)
1 + q2,3p

(2)
2 = 0 · 0 + 1 · 1 = 1.

Example 5. Let

Q =

0 0 1
1 0 0
0 1 0

 , i.e., qSS =
1

3
(1, 1, 1).

We can prove that the problem is solvable by threshold policies and the index values are

ν∗2 =
cµ2

(µ3 − µ2)

3(1− µ3) + 2µ3

=
cµ2

(µ3 − µ2)
1−µ3
qSS3

+ µ3
q2

,

ν∗1 =
cµ1

(µ2 − µ1)(1− µ3) + (µ3 − µ1)

3(1− µ2) + 2µ2 − µ3(2− µ2)

,

where we have used that q2 := q1,3p
(2)
1 + q2,3p

(2)
2 = 1 · 1/2 + 0 · 1/2 = 1/2.

Note that the formulae of ν∗2 from Examples 1 and 2 are in accordance with Theorem 5.
Finally, we illustrate a case when the probability of staying in the same condition is 1/2.
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Algorithm 1 Algorithmic scheme of PI* scheduler

At every slot t,
C ′ ← Number of users with uncompleted jobs in their channel condition Nk

if C ′ ≥ C then
Serve C users from among the users in their condition Nk (breaking ties randomly)

else
Serve C ′ users in their condition Nk

Serve C −C ′ users not in condition Nk with highest index value ν∗k,Xk(t) (breaking ties

randomly)
end if

Example 6. Let

Q =
1

4

2 2 0
1 2 1
0 2 2

 , i.e., qSS =
1

4
(1, 2, 1).

We can prove that the problem is solvable by threshold policies and the index value is

ν∗2 =
cµ2

(µ3 − µ2)

4(1− µ3) + 6µ3

=
cµ2

(µ3 − µ2)
1−µ3
qSS3

+ µ3
q2

,

where q2 = q2,3p
(N)
2 = 1/4 · 2/3 = 1/6.

6. Proposed Schedulers

Now we come back to the original multi-class problem with user arrivals, as described in
section 2. We set out to design feasible schedulers for the problem where it is allowed to serve
up to C users in every slot. We are interested in the undiscounted case, which is essentially
the case of optimization under the time-average criterion. We will do so motivated by the
results obtained in Theorem 3, Theorem 5, Theorem 6, Theorem 7, and Theorem 9.

We define the Markovian Potential Improvement (PI*) scheduler, which is presented in
Algorithm 1. Index values are now interpreted as priorities for serving (the higher the index
value, the higher the priority). However, as we have seen in the previous sections, the index
values ν∗k,n are likely not to admit a simple closed-form characterization in the general setting,
except for ν∗k,Nk

= +∞. We have only obtained a closed-form solution for Nk = 3. Therefore,
we propose two approximations of the index values, which give rise to additional two new
schedulers for general Nk.

First, we define the PIAG scheduler, which approximates ν∗k,n for n ∈ N \ {N} by run-
ning the AG-algorithm with β as close as possible to 1 while avoiding numerical instability
problems. Note that this algorithm performs O(N3

k ) elementary operations, and requires the
knowledge of the matrix Qk. Moreover, this algorithm identifies whether threshold policies
are optimal, and so these approximated index values may not necessarily be increasing in n.
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Second, we define the PISS scheduler, which approximates ν∗k,n for n ∈ N \ {N} by the
formula

ckµk,n∑
m>n

qSS
k,m(µk,m − µk,n)

. (9)

This approximation is based on conjecturing generalizability of Theorem 7, which requires
that µk,Nk

≤M , where M is small enough so that terms O(M2) can be neglected. It is easy
to prove that these approximated index values are increasing in n and that their computation
requires O(Nk) elementary operations (once the steady-state distribution qSS

k is known). The
knowledge of the matrix Qk is not required; only the steady-state distribution is used, which
may be significantly easier and more precise to estimate in practice.

We adopt the name of the potential improvement scheduler introduced in Ayesta et al.
(2010), since Jacko (2011) for the 2-state channel and the previous section for the 3-state
channel show that the index value is the ratio of the one-slot holding cost saving and the
(weighted) potential improvement of the departure probability. This can be seen also as
a way of optimally resolving the trade-off between opportunistic scheduling and short-jobs
prioritization. We however note that yet another dimension (the Markovian evolution) comes
into play and indicates that it may sometimes be better to neither be opportunistic nor give
priority to a (myopically) shorter job. We can summarize the features of this rule as that
priority is given to those users who are unlikely to improve their actual transmission rate
soon by much.

The PI* scheduler and both its approximations PIAG and PISS reduce to a scheduler
that is optimal if Nk = 1 for all k, there is a single server (C = 1) and arrivals are arbitrary
(Buyukkoc et al., 1985). They all belong to the family of the best-condition schedulers, which
have important stability properties in Markovian setting as shown in Kim et al. (2013).

Theorem 11. In the single server case C = 1, if Qk is irreducible and aperiodic for every
k, then the PI* scheduler and both its approximations PIAG and PISS are maximally stable
under arbitrary arrivals.

We believe that maximal stability is true even in the multi-server case and even if Qk

is reducible or periodic. In fact, it is straightforward to argue that the stability region is
upperbounded even in the case of generally distributed job sizes as follows.

For each class k we define Bk := dbk/sk,Nk
e, the number of slots in the best channel

condition (Nk) needed to complete a job of size bk bits. Thus, Bk is the minimum number
of slots that a job of size bk must spend in service in order to be completed. We denote by
E[Bk] (positive integer) the mean of this random variable of class k. We further define the
traffic intensity of class k as %k := λk E[Bk].

Theorem 12. If % :=
∑
k∈K

%k > C, then there is no scheduler that stabilizes the system.

We believe that any system with % :=
∑
k∈K

%k < C is stabilizable by any best-condition

scheduler if Nk is recurrent for every class k. We are, unfortunately, unable to conclude
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Figure 2: Scenario A: Time-average cost of PI*, SB, PB (red), RB (green), cµ (blue) as a function of %,
computed from simulation over 330 sec.

anything with respect to (asymptotic) optimality of the proposed schedulers in systems with
arrivals. In the next section we evaluate the performance of PI* and compare it to existing
schedulers proposed for this problem in the previous literature.

7. Experimental study

In this section we investigate the behavior and evaluate the performance of the PI*
scheduler and its suggested approximations in simulations. Due to limited space, we have
selected two scenarios to present; more experimental results can be found in Cecchi and Jacko
(2013). For comparison, we include several schedulers proposed in the previous literature.
These schedulers are all priority-based, in the sense that the users served are the ones with
highest values that can be interpreted as priorities. However, these alternative schedulers
are based on priority values that are not Whittle indices, i.e., they have not been shown
optimal in the single-user subproblem.

The schedulers we consider are based on the following priority values:

• the cµ rule, i.e. νcµk,n = ckµk,n;

• the Relatively Best (RB) rule, i.e. νRB
k,n =

ckµk,n
Nk∑
m=1

qSS
k,mµk,m

;

• the Proportionally Best (PB) rule, i.e. νPB
k,n =

ckµk,n
µk,Nk

;
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Figure 3: Scenario A: Evolution of the number of users in the system during simulation of PI*, SB, PB (red),
RB (green), and cµ (blue).

• the Score Based (SB) rule, i.e. νSB
k,n = ck

n∑
m=1

qSS
k,m.

We have adapted them to incorporate the waiting costs (the original definitions of RB, PB
and SB are recovered with ck = 1). We break the ties randomly.

We focus on the case of capacity C = 1 andK = 2 classes. Each class k is characterized by
a time homogeneous value λk ∈ [0, 1], representing the probability that a new user belonging
to class k enters the system during a slot. The restriction to Bernoulli arrivals is justified by
the short slot duration in real systems, which is typically ε = 1.67msec.

In order to analyze realistic scenarios, we consider transmission rates sk,n actually em-
ployed in 4G LTE networks, see Table A.2, which is adopted from Sesia et al. (2011). We
further consider the following types of typical files downloaded in a wireless data network:

• short files (HTML web page, e-mail) with expected job size E0[bk] = 0.5Mb (64kB)

• medium files (PDF document, image) with expected job size E0[bk] = 5Mb (640kB)

For every class of users we select a subset of channel conditions from those defined in Ta-
ble A.2 and then determine the departure probabilities using (1).

Moreover, in every simulation we vary the value of % between 0.5 and 1, but for simplicity
we always keep %1 = %2. In this way, the rate of arrivals of each class k is given by λk =
%kµk,Nk

. The channel condition of a user at the slot in which she arrives is determined by
an equidistributed variable, i.e., qk,n = 1/Nk.

Note that the requirement ck = c for all k implies that SB and PB are best condition
schedulers. Such a property is guaranteed for the cµ and RB rule only under the requirement
that the values ckµk,Nk

and νRB
k,Nk

, respectively, are the same for each user k. In contrast,
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recall that the PI* scheduler is a best-condition scheduler always (and therefore maximally
stable). The parameters of both scenarios are summarized in Table A.3.

7.1. Scenario A

In this scenario, jobs of each class are short. Waiting costs are c1 = c2 = 1, therefore
the objective is to minimize the time-average number of users with uncompleted jobs in the
system. The channel condition transition matrices are randomly generated, see Table A.3.
Class 1 can always be served with a higher transmission rate than class 2: s1,1 = 53.76Mb/sec
while s2,3 = 33.6Mb/sec. Therefore, we have µ1,1 ≥ µ2,3, and so the cµ rule always gives
priority to class 1.

It can be checked that in this scenario the rules PI*, SB and PB schedule equally. Figure 2
shows the time-average waiting cost accrued by employing the different policies for varying
%. The performance of every policy until % ≤ 0.84 is quite similar, even if the cµ and the PI*
rules slightly outperform the RB rule. The cµ rule becomes unstable between % = 0.92 and
% = 0.94. Figure 3 indicates that the average increase of users in the system is about 1.2
per second for % = 0.94 (note that the average number of arrivals per second is 75.8 for class
1 and 31.5 for class 2). The other rules are stable and the RB and PI* rules yield a time-
average cost of about 60 and 10, respectively. When % = 0.98 (i.e., the average number of
arrivals per second is increased to 79 for class 1 and 32.9 for class 2), RB becomes unstable,
and the average increase in the number of users under this policy is about 2.1 users per
second. This is still better than the average increase under the cµ rule, which is of about 4.2
users per second. However, these policies are strongly outperformed by the PI* rule: with
% = 0.98 this rule is stable and the time-average cost is less than 60. In Figure 4 we present
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Figure 5: Scenario B: Time-average cost of PI* (red), SB (blue), RB, PB (green), cµ (black) as a function
of %, computed from simulation over 330 sec.

the per-class evolution of the number of users in the system. It can be observed that the
policies behave in a completely different way. The PI* rule seems to be quite fair between
the two classes, the cµ rule gives priority to class 1 (so that class 2 accumulates) while on
the contrary the RB favors class 2 (so that class 1 accumulates).

7.2. Scenario B

We believe this scenario to be a very realistic situation of two classes representing busi-
ness and individual customers, respectively. Class 1 requires completion of a job ten times
longer than class 2, and its waiting cost is twice the waiting cost of class 2. The remaining
parameters are the same for the two classes, see Table A.3. The structure of the channel
condition transition matrix is diagonally dominant, i.e. users are more likely to maintain
their channel condition than to change it from one slot to another.

The PB and RB rules induce the same policy. Figure 5 shows that the rules cµ and PI*
outperform the other policies for % ≤ 0.9. All the policies are stable up to % = 0.9, however,
the associated time-average costs are quite different. In Figure 6(a) we can see that for
% = 0.94 (arrivals 7.6 and 75.8 per second), the cµ rule is unstable with the average increase
of users about 0.3 per second. The other policies are still stable despite the fact that RB
queues about 1300 users per slot. This level of users is reached and overcome by the cµ
rule only after about 1 hour. For % = 0.98 (arrivals 8 and 79 per second) the RB rule is
also unstable, see Figure 6(b). With this policy, the number of users in the system increases
by almost 12 users per slot, which is considerably worse than the increase of 0.95 users per
slot that results from the cµ rule. The SB and PI* rules are stable even though they queue
respectively around 3000 and 200 users on average. It is insightful to reflect on the way in
which the different policies deal with the two classes. Figure 7 elucidates that while SB and

23



0

500

1000

1500

2000

0 100 200 300 400 500 600 700
Time in seconds

N
um
be
r
of
us
er
s
in
th
e
sy
st
em

PI
SB

RB,PB

(a) % = 0.94, over 785 sec.

0

2000

4000

6000

8000

10000

0 100 200 300 400 500 600 700 800
Time in seconds

N
um
be
r
of
us
er
s
in
th
e
sy
st
em

PI
SB

RB,PB

(b) % = 0.98, over 820 sec.

Figure 6: Scenario B: Evolution of the number of users in the system during simulation of PI* (red), SB
(blue), RB, PB (green), cµ (black).

PB favour class 1 and the cµ rule favours class 2 , the PI* maintains a balance between the
two classes.

8. Conclusion

The scheduling problem we are investigating is hard and remains far from being solved to
optimality. However, it is motivated by an important practical problem, which explains why
the research efforts’ focus has been redirected to finding simpler, implementable schedulers.
We follow these lines by designing and studying the PI* scheduler. The introduction of more
general and realistic features, like the Markovian evolution of the channel or the arbitrary
number of channel conditions, prohibits obtaining closed, intuitive formulae, even for the PI*
priority/index values. In our opinion, an important role in the computation of such index
values is played by q∗, which can loosely be interpreted as the probability of moving to a
better condition soon. We elucidate that it is very hard to characterize it mainly due to the
Markovian dynamics property. We have addressed the problem in detail for the 3-state case,
where, if the jobs are sufficiently large, the PISS scheduler seems to work as an efficient and
effective scheduler. We believe that such an approximation is still reasonable for the general
N -state case, though that should be investigated further. In particular, it would be useful to
identify sufficient conditions that guarantee that problem (2) is solvable by threshold policies
and test whether they are satisfied in practice.

Numerical simulations suggest that the PI* scheduler works very well in a lot of different
scenarios, backed up with the maximal stability property, which assures the system to be
manageable whenever possible. Moreover, even though we have not included fairness as
an optimization criterion in our MDP model, the PI* scheduler surprisingly shows to be
considerably fair between classes in all loads.

24



0

40

80

0 100 200 300 400 500 600 700

0

100

200

0 100 200 300 400 500 600 700

0
400
800
1200

0 100 200 300 400 500 600 700

0

4

8

12

0 100 200 300 400 500 600 700

Class 1
Class 2

Time in seconds

N
um
be
r
of
us
er
s
in
th
e
sy
st
em

PI

SB

RB,PB

Figure 7: Scenario B: Evolution of the number of users of class 1 (blue) and class 2 (red) during simulation
for % = 0.90. The values are averaged over intervals of 10000 slots of time (16.7 sec.).

It is not always possible in practice to know all the parameters characterizing the user
classes. For instance, the transition probability matrix is likely to be unknown, but the
steady-state distribution can be estimated from past observations at a desired precision.
Our simulation experiments indicate that the variant of PI* which only relies on the steady-
state distribution of the channel is robust, performs extremely well, and therefore we suggest
it to be used for practical implementation.

On the other hand, our simulations (many of them not reported here) indicate that in
some specific situations it could be convenient to employ other policies instead of PI*. If the
system is relatively lightly loaded, the cµ rule, performs sometimes better than the other
schedulers in short-term, even if unstable. It would be interesting to identify the stability
limit of the cµ policy in the Markovian setting in order to alternate between cµ and PI*.

The main theoretical limitation of our model is its assumption of geometric job sizes.
However, we believe that it is important to first understand this case, which is likely to be
the simplest analytically. Future research should address the question of (in)sensitivity of
our results to the job size distribution. Note also that the existing maximal stability results
for best-condition schedulers (Ayesta et al., 2013; Kim et al., 2013) also rely on the geometric
job size assumption.
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Modulation QPSK 16QAM 64QAM

MCS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rate 4.2 6.72 8.4 11.256 16.8 21.84 25.2 26.88 33.6 44.688 50.4 53.76 67.2 75.6 80.64

Table A.2: Transmission rates in Mb/sec associated with the modulation and coding schemes (MCSs) in 4G
LTE.

Scenario MCS Cost Channel Condition Transition Probability Matrix Job Size

A
({12, 13, 15},
{1, 8, 9}) (1,1)

 0.4 0.21 0.39
0.48 0.5 0.02
0.26 0.3 0.44

 ,
 0.34 0.35 0.31

0.27 0.45 0.28
0.45 0.15 0.4

 (short, short)

B
({12, 13, 15},
{12, 13, 15}) (2,1)

 0.6 0.3 0.1
0.25 0.5 0.25
0.1 0.3 0.6

 ,
 0.6 0.3 0.1

0.25 0.5 0.25
0.1 0.3 0.6

 (medium, short)

Table A.3: Scenario parameters of class 1 and class 2.

Appendix A. Indexability Analysis and Proofs

In the discussion below a crucial point is the resolution to optimality of the problem (2).
We observe now that, since this is a standard MDP problem with finite action space and
state space, there exists an optimal policy for this problem which is deterministic, stationary
and independent of the initial state (Puterman, 2005, Chapter 6). Such an optimal policy
can therefore be searched in the set ΠXk,ak which is the set of stationary policies reliant only
on the process relative to user k.

Since there exists an optimal policy of (2) which is stationary, we could look for such
an optimal merely by considering this kind of policies. Indeed the deterministic, stationary
policies can be easily represented in terms of their serving set S ⊆ Nk, more precisely, such
a policy indicate to serve the user if she is in any state n ∈ S, while not to serve her if n /∈ S.
Hence, it is possible to rewrite the problem (2) in the form

max
S⊆Nk

ES0

[
∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
− ν ES0

[
∞∑
t=0

βtW
ak(t)
k,Xk(t)

]
, (A.1)

Let us define RS
n := ES0

[∑∞
t=0 β

tR
ak(t)
k,Xk(t)

]
if the initial state is Xk(0) = n ∈ Nk. Analo-

gously we define WS
n.

In the next paragraphs, it will turn out to be useful to have defined the quantity

νSn :=
R1
n −R0

n + β
∑

j∈N (p1
nj − p0

nj)RSj
W 1
n −W 0

n + β
∑

j∈N (p1
nj − p0

nj)WSj
.

It represents the rate between marginal reward and marginal work, where the marginal
reward (work) is the difference of the expected reward earned (work required) by serving
and not serving at the initial state n and employing policy S afterwards.
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Proof of Theorem 3. In order to prove this theorem, we follow the first step of the AG
algorithm (Niño-Mora, 2007, see). At the end of the first step the highest index value is
assigned to the state n which leads to a greater value of ν∅n. It is straightforward that ν∅0 = 0.
Let’s compute such a quantity for n ∈ N ′,

ν∅n =
µnc− µnβ

(∑
j∈N ′ qnjR

∅
j − R∅0

)
1− µnβ

(∑
j∈N ′ qnjW

∅
j −W∅0

) . (A.2)

It is necessary to compute the values of R∅j and W∅j for every j ∈ N . It is straightforward

that R∅0 = W∅0 = 0. Let us focus on the computation of total reward R∅j for j ∈ N ′,

R∅j = E∅j

[
∞∑
t=0

βtR
a(t)
X(t)

]
= −c+ β

∑
i∈N ′

qjiR∅i

It can be easily checked that a solution to this linear system is given by

R∅j = − c

1− β
, ∀j ∈ N ′.

For the total work we have to solve the system

W∅j = E∅j

[
∞∑
t=0

βtW
a(t)
X(t)

]
= β

∑
i∈N ′

qjiW∅i

and so the unique solution of this system is given by

W∅j = 0, ∀j ∈ N ′.

By substituting these quantities in (A.2) it follows that

ν∅n =
cµn

1− β
.

We recall that we have supposed that µ1 < ... < µN . So

ν∅N > ν∅n > ν∅0 , ∀n ∈ N ′.

We can conclude that
ν∗N = ν∅N =

cµN
1− β

.

Proof of Theorem 4. Proof of item 1 : It must be proved that ν
{N}
N−1 > ν

{N}
n ∀n ∈ {1, .., N−2}

and that q∗N−1 = qN . We observe that

qm =
N−1∑
h=1

p
(m)
h qh,N =

 N−1∑
h=1, h 6=m

qh + (qm + qN )

 qN = qN
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and since qSS
N = qN , we have proved that q∗n = qN ∀n ∈ {1, .., N − 1}. The result follows

from the assumption µN−1 > µm for all m ∈ {1, .., N − 2}.
Proof of item 2 : It is straightforward observe that our results generalize this one, indeed

q∗1 = p
(1)
1 q1,2 = q1,2, since the 1× 1-matrix reduces to (1).

Proof of Theorem 5. The index value can be obtained emulating theAG-algorithm and using
a symbolic algebra software.

Proof of Theorem 6. The index value can be obtained emulating theAG-algorithm and using
a symbolic algebra software.

Proof of Theorem 7. It is straightforward to obtain that µ1U = µ1α + (O (M2)) and

V = (µ2 − µ1)(q1,2q3,1 − q1,1q3,2 + q3,2)

+ (µ3 − µ1)(−q1,2q2,1 + q1,1q2,2 − q2,2 − q1,1 + 1) +
(
O
(
M2
))
.

This gives the approximation for state 1, since qSS
2 = (q1,2q3,1 − q1,1q3,2 + q3,2)/α and qSS

3 =
(−q1,2q2,1 + q1,1q2,2 − q2,2 − q1,1 + 1)/α.

By expanding the terms of ν∗2 we can similarly obtain the approximation for state 2.

Next we prove two easy-to-check theorems that guarantee the solvability of (2) with 3
states by threshold policies. In order to prove these theorems we have just to verify that the
conditions given are sufficient to determine ν

{3}
2 ≥ ν

{3}
1 . Such values arise from the second

step of the AG-algorithm, to be more precise these values are given by

ν{3}n :=
R1
n −R0

n + β
∑

j∈N (p1
nj − p0

nj)R
{3}
j

W 1
n −W 0

n + β
∑

j∈N (p1
nj − p0

nj)W
{3}
j

.

It is possible to rewrite these quantities in an equivalent simpler form, so that

ν
{3}
2 =

cµ2

µ3 − µ2

(
1− µ3

qSS
3

+
µ3

q2

)
(A.3)

and

ν
{3}
1 =

cµ1

µ3 − µ1

(
1− µ3

qSS
3

+
µ3

q1

)
(A.4)

Note that these expressions are the basis for Conjecture 2.

Proof of Theorem 8. It can be checked that

1

q2

≥ 1

q1

⇔ q1,3 ≥ q2,3.

The theorem follow directly from this fact, indeed

ν
{3}
2 >

cµ1

µ3 − µ1

(
1− µ3

qSS
3

+
µ3

q2

)
28



≥ cµ1

µ3 − µ1

(
1− µ3

qSS
3

+
µ3

q1

)
= ν

{3}
1 ,

where the first inequality is due to the assumption µ2 > µ1.

Proof of Theorem 9. The difference ν
{3}
2 − ν{3}1 can be expanded through the formulas (A.3)

and (A.4), so that we can obtain this sufficient and necessary condition in order to guarantee
the positivity of such a difference,

ν
{3}
2 − ν{3}1 ≥ 0⇔

⇔ (1− µ3)(µ2 − µ1)

qSS
3

≥ µ1(µ3 − µ2)q2 − µ2(µ3 − µ1)q1

q1q2

(A.5)

The left hand side of (A.5) can be roughly bounded by

(1− µ3)(µ2 − µ1)

qSS
3

≥ (1− µ3)(µ2 − µ1)

while the right hand side can be rewritten and bounded in the following way

µ1(µ3 − µ2)q2 − µ2(µ3 − µ1)q1

q1q2

=
µ1(µ3 − µ2)(q2,1 + q2,3 + q1,2)− µ2(µ3 − µ1)(q2,1 + q1,3 + q1,2)

q1,3q2,1 + q2,3q1,2 + q2,3q1,3

≤ µ3(µ1 − µ2)(q1,2 + q2,1)− µ3µ2q1,3 + µ3µ1q2,3 + µ1µ2(q1,3 − q2,3)

3

≤ µ1q2,3(µ3 − µ2) + µ1q1,3(µ2 − µ3)

3
≤ µ1(µ3 − µ2)

3
.

These inequalities provide us a sufficient condition for the difference ν
{3}
2 −ν

{3}
1 to be positive,

indeed
µ1(µ3 − µ2)

3
≤ (1− µ3)(µ2 − µ1)⇒ ν

{3}
2 − ν{3}1 ≥ 0

So that if we suppose for each n,m = 1, 2, 3 and n > m,

µn − µm > ε and µ3 ≤M

the sufficient condition is implied by this easy to be verified condition

3(1−M)ε

M2
≥ 1

or equivalently by the hypothesis of the theorem

ε ≥ M2

3(1−M)
.
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Proof of Theorem 10. From Conjecture 2 we have

ν∗N−1 =
cµN−1

q∗N−1(µN − µN−1)
,

where

1

q∗N−1

=
1− µN
qSS
N

+
µN
qN−1

.

Let first x 6= z. The steady state probability vector of Q is given by

qSS = CN

(
1,
z

x
,
z2

x2
, ..,

zN−1

xN−1

)
where

CN =
1− z

x

1− zN

xN

=
xN−1(x− z)

xN − zN

and in particular

qSS
N =

x
z
− 1(

x
z

)N − 1
.

Further, we have that

qm = qN−1,Np
(m)
N−1.

The matrix where column N is merged with column N − 1 has the same birth-death form
as matrix Q, therefore we have

p
(N−1)
N−1 = CN−1

zN−2

xN−2
=

zN−2(x− z)

xN−1 − zN−1
,

and

qN−1 = z
x
z
− 1(

x
z

)N−1 − 1
.

Similarly for x = z, we have qSS
n = 1/N ,

p
(N−1)
N−1 =

1

N − 1
,

and

qN−1 = qN−1,Np
(N−1)
N−1 = z

1

N − 1
.
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