
Nonlocal gravity in D dimensions: Propagators, entropy,
and a bouncing cosmology

Aindriú Conroy,1 Anupam Mazumdar,1,2 Spyridon Talaganis,1 and Ali Teimouri1
1Consortium for Fundamental Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

2IPPP, Durham University, Durham DH1 3LE, United Kingdom
(Received 16 September 2015; published 22 December 2015)

We present the graviton propagator for an infinite derivative, D-dimensional, nonlocal action, up to
quadratic order in curvature around a Minkowski background, and discuss the conditions required for this
class of gravity theory to be ghost-free. We then study the gravitational entropy for de-Sitter and anti-de
Sitter backgrounds, before comparing with a recently derived result for a Schwarzschild black hole,
generalized to arbitrary D dimensions, whereby the entropy is given simply by the area law. A novel
approach of decomposing the entropy into its ðr; tÞ and spherical components is adopted in order to
illustrate the differences more clearly. We conclude with a discussion of de-Sitter entropy in the framework
of a nonsingular bouncing cosmology.

DOI: 10.1103/PhysRevD.92.124051 PACS numbers: 04.50.Kd, 04.50.-h, 04.60.Cf, 04.70.Dy

I. INTRODUCTION

Einstein’s general relativity (GR) is a well-tested theory
of gravity in the infrared (IR) [1], reducing to Newtonian
gravity for nonrelativistic systems. At very short distances,
the Newtonian potential has been tested only up to the
distance scale of 10−5 m, which is the IR limit of Einstein’s
gravity for a slowly time varying test mass [2]. The
correspondingmass scale is aroundM ∼ 1 eV,whichmeans
that beyond thismass scale, the nature of gravity itself is very
poorly constrained. As it stands, Einstein’s theory is plagued
by spacetime singularities—be it, the singularity of a black
hole or the initial, cosmological singularity [3]. The latter is
believed to be a naked singularity, which prevents, not only
geodesic completeness for any null or time like trajectories,
but also prevents us from comprehending the initial classical
and quantum state of the Universe.
Einstein’s gravity, however, is unique in a sense that it

predicts the area-law of gravitational entropy for a gravita-
tionally bound system. In 4-dimensions, the Bekenstein-
Hawking entropy of a blackhole is given by the area of a
2-dimensional horizon [4,5], which may also be confirmed
by following Wald’s prescription for the gravitational
entropy of a static, homogeneous and isotropic metric,
supplemented with a horizon [6], see also [7]. This obser-
vation has lead to manywell-known conjectures, such as the
famous anti-deSitter (AdS) conformal field theory (CFT)
correspondence [8], and the holographic principle, which
states that the gravitational entropy is proportional to the
surface area rather than the volume [9,10]. The illusory
nature of the volume and the subsequent holographic quality
of the Universe, itself, affords the principle its name.
Of course, some of the concerns raised by Einstein’s

gravity at short distances and small time scales need to be
addressed by better understanding the ultraviolet (UV)
aspects of gravity, while retaining the aforementioned

predictions in the IR. However, the challenges in modifying
gravity arises from two fronts. On one hand, higher-order
curvature corrections tend to ameliorate the UV aspects by
suppressing the graviton propagator. On the other, gravity
being a derivative theory, higher-order corrections naturally
introduce extra propagating states, which can be massive,
tachyonic or ghost-like. A classic example is Stelle’s 4th
derivative gravity which is renormalizable, but contains a
massive spin-2 ghost [11].
In Refs. [12,13], the issue of ghosts has been addressed

at tree-level in 4-dimensions. An action can be rendered
ghost-free by requiring that no additional degrees of
freedom other than the massless graviton are introduced.1

This is in spite of the fact that there are an infinite number
of derivatives acting on the curvature. The action, in fact,
remains generally covariant, giving rise to nonlocal grav-
iton interactions, and has improved UV behavior in terms
of higher loops [14], see also [15,16].
A further observation was made by studying the true

dynamical degrees of freedom propagating between the
spacetime region and the gravitational entropy of a self-
gravitating system, containing a horizon. In Ref. [17], it
was shown that the gravitational entropy of such a non-
trivial, ghost-free gravitational action for a Schwarzschild’s
black hole in 4 dimensions is determined solely by the
Einstein-Hilbert action. The higher-order corrections, at
least up to quadratic in curvature, do not contribute to the
gravitational entropy.
The aim of this paper is two-fold.
First, we wish to:

1More generally, one simply requires that the modified
propagator is proportional to the propagator of GR. In such a
case, it is possible, within certain limitations, to introduce an
additional scalar propagating degree of a freedom and for the
theory to remain ghost-free.
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(i) Extend the results of Refs. [12] to D-spacetime
dimensions, by detailing the graviton propagator and
the subsequent constraints for a ghost-free construc-
tion of gravity in D dimensions around Minkowski
background.

(ii) Generalise the entropy computation for a Schwarzs-
child-like black hole to D dimensions and show that
the entropy for such a setup will be determined
solely by the Einstein-Hilbert action [17].

And second, we intend to
(i) Study thegravitational entropy for a de-Sitter (dS) and

anti-de-Sitter (AdS) metric, again in D-spacetime-
dimensions.

(ii) Discuss this result in the context of a nonsingular
bouncing cosmology.

Furthermore, note that in this paper we do not attempt to
present the graviton propagator for (A)dS, leaving this for
future study.
The paper is organized as follows: In Sec. II, we provide

some technical details on how to obtain the graviton propa-
gator in D-spacetime dimensions and study the ghost-free
condition around Minkowski background. In Sec. III, we
discuss the general definition of gravitational entropy by
following Wald’s prescription. In Sec. IV, we present the
gravitational entropy for aD dimensional Schwarzschild-like
blackhole. In Sec.V,we study the gravitational entropy for dS
andAdS inD dimensions, and in Sec. VI, we apply this result
in a cosmological context.

II. INFINITE DERIVATIVE GRAVITY
IN D DIMENSIONS

The most general,2 D-dimensional, nonlocal action
of gravity that is quadratic in curvature can be expressed
as a combination of the Einstein-Hilbert term and higher
order terms3

Itot ¼ 1

16πGD

Z
dDx

ffiffiffiffiffiffi
−g

p ½Rþ αðRF 1ð□ÞR

þ RμνF 2ð□ÞRμν þ RμνλσF 3ð□ÞRμνλσÞ�; ð1Þ

where GD is the D-dimensional Newton’s constant4; α is a
constant5 with dimension of inverse mass squared; and
μ; ν; λ; σ run from 0; 1; 2; � � �D − 1. We briefly note that
actions of higher order in curvature are permitted by the

general diffeomorphism, however, we restrict ourself to
actions of quadratic order, which capture all the quadratic
perturbations, around the Minkowski spacetime, required
for studying the graviton propagator [12,13]. The form
factors given by F ið□Þ contain an infinite number of
covariant derivatives, of the form:

F ið□Þ≡X∞
n¼0

fin

�
□

M2

�
n
; ð2Þ

with constants fin , and□≡ gμν∇μ∇ν is the D’Alembertian
operator. The reader should note that, in our presenta-
tion, the function F ið□Þ comes with an associated
D-dimensional mass scale, M ≤ Mp ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8πGDÞ

p Þ,
which determines the scale of nonlocality in a quantum
sense, see [14]. The full classical equations of motion has
been derived for action Eq. (1) in 4 dimensions in Ref. [19],
see also [20] for mathematical techniques.
In particular, let us consider perturbations around

D-dimensional Minkowski spacetime with metric tensor
ημν, such that ημνημν ¼ D, and where the perturbations are
denoted by hμν. One should also note that we are using
mostly plus metric signature convention.
The OðhÞ expressions for the Riemann tensor, Ricci

tensor and curvature scalar in D dimensions are given by:

Rμνλσ ¼
1

2
ð∂ ½λ∂νhμσ� − ∂ ½λ∂μhνσ�Þ

Rμν ¼
1

2
ð∂σ∂ðν∂σ

μÞ − ∂μ∂νh −□hμνÞ
R ¼ ∂μ∂νhμν −□h: ð3Þ

The full action Eq. (1) can then be expanded around
Minkowski space, retaining terms up to Oðh2Þ:

Sq ¼ −
Z

dDx

�
1

2
hμν□að□Þhμν þ hσμbð□Þ∂σ∂νhμν

þ hcð□Þ∂μ∂νhμν þ
1

2
h□dð□Þh

þ hλσ
fð□Þ
2□

∂σ∂λ∂μ∂νhμν
�
: ð4Þ

The above expression, along with the functional forms of
að□Þ, bð□Þ, cð□Þ, dð□Þ and fð□Þ remain the same as
those of the 4-dimensional case, see Ref. [12,13], and our
Appendix A. One can easily note that

fð□Þ ¼ að□Þ − cð□Þ; ð5Þ

and that the equation of motion satisfies the generalized
Bianchi identities, for energy momentum tensor τμν:

2We are considering theories of gravity that are parity invariant
and torsion-free.

3The structure is very similar to Ref. [12], which was derived
in 4 dimensions.

4In D dimension GD has dimension of ½GðDÞ� ¼ ½Gð4Þ�LD−4

where L is unit length.
5Note that for an arbitrary choice ofF ð□Þ at action level, α can

be positive or negative as one can absorbs the sign into the
coefficients fin contained within F ð□Þ to keep the overall action
unchanged, however α has to be strictly positive once we impose
ghost-free condition [18].
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∇μτ
μ
ν ¼ 0 ¼ ðcþ dÞ□∂νh

þ ðaþ bÞ□hμν;μ þ ðbþ cþ fÞhαβ;αβν: ð6Þ

To find the graviton propagator inD dimensions, we follow
a similar projection operator prescription as found in
Refs. [12,13,21], see also Appendix B.
Thus the D-dimensional propagator is now given by

Πð−k2Þ ¼ P2

k2að−k2Þ þ
P0

s

k2ðað−k2Þ − ðD − 1Þcð−k2ÞÞ
ð7Þ

Choosing fð□Þ ¼ 0 ⇒ að□Þ ¼ cð□Þ, so as not to intro-
duce any scalar propagating degrees of freedom, we find

Π ¼ 1

k2að−k2Þ
�
P2 −

1

D − 2
P0

s

�
: ð8Þ

The form of að−k2Þ should be such that it does not
introduce any new propagating degree of freedom, and it
was argued in Refs. [12,18] that the form of að□Þ should be
an entire function, so as not to introduce any pole in the
complex plane, which would result in additional degrees of
freedom in the momentum space6.
Furthermore, the form of að−k2Þ should be such that in

the IR, for k → 0; að−k2Þ → 1, therefore recovering the
propagator of GR in the D dimensions. For D ¼ 4, the
propagator has the familiar 1=2 factor in front of the scalar
part of the propagator. One such example of an entire
function is [12,18]:

að□Þ ¼ e−□=M2

; ð9Þ

which has been found to ameliorate the UV aspects of
gravity by removing the black hole singularity within the
linearized limit in a static configuration [12], see also
[22,23], while recovering the Newtonian limit in the IR.7 In
Refs. [24,25], the authors have shown that the spherical
collapse within a linearized limit does not form a curvature
singularity in this class of models.
By imposing fð□Þ ¼ 0, i.e. að□Þ ¼ cð□Þ, we obtain:

2F 1ð□Þ þ F 2ð□Þ þ 2F 3ð□Þ ¼ 0; ð10Þ

which is independent of the number of spacetime
dimensions. This result was first shown in Ref. [12] in
4 dimensions.

III. GRAVITATIONAL ENTROPY

In the framework of Lagrangian field theory, Wald
showed that one can find the gravitational entropy by
varying the Lagrangian and subsequently finding the
Noether current as a function of an assigned vector field.
By writing the corresponding Noether charge, it has been
shown that, for a static blackhole, the first law of thermo-
dynamics can be satisfied and the entropy may be expressed
by integrating the Noether charge over a bifurcation surface
of the horizon. In so doing, one must choose the assigned
vector field to be a horizon Killing vector, which has been
normalized to unit surface gravity, see [6,7].
In order to compute the gravitational entropy of the

nonlocal theory outlined above,we impose aD-dimensional,
static, homogenous and spherically symmetric metric, con-
taining a horizon, of the form

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
D−2: ð11Þ

Thismetric is equally applicable to (A)dSmetric as it is to the
static black hole case, and results in the following entropy
equation,

SW ¼ −8π
I
r¼rH;t¼const

δL
δRrtrt

rD−2dΩ2
D−2; ð12Þ

where the bifurcation surface is at (r ¼ rH), t ¼ const. The
area of the horizon, (AH), is given by integrating over the
(D − 2)-sphere as,

AH ¼
I
r¼rH;t¼const

rD−2dΩ2
D−2: ð13Þ

In the following sections, we first derive the D-dimensional
entropy, corresponding to action Eq. (1), before turning our
attention to the case of a static black hole and, subsequently,
the dS and AdS cases.
By varying the Lagrangian density with respect to the

Riemann tensor in ðr; tÞ directions, as given in Eq. (12), one
may compute the entropy of the gravitational system
described by the action Eq. (1) and corresponding metric
Eq. (11), as follows

SW ¼ AH

4GD
½1þ αð2F 1ð□ÞR − F 2ð□Þ × ðgrrRtt þ grrRrrÞ

− 4F 3ð□ÞRrtrtÞ�: ð14Þ

It is convenient, for illustrative purposes, to decompose the
entropy equation into its ðr; tÞ and spherical components.
For a static and axis-symmetric metric Eq. (11), we denote
the (r) and (t) directions by the indices fa; bg; and the
spherical components by fm̄; n̄g. As such, we express the
curvature scalar as follows

6Similar arguments for a propagator were also made in
Refs. [15] before ours.

7In principle one can take að□Þ ¼ eð−□=M2Þn , where n is an
integer, but awrong choice of sign for instanceað□Þ ¼ e−ð−□=M2Þn

would not yield the correct Newtonian potential [14].
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R ¼ gμνRμν ¼ gabRab þ gm̄ n̄Rm̄ n̄; ð15Þ

where gab is a 2-dimensional metric tensor accounting for
the r; t directions and gm̄ n̄ is a (D − 2)-dimensional metric
tensor, corresponding to the angular components, such that

gμνgμν ≡ gabgab þ gm̄ n̄gm̄ n̄ ¼ 2þ ðD − 2Þ ¼ D: ð16Þ

Expanding the scalar curvature into Ricci and Riemann
tensors, along with the properties of the static, spherically
symmetric metric Eq. (11), allows us to express the relevant
components of the entropy equation as follows

grrRtt þ grrRrr ¼ −gttRtt − grrRrr ¼ −gabRab

−4Rrtrt ¼ 2gabRab − 2gabgm̄ n̄Rm̄an̄b: ð17Þ

Substitution into Eq. (14), results in a decomposed
D-dimensional entropy equation for the action (1) in a
static, spherically symmetric background

SW ¼ AH

4GD
½1þαð2F 1ð□ÞþF 2ð□Þþ2F 3ð□ÞÞgabRab

þ2αðF 1ð□Þgm̄n̄Rm̄n̄−F 3ð□Þgabgm̄n̄Rm̄an̄bÞ�: ð18Þ

This decomposed form is particular illustrative in the
context of a static axis-symmetric blackhole.

IV. D-DIMENSIONAL BLACK HOLE ENTROPY

For a spherically symmetric D-dimensional background,
the angular components of the Ricci tensor are given by
Rθnθn ¼ sin−2ðθnÞRθnþ1θnþ1

, where θn runs from 1 to D − 2,
signifying each angular direction. Explicitly, for the given
metric, Rθ1θ1 is given by

Rθ1θ1 ¼ ðD − 3Þ − ðD − 3ÞfðrÞ − rf0ðrÞ ¼ 0; ð19Þ

for a vacuum solution, and solving the straightforward
differential equation, one reveals

fðrÞ ¼ 1 −
μ

rD−3 ; ð20Þ

where μ is a constant of integration. The form of this
function and its associated metric, encompasses the D-
dimensional analogue of the Schwarzschild solution,
known as the Schwarzschild-Tangherlini metric [26], with
μ ¼ 16πGDM

ðD−2ÞAD−2
, [27]; and is an asymptoticallyD-dimensional

Minkowski background.
Thus, when considering a Schwarzschild solution, all

Rθiθi components, will vanish. This is a consequence of the
axisymmetric properties of the solution. Therefore, the
entropy of a D-dimensional static and spherically sym-
metric metric with a horizon, yields:

SW ¼ AH

4GD
½1þ αð2F 1ð□Þ þ F 2ð□Þ þ 2F 3ð□ÞÞgabRab�:

ð21Þ

Combining the above with the constraint given in Eq. (10),
results in the gravitational entropy of the modified sector
vanishing entirely. Thus, the D-dimensional blackhole
entropy corresponding to action Eq. (1) is given solely
by the Bekenstein-Hawking area law

SW ¼ AH

4GD
: ð22Þ

This simple observation ensures that, in the context of a
static, spherically symmetric metric, which asymptotes to
Minkowski, the holographic nature of gravity is preserved
in the IR. The higher-order corrections to the UV do not
affect the gravitational entropy stored on the horizon, as
long as the only propagating degrees of freedom are the
massless graviton. To some extent, one may be able to
conjecture that the area-law of gravitational entropy is
purely an IR concept of nature in such circumstances.
This is a powerful result. For instance, any arbitrary fðRÞ

theory of gravity would contribute toward the gravitational
entropy for the above choice of metric. We can understand
this very simply because such a class of theory would
induce an extra scalar propagating degree of freedom other
than the massless graviton, which would contribute toward
the gravitational entropy.
In some sense, there is an intriguing connection between

propagating degrees of freedom and the gravitational
entropy at the horizon, at least in the context of a static,
spherically symmetric background, which asymptotes to
Minkowski. This elegant result may not hold for a (A)dS
background as we shall see below, since the form of the
propagator for infinite derivative theory of gravity will be
different for dS and AdS compared to Minkowski.

V. D-DIMENSIONAL (A)dS ENTROPY

We now turn our attention to another class of metrics
which contain a horizon, such as the (A)dS metrics, where
the D-dimensional nonlocal action Eq. (1) must now be
appended with a cosmological constant Λ to ensure that
(A)dS is a vacuum solution.

Itot ¼ 1

16πGD

Z
dDx

ffiffiffiffiffiffi
−g

p ½R − 2Λþ αðRF 1ð□ÞR

þ RμνF 2ð□ÞRμν þ RμνλσF 3ð□ÞRμνλσÞ�: ð23Þ

The cosmological constant is then given by

Λ ¼ �ðD − 1ÞðD − 2Þ
2l2

; ð24Þ
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where the positive sign corresponds to dS, negative to AdS,
and hereafter, the topmost sign will refer to dS and the
bottom to AdS. l denotes the cosmological horizon. The
(A)dS metric can be obtained by taking

fðrÞ ¼
�
1 ∓ r2

l2

�
; ð25Þ

in Eq. (11).
Recalling the D-dimensional entropy Eq. (18), we write,

SðAÞdSW ¼ AðAÞdS
H

4GD
½1þ αð2F 1ð□Þ þ F 2ð□Þ þ 2F 3ð□ÞÞ

× gabRab þ 2αðF 1ð□Þgm̄ n̄Rm̄ n̄

− F 3ð□Þgabgm̄ n̄Rm̄an̄bÞ�; ð26Þ

where now AðAÞdS
H ≡ lD−2AD−2, with AD−2 ¼ ð2πD−1

2 Þ=
Γ½D−1

2
�. Given the D-dimensional definitions of curvature

in (A)dS background,

Rμνλσ ¼ � 1

l2
g½μλgν�σ; Rμν ¼ �D − 1

l2
gμν;

R ¼ �DðD − 1Þ
l2

; ð27Þ

simple substitution reveals the gravitational entropy in
(A)dS can be expressed as:

SðAÞdSW ¼ AðAÞdS
H

4GD

�
1� 2α

l2
ff10DðD − 1Þ

þ f20ðD − 1Þ þ 2f30g
�
: ð28Þ

Note that fi0’s are now simply the leading constants of
the functions F ið□Þ, due to the nature of curvature in (A)
dS. In particular, in 4-dimensions, the combination 12f10 þ
3f20 þ 2f30 is very different from that of the Minkowski
space constraint, see Eq. (10), required for the massless
nature of a graviton in any D dimensions around
Minkowski. Deriving the precise form of the ghost-free
constraint in (A)dS, is still an open problem for the above
action Eq. (1).

VI. NONSINGULAR BOUNCING COSMOLOGY
AND HOLOGRAPHIC ENTROPY

One of the applications of seeking (A)dS gravitational
entropy for an infinite derivative theory of gravity is to
understand the initial conditions for the Universe. It has
been known for some time that nonlocality in gravity
resolves the cosmological singularity problem, at least in
the context of homogeneous and isotropic metric, such as
Friedmann-Robertson-Walker (FRW) background [18].

Even small inhomogeneities, i.e. sub- [28] and super-
Hubble [29] perturbations around such a non-singular
bouncing solution are stable.8

A subclass of the full action Eq. (23) in 4 dimensions is
given by9:

IR ¼ 1

16πG4

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2Λþ αRF 1ð□ÞRÞ; ð29Þ

where α > 0 is required to ensure that gravity remains
ghost-free. A reduced action of this type has been studied in
[32], where it was shown in a FRW spacetime (conse-
quently dS), that null rays can be made past-complete
without violating any relevant energy conditions [32], thus
replacing the cosmological singularity with a bounce
at t ¼ 0.
It was shown in [18] that a spacetime may be rendered

ghost-free for the following choice of F ð□Þ:

F 1ð□Þ ¼ e−□=M2 − 1

□=M2
: ð30Þ

A well-defined background solution which would satisfy
the equations of motion for the above action Eq. (29) is
given by [28,29]

aðtÞ ¼ a0 cosh

� ffiffiffiffi
Λ
3

r
t

�
; ð31Þ

where typically Λ1=2 ≈M, i.e. the scale of nonlocality, a0 is
just a constant, and H ¼ l−1 ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

. At the bounce,
_a ¼ 0; ä > 0, where dot denotes time derivative with
respect to physical time t. The Universe loiters around a
dS phase—the duration of which depends on how long the
bouncing phase lasts around t ¼ 0.
It would indeed be worthwhile to ask what the gravi-

tational entropy stored in a cosmological constant
dominated Universe should be, at the time of the bounce.10

From Eq. (28), we read off the entropy equation for the
action Eq. (29) in de Sitter space11

8In order to resolve the cosmological singularity in an
asymptotically Minkowski background, one would need to depart
from the condition að□Þ ¼ cð□Þ in (B20). However, as alluded
to in footnote 1, the resulting propagator must be proportional to
the GR propagator in order to be ghost-free. This is also reflected
in a Friedmann-Robertson-Walker (FRW) background, where
one would require an extra scalar degree of freedom besides the
massless graviton [18].

9This action has also been proposed as a UV complete action
for Starobinsky inflation [30,31].

10In the classical Einstein gravity this question is ill-defined—
without violating the energy conditions it is not possible to avoid
the cosmological singularity.

11In AdS, the equivalent entropy of Eq. (32), is given by

SAdSW ¼ AAdS
H
4G4

ð1þ 24α
l2 Þ.
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SdSR ¼ AdS
H

4G4

�
1 −

24α

l2

�
: ð32Þ

VII. DISCUSSION AND CONCLUSION

The first thing to note here is that modified gravitational
entropy in a cosmological constant dominated background
is diminished with respect to the entropy of Einstein’s
gravity. Furthermore, one notes that for a particular value of
the arbitrary dimensionful quantity α ¼ l2

24
, the entropy

vanishes entirely. This is in contrast to the black hole case
where the UV modified sector does not contribute to the
gravitational entropy, when no extra degrees of freedom are
introduced into the system. In this case, the possibility that
the gravitational entropy will vanish in its entirety, is
allowed for. This is an intriguing outcome of infinite
derivative nonlocal gravity.
It also raises the question: Could our Universe have

begun its journey with a zero gravitational entropy? At the
present moment, we merely speculate on the notion of a
zero gravitational entropy state at the bounce point of
cosmology. A zero entropy state for any system would be
equivalent to realizing a ground state of the system. In our
case, it is the graviton which realizes its ground state in the
presence ofΛ and nonlocal gravity. Could this lead to a new
state of gravity such that our Universe would yield a
condensation of gravitons, at the moment of bounce,
similar to the Bose-Einstein condensate with a zero entropy
state [33]?
Some of these issues are indeed fundamental in nature

and would perhaps open up new vistas toward under-
standing the nature of quantum aspects of gravity in
extreme conditions and indeed, the nature of thermody-
namics around the bounce.
In summary, we first demonstrated that in requiring that

an infinite derivative theory of gravity, up to quadratic in
curvature, is covariant and ghost-free, a constraint on the
form factors F i is revealed, given by Eq. (10). The
relationship holds in any arbitrary D dimensions. This is
an extension of previous works, see [12], where the results
were known to hold only in 4 dimensions. We further
obtained the graviton propagator for such infinite derivative
theory of gravity in D dimensions such that the graviton
remains massless and free from tachyon and ghosts.
We then studied the gravitational entropy at the

horizon for an infinite derivative theory of gravity for a
D-dimensional blackhole solution, i.e. a static and axis-
symmetric metric. We confirmed the area-law of gravita-
tional entropy and reinstated the connection between the
ghost-free condition for gravitons and the holographic
nature of gravity in the IR.
We computed the gravitational entropy for a D dimen-

sions A(dS) metrics for such an infinite derivative theory of
gravity. Unlike the black hole case, the gravitational
entropy due to extra contributions from the UV does not

vanish. As an application, we studied the gravitational
entropy of a nonsingular bouncing cosmology at the
bounce point, where we speculated upon the vanishing
of gravitational entropy in its entirety.

ACKNOWLEDGMENTS

The authors would wish to thank Alex Koshelev and
Tirthabir Biswas for numerous discussions. A. C. is funded
by STFC Grant No. ST/K50208X/1, A. M. is supported by
the STFC Grant No. ST/J000418/1 and S. T. is supported
by a scholarship from the Onassis Foundation.

APPENDIX A: BIANCHI IDENTITIES

The Oðh2Þ part of the full action can be written as in
Eq. (4)

Sq ¼ −
Z

dDx

�
1

2
hμν□að□Þhμν þ hσμbð□Þ∂σ∂νhμν

þ hcð□Þ∂μ∂νhμν þ
1

2
h□dð□Þh

þ hλσ
fð□Þ
2□

∂σ∂λ∂μ∂νhμν
�
: ðA1Þ

where we have,

RF 1ð□ÞR ¼ F 1ð□Þ½h□2hþ hλσ∂σ∂λ∂μ∂νhμν

− 2h□∂μ∂νhμν� ðA2Þ

RμνF 2ð□ÞRμν ¼ F 2ð□Þ
�
1

4
h□2hþ 1

4
hμν□2hμν

−
1

2
hσμ□∂σ∂νhμν −

1

2
h□∂μ∂νhμν

þ 1

2
hλσ∂σ∂λ∂μ∂νhμν

�
ðA3Þ

RμνλσF 3ð□ÞRμνλσ ¼ F 3ð□Þ½hμν□2hμν − 2hσμ□∂σ∂νhμν

þ hλσ∂σ∂λ∂μ∂νhμν� ðA4Þ

it should be noted that no ημνη
μν contractions appear.

Hence, að□Þ, bð□Þ, cð□Þ, dð□Þ and fð□Þ are as follows:

að□Þ ¼ 1 −
1

2
F 2ð□Þ □

M2
− 2F 3ð□Þ □

M2
; ðA5Þ

bð□Þ ¼ −1þ 1

2
F 2ð□Þ □

M2
þ 2F 3ð□Þ □

M2
; ðA6Þ

cð□Þ ¼ 1þ 2F 1ð□Þ □

M2
þ 1

2
F 2ð□Þ □

M2
; ðA7Þ

dð□Þ ¼ −1 − 2F 1ð□Þ □

M2
−
1

2
F 2ð□Þ □

M2
; ðA8Þ
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fð□Þ ¼ −2F 1ð□Þ □

M2
− F 2ð□Þ □

M2
− 2F 3ð□Þ □

M2
:

ðA9Þ

We observe that

að□Þ þ bð□Þ ¼ 0; ðA10Þ

cð□Þ þ dð□Þ ¼ 0; ðA11Þ

bð□Þ þ cð□Þ þ fð□Þ ¼ 0: ðA12Þ

Assuming fð□Þ ¼ 0, we get that að□Þ ¼ cð□Þ and hence
the earlier constraint, 2F 1ð□Þ þ F 2ð□Þ þ 2F 3ð□Þ ¼ 0.
The generalized Bianchi identities give

∇μτ
μ
ν ¼ 0 ¼ ðcþ dÞ□∂νh

þ ðaþ bÞ□hμν;μ þ ðbþ cþ fÞhαβ;αβν; ðA13Þ

from which we can verify the constraints (A10)–(A12).

APPENDIX B: SPIN PROJECTION OPERATORS
IN D DIMENSIONAL MINKOWSKI SPACE

Now the spin projector operators in D dimension
Minkowski space are, see [13,21]

P2 ¼ 1

2
ðθμρθνσ þ θμσθνρÞ −

1

D − 1
θμνθρσ; ðB1Þ

P1 ¼ 1

2
ðθμρωνσ þ θμσωνρ þ θνρωμσ þ θνσωμρÞ; ðB2Þ

P0
s ¼

1

D − 1
θμνθρσ; ðB3Þ

P0
w ¼ ωμνωρσ; ðB4Þ

P0
sw ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

D − 1
p θμνωρσ; ðB5Þ

P0
ws ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p ωμνθρσ; ðB6Þ

where

θμν ¼ ημν −
kμkν
k2

ðB7Þ

and

ωμν ¼
kμkν
k2

: ðB8Þ

we have

að□Þhμν → að−k2Þ½P2 þ P1 þ P0
s þ P0

w�h; ðB9Þ

bð□Þ∂σ∂ðνhσμÞ → −bð−k2Þk2½P1 þ 2P0
w�h; ðB10Þ

cð□Þðημν∂ρ∂σhρσ þ ∂μ∂νhÞ
→ −cð−k2Þk2½2P0

w þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
ðP0

sw þ P0
wsÞ�h; ðB11Þ

ημνdð□Þh → dð−k2Þ½ðD − 1ÞP0
s þ P0

w

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
ðP0

sw þ P0
wsÞ�h; ðB12Þ

fð□Þ∂σ∂ρ∂μ∂νhρσ → fð−k2Þk4P0
wh: ðB13Þ

Hence,

ak2P2h ¼ κP2τ ⇒ P2h ¼ κ

�
P2

ak2

�
τ; ðB14Þ

ðaþ bÞk2P1h ¼ κP1τ ⇒ P1τ ¼ 0; ðB15Þ

ðaþ ðD − 1ÞdÞk2P0
shþ ðcþ dÞk2

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
P0

swh ¼ κP0
sτ;

ðB16Þ

ðcþ dÞk2
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
P0

wshþ ðaþ 2bþ 2cþ dþ fÞk2P0
wh

¼ κP0
wτ: ðB17Þ

So,

ðaþ ðD − 1ÞdÞk2P0
sh ¼ κP0

sτ ⇒ P0
sh

¼ κ
P0

s

ðaþ ðD − 1ÞdÞk2 τ; ðB18Þ

ðaþ 2bþ 2cþ dþ fÞk2P0
wh

¼ κP0
wτ ⇒ P0

wh ¼ κ
P0

w

ðaþ 2bþ 2cþ dþ fÞk2 τ;

ðB19Þ

where we have used the constraints given by (A10)–(A12),
and note that the denominator corresponding to the P0

w spin
projector vanishes so that there is no w-multiplet. Thus, the
D-dimensional propagator is given by

Πð−k2Þ ¼ P2

k2að−k2Þ þ
P0

s

k2ðað−k2Þ − ðD − 1Þcð−k2ÞÞ :

ðB20Þ

Assuming fð□Þ ¼ 0 ⇒ að□Þ ¼ cð□Þ, so as not to
introduce any scalar propagating degrees of freedom, we
find

Π ¼ 1

k2að−k2Þ
�
P2 −

1

D − 2
P0

s

�
: ðB21Þ
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