Labels constructively shape object categories in 10-month-old infants

Nadja Althaus¹
Gert Westermann²

¹Department of Experimental Psychology, University of Oxford, UK
²Department of Psychology, Lancaster University, UK

Keywords: Categorization, eye-tracking, cognitive development

All correspondence should be addressed to Nadja Althaus, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK. Telephone: +44 (0)1865 271 384. E-mail: nadja.althaus@psy.ox.ac.uk

and

Gert Westermann, Department of Psychology, Lancaster University, Lancaster LA1 4YF, UK. Telephone: +44 (0)1524 592 942, Fax: +44 (0)1524 593 744. E-mail: g.westermann@lancaster.ac.uk
Abstract

How do infants’ emerging language abilities impact on their organization of objects into categories? The question of whether labels can shape the early perceptual categories formed by young infants has received considerable attention, but evidence has remained inconclusive. Here, ten-month-old infants (N=80) were familiarized with a series of morphed stimuli along a continuum that can be seen as either one category or two. Infants formed one category when the stimuli were presented in silence or paired with the same label, but they divided the stimulus set into two categories when half of the stimuli were paired with one label and half with another. Pairing the stimuli with two different non-linguistic sounds did not lead to the same result. In this case infants showed evidence for the formation of a single category, indicating that non-linguistic sounds do not cause infants to divide a category. These results suggest that labels and visual perceptual information interact in category formation, with labels having the potential to constructively shape category structures already in preverbal infants, and that non-linguistic sounds do not have the same effect.

Abstract: 180 words

Keywords: categorization; infancy; eye-tracking; cognitive development; language acquisition; language and cognition
Labels constructively shape object categories in 10-month-old infants

One of the central questions in early language and cognitive development is how the emergence of language impacts on infants’ preverbal understanding of the world. In the past 20 years many studies have shown that even very young infants can rapidly form categories on the basis of the static perceptual features of objects (Behl-Chadha, 1996; French, Mareschal, Mermillod, Quinn, 2004; Mareschal & Quinn, 2001; Oakes, Coppage, & Dingel, 1997; Quinn, 2002; Quinn, 2004; Quinn, & Eimas, 1996) and that during the first year of life these early categories are gradually enhanced with more sophisticated knowledge such as feature correlations, sounds, motion, function, and animacy cues (Baigmartner & Oakes, 2011, Burnham, Vignes, & Ihsen, 1988; Pauen & Träuble, 2009; Perone & Oakes, 2006; Younger & Cohen, 1986). Other research has shown that in older children language can shape object categories by enabling the grouping together of perceptually dissimilar objects (such as dogs and whales as mammals) and the separation of similar objects (e.g., bats and birds) into different categories, as well as forming the basis for inferences about hidden object properties (Graham, Kilbreath, & Welder, 2004; Welder & Graham, 2001). There is also evidence that labeling aids object individuation by 12 months (Xu, Cote and Baker, 2005), and even younger infants at 9-10 months expect different labels to refer to different kinds of object (Dewar & Xu, 2007; 2009). However, although several studies have investigated the emerging effect of language on categorization in the first year of life they have yielded little agreement and it is not yet clear how linguistic information interacts with object representations that have developed preverbally.

Two separate questions have been asked about the role of language in infants’ object categorization during the first year of life. The first is whether labels can
facilitate object categorization, that is, whether the labeling of objects enables infants to form categories which they would not form without labels. The second question is whether, like in older children, labels can override nonverbal perceptual information and change the structure of perceptual categories when visual similarity and category labels are in conflict with each other.

Much of the work exploring early categorization is based on the familiarization/novelty-preference procedure (Fantz, 1964) which relies on the fact that infants tend to spend more time looking toward novel than toward familiar objects. In a typical study infants are familiarized with a sequence of objects from one category and are then tested with two new objects, one a novel member of the familiarized category and one from a different category. If infants show a looking preference to the object from the new category it can be concluded that they have formed a category that includes the novel within-category object but excludes the object from the different category. The emerging ability of language to shape categories has been studied in variants of this paradigm in which the objects presented during familiarization are accompanied by auditory labels or other sounds and the effect on infants’ looking preferences during test are investigated.

The question of whether labels facilitate category formation has been addressed in several studies by Waxman and colleagues (Balaban & Waxman, 1997; Booth, Booth, Waxman, & Waxman, 2002; Ferry, Hespos, & Waxman, 2010; Fulkerson & Waxman, 2007; Waxman & Braun, 2005; Waxman & Markow, 1995). For example, in a seminal study Balaban and Waxman (1997) showed that infants who were familiarized with a sequence of pig drawings exhibited at test a looking preference for a rabbit over a novel pig only when the familiarization items were accompanied by a labeling phrase (‘A pig!’) but not a tone sequence. Unsystematic
labeling with different novel words did not lead to category formation in 12-month-olds (Waxman & Braun, 2005). Other studies have aimed to provide evidence that consistent novel labels facilitate categorization in infants at 6 and even 3 to 4 months of age (Fulkerson & Waxman, 2007; Ferry et al., 2010). This and other work has led to the claim that words serve as ‘invitations to form categories’, enabling category formation by highlighting commonalities between objects with the same label (Waxman & Markow, 1995).

However, two considerations appear to weaken this claim. First, as described, many studies have shown that preverbal infants as young as 3 months can form perceptual categories in the absence of any auditory input, and these early categories can be at the basic or superordinate levels (Behl-Chadha, 1996; Quinn & Eimas, 1996). On this basis it seems plausible that, in silence, 9-month-olds may be able to form a perceptual category of the stimuli used in the studies described above, e.g. a category of pigs which is different from rabbits. Since the described labeling studies did not involve a control condition in which the objects were presented in silence it is difficult to assess whether labels had an effect above and beyond purely visual information (Robinson & Sloutsky, 2007a; Plunkett et al., 2008). Sloutsky and colleagues (Sloutsky & Napolitano, 2003; Sloutsky & Robinson, 2008) have aimed to reconcile the results from categorization-in-silence studies and categorization-with-labels studies by arguing that far from facilitating categorization, auditory information instead interferes with visual processing and therefore disrupts category formation when categories would have been formed in silence. According to this ‘auditory overshadowing hypothesis’ labels disrupt category formation less than other auditory stimuli because they are highly familiar auditory signals. Therefore, visual categories that are learned in silence can still be formed in the presence of labels, but tone
sequences usually disrupt visual category formation (Robinson & Sloutsky 2007a, 2007b).

A second limitation of the described labeling studies is that they familiarized infants with only a single category. Even if we assume that labels have a facilitative effect above and beyond presentation in silence, such a paradigm cannot answer the question of whether labels constructively interact with preverbal representations to shape category structures. It is a well-known finding that infants’ attention is maintained for longer in the presence of labels compared to silence (Baldwin & Markman, 1989; Robinson & Sloutsky, 2007; Althaus & Mareschal, 2014). The processes involved in this longer looking period may well have to do with more intensive visual processing, but not necessarily in the sense of using the information given by the label to adjust category boundaries. In familiarization with a single category an increase in novelty preference might simply be the outcome of an effectively prolonged stimulus exposure.

The question of a constructive role of category labels can be addressed by familiarizing infants with two separate but visually similar categories with two distinct labels simultaneously. This is similar to word learning studies that test whether infants can associate words and (individual) objects (Schafer & Plunkett, 1998; Werker, Cohen, Lloyd, Casasola, & Stager, 1998; Mani & Plunkett, 2008). This paradigm can then be used to answer the two questions posed above: if infants do not form categories in silence but are successful under labeling, then labels facilitate category formation. If infants successfully categorise in silence but form different categories under labeling, then labels can serve to override visual information.

Plunkett, Hu and Cohen (2008) reported a two-category study, using a set of stimuli introduced by Younger (1985). These stimuli consisted of two sets of line
drawings of schematic animals based on the same set of four distinctive features. In the ‘broad’ set features were combined such that there were no discernable clusters of stimuli – the eight stimuli formed a single, large category. In the ‘narrow’ set the feature values were correlated (e.g., long-necked animals always had thick tails) and based on these correlations two subcategories of four stimuli could be formed. In Younger’s (1985) study 10-month-old infants were familiarized with the animal drawings in silence. Younger found that the infants were sensitive to the feature correlations and formed a single category for the broad set but two distinct categories for the narrow set. In a separate study Younger & Cohen (1986) showed that 4-month-old infants were not able to make use of feature correlations, indicating that this ability develops between 4 and 10 months of age.

Plunkett et al. (2008) introduced labeling into Younger’s (1985) paradigm. When 10-month-old infants were familiarized using the broad stimulus set and provided with the same label (“Look! Dax!”) for every stimulus, they formed one category, just like in silence. Likewise, when infants were familiarized with the narrow stimulus set and heard two different labels corresponding to the two subcategories, they formed two categories, again like in the silent case. However, importantly, when infants saw the narrow stimulus set but heard the same label for each stimulus infants formed a single category. Plunkett et al. argued that in this case the labels served to override visual categorization, leading the infants to merge two perceptually distinct categories when they shared a common label.

However, these results leave open an alternative explanation: forming two categories in the ‘narrow’ condition depended on infants’ ability to detect feature correlations, an ability that develops between 4 and 10 months of age. It is possible that the added complexity of the condition in which visual information (two
categories) and labels (one label) were in conflict led to overloading the infants, resulting in a more shallow processing of the visual information. This explanation is compatible with results showing that when complex stimuli (e.g., conflicting visual and auditory information) overload the learning system infants can regress to an earlier level of processing – here, that of 4-month-olds (Cohen, Chaput & Cashon, 2002). In this case, instead of the infants constructively using label information to merge two distinct categories they could merely have failed to detect the feature correlations that define the two categories in the first place and, like 4-month-olds, form a single category of the visual stimuli. One way to exclude the possibility that labels merely lead to shallower object processing is to conduct a study with a similarly ambiguous visual stimulus set which is in the absence of labels perceived as a single large category, but which is parsed into two subsets when two distinct labels are presented. In other words, distinct labels cause infants to divide a large category, rather than a single label causing them to merge two sets of objects. In this case deeper processing is a prerequisite for the change in category boundary since a more detailed representation is necessary for subcategory formation. Such a result would constitute evidence for a constructive effect of labels. This is the approach taken in our study.

In sum, previous work with infants at the transition to language has not provided a coherent picture of how nonlinguistic and linguistic information interact in category formation. In particular, the central question of whether labels can guide the structure of object categories in preverbal infants remains open. Demonstrating such a constructive role requires the following methodological considerations: first, a labeling condition should be contrasted with a silent condition to ensure that labels have an effect beyond the visual information alone. Second, infants should be
familiarized with a stimulus set that allows parsing into one or two categories to show that labels can shape the encoded category structure in a way that goes beyond merely enhancing attention. Third, the task should be designed so that category formation in the presence of labels cannot be explained by the processing of less visual detail than when familiarized in silence. A fourth point concerns the difficulty of ensuring that looking preferences represent novelty, rather than familiarity preference. Previous work has demonstrated that infants' mode of preference can change as a function of task complexity or duration of exposure (Hunter, Ames, & Koopman, 1983; Roder et al., 2000). Since the addition of (one or more) auditory stimuli arguably changes task complexity, a test trial including a visually novel test item is necessary to establish whether infants display a novelty preference (longer looking at the novel test item) or a familiarity preference (shorter looking at the novel stimulus; Cohen, 2004; Oakes, 2010). Note that Plunkett et al. (2008) did not include a novel test stimulus, which complicates interpretation of their results.

Here, we describe a study based on these considerations. We presented infants with a set of objects that we expected to be perceived as a single category when viewed in silence, and we asked whether pairing half of the objects with one label and half with another label would lead infants to split the objects into two categories according to their labels. This would require infants to use more detail for categorization with labeling than in the silent condition.

We constructed a set of stimuli by morphing a drawing of one novel animal into a drawing of a distinct second animal in a fixed number of steps, thus obtaining a set of perceptually equidistant stimuli over which it was possible to define categories as well as subcategories (at either end of the morphing continuum) and their averages.
The overall logic of our study followed that of Younger (1985), but differences between objects were here not based on the variation in distinct features but on a holistic difference achieved by the morphing process. Infants were familiarized with eight objects, either in silence, with one or with two labels. If labels serve to constructively shape category structure infants should form a single category comprising all stimuli when familiarized in silence or when accompanied by a single label, but form two categories when two distinct labels are provided.

Experiment 1

Method

Participants

Sixty-three full-term 10-month-old infants participated in this study (mean age: 302 days, 28 girls). Infants were randomly assigned to either a silent (N=20), a two-label (N=20), or a one-label (N=23) condition. One additional infant was tested but excluded due to technical problems. Infants were recruited on a voluntary basis via local advertisements. Informed consent was received from the caregivers, and infants received a small gift for their participation.

Stimuli and Design

Visual Stimuli
The familiarization and test stimuli are depicted in Figure 1. All stimuli were obtained by morphing Stimulus 1 into Stimulus 19 in 18 steps using the software MorphMagic. To ensure discriminability of the individual exemplars, only every second morphed image was used in the familiarization set. The gap between stimuli 7 and 13 ensured that there was a visual grounding for a division into two separate subcategories (stimuli 1, 3, 5, 7 and 13, 15, 17, 19, respectively). Choice of test stimuli followed the design of Younger’s (1985) study. It was assumed that infants forming one broad category would find the overall average stimulus (here, stimulus 10) less novel than more peripheral stimuli (here, stimuli 4 and 16). Conversely, infants who form two categories should find the overall average more novel because it falls between the categories, but should not show preference for the peripheral stimuli because they now fall into the center of each of the two categories. A novel test animal was constructed to establish whether infants were showing novelty or familiarity preference at test.

The familiarization stimuli were depicted against a white background and presented either on the left or the right half of the screen (counterbalanced such that no regular structure emerged). Stimuli subtended approximately 16 degrees visual angle on screen. About half of the infants saw the stimuli facing left, the other half saw them facing right. The test stimuli were depicted pairwise facing in the same direction as the familiarization stimuli, either depicting the overall average (10) next to one of the subcategory averages (4 or 16), or depicting one of the average objects (10, 4 or 16) alongside the novel animal. This novel animal had been constructed to have the same configuration as the overall average (10), but different individual features. Features were chosen to correspond to those that were relevant to
discriminate original animal drawings that served as the basis for morphing (e.g. tail, feet, ornament on tummy, wings, head shape), but looked different enough to be easily discriminable.

========== Figure 1 here ===========

Auditory stimuli

The auditory stimuli were the phrases “Look, a geepee!” and “Look, a boota!” recorded digitally from a female native speaker of British English in enthusiastic, infant-directed speech. The label (“A geepee!”/ “A boota!”) was repeated twice, thus occurring three times per stimulus. The onset of the first auditory phrase was at 2000 ms after the onset of the visual stimulus, with the labeling phrase (“A geepee/boota!”) repeated at 5000 and 8000 ms after stimulus onset. In the two-label condition, half of the infants heard the label “geepee” with stimuli 1, 3, 5, 7 and the label “boota” with stimuli 13, 15, 17, 19, and vice versa for the other half of the infants. In the one-label condition, half (N=12) the infants heard “geepee” paired with all eight stimuli, and the other half heard “boota” with all eight stimuli.

Procedure

After a warm-up phase during which the experimenter explained the procedure and obtained written consent, infants were seated in the parent’s lap at a distance of approximately 65 cm from a 22-inch screen. A 9-point calibration sequence was used to calibrate a Tobii X120 remote eye tracker (sampling frequency: 120 Hz, system
accuracy: 0.5 degrees). During this procedure, a small animated object with accompanying sound was displayed at 9 locations (left, center and right for top, middle and bottom row) on the screen. Calibration was repeated up to 3 times, or until all 9 points had been calibrated successfully.

After the calibration procedure infants were presented with the 8 familiarization stimuli, shown in a pseudo-randomized order for on average 9750 ms (SE=22) each. Individual sequences were obtained by using 3 latin squares of 3 pseudo-random sequences, ensuring that no more than 3 consecutive stimuli were from the same subcategory. In the label conditions infants heard the labels as described above. Prior to the first trial, and in between all following trials, small animated video clips were shown at the center of the screen to direct infants’ attention to this location. Their duration varied between 800 ms and 1800 ms.

The familiarization phase was followed by a test phase, consisting of 6 trials of 10 s each. The first and second, third and fourth, and fifth and sixth test trials were identical apart from left/right positioning of the test stimuli. The first two test trials always paired the overall average (stimulus no. 10) with one of the subcategory averages (nos. 4 or 16, counterbalanced). The order of test trials 3/4 and 5/6 was counterbalanced: these presented the infant with (a) the novel item paired with the overall average, and (b) the novel item paired with the same subcategory average that was used on test trials 1 and 2 (i.e. each child either saw the subcategory average no. 4 on test trials 1, 2 and either 3 and 4 or 5 and 6, or they saw subcategory average no. 16 on these four trials). The reason for always presenting the pair of overall average and subcategory average at the start of the test phase was that this is the most sensitive contrast and needs to be presented while infants are at the peak of familiarity with the target stimuli. In particular, there is the possibility that once the novel
stimulus has been presented the overall average and subcategory averages will appear equally uninteresting to the participant, regardless of the category structure established by the end of familiarization.

The location (left/right) of the items on test trials 1, 3 and 5 was counterbalanced across infants. The test trials were silent in all conditions.

Results

Looking time during familiarization

In order to assess whether familiarization had occurred we compared average looking times during the first four and the last four familiarization trials in all three conditions. The data were submitted to a mixed 2-way ANOVA with between-subjects factor Condition (silent, two-label, one-label) and within-subjects factor Block (Block 1: trials 1-4 vs. Block 2: trials 5-8). There were significant main effects of Condition ($F(2,60)=15.357$, $p<.001$) and Block ($F(1,60)=14.563$, $p<.001$). The interaction between Condition and Block was not significant ($F=0.087$, $p=.917$). Post-hoc tests confirmed that infants in both label conditions had longer looking times than those in the silent condition (Two-label: $M=8275$ ms, $SE=280$; One-label: $M=8274$ ms, $SE=271$; Silent: $M=6249$ ms, $SE=271$, both $p<.001$, Bonferroni-adjusted). Looking times between one- and two-label conditions did not differ significantly ($p=.59$). This result is consistent with previous studies showing longer looking under auditory input than in silence (Robinson & Sloutsky, 2007). Further, average looking times during Block 1 ($M=7763$ ms, $SE=160$) were higher than those during Block 2 ($M=7113$ ms, $SE=189$; $p<.001$, Bonferroni-adjusted), as demonstrated by a paired t-test on the
collapsed data. This indicates that infants across all conditions had become familiarized by the end of the familiarization phase.

--- Table 1 here ---

Preferential looking during test trials

Test trial results are given in Table 1. For the first two test trials, a preference score for the overall average object was obtained for each infant by dividing the total looking time at the overall average object (no. 10) by the total looking time on that trial. For the remaining four test trials, a novelty preference score was obtained for each infant by dividing the looking time at the novel object by the total looking time on that trial. Preference scores for each pair of test trials (1 and 2, 3 and 4, 5 and 6) were calculated as the average between the two.

A mixed effects ANOVA with between-subjects factor Condition (silent, two-label, one-label) and within-subjects factor Test trial (novel vs. overall average, novel vs. subcategory average) revealed a significant interaction of Condition and Test trial \((F(2, 59) = 4.96, p = .010)\). The main effects of Condition \((F(2, 59) = .467, p = .629)\) and Test trial \((F(1,59) = .013, p = .91)\) were not significant. Planned comparisons against chance (0.5) were conducted for each test trial in order to test whether infants preferred one of the stimuli over the other. In the silent condition infants showed no preference for either stimulus when the subcategory averages and overall average stimuli were paired \((t(19)=0.67, p=.512)\). Similarly, there was no looking preference in the pairing of the novel stimulus and the subcategory average \((t(18)=1.1, p=.27)\). However, infants exhibited a preference for the novel stimulus when it was paired...
with the overall average stimulus \(t(18)=4.36, p<.001, d = 1.0\). This looking pattern indicates that the overall average, but not the subcategory averages, were more familiar than the novel exemplar. These results therefore indicate that in the silent condition infants formed a single category.

In the two-label condition, results for test trials 1 and 2 again showed no preference for either item \(t(19)=0.279, p=.78\). For the remaining test trials, the results from the silent and one-label conditions were reversed: infants showed no preference when the overall average and novel item were paired \(t(19)=0.79, p=.43\), but had a preference for the novel stimulus when paired with the subcategory averages \(t(19)=4.17, p<.001, d = .94\). These results indicate the formation of two categories in the two-label condition, resulting in the subcategory averages being perceived as familiar and the overall average stimulus as novel.

Results in the one-label condition resembled the silent condition: with no preference on the first two test trials \(t(22)=0.97, p=.34\), infants exhibited a significant novelty preference for the novel test item when it was paired with the overall average \(t(22)=2.57, p=.017, d = .54\), but not when it was paired with the subcategory averages \(t(22)=0.438, p=.66\). As in the silent condition, this pattern of results indicates that the infants formed one category when all objects were paired with the same label.

Taken together, these results indicate that infants in the silent condition and in the one-label condition formed a single category comprising all eight familiarization items, but they formed two categories when the objects were paired with two labels.

Discussion
Experiment 1 showed that infants formed a single category when objects were presented in silence and when they were paired with a single label. In contrast, infants split this category in two when the objects were paired with two distinct labels. Infants who were familiarized with the visual stimuli in silence appeared to accept a large variety of head shapes, leg types and body posture as possible realizations of the target category. Infants’ preferences during the test phase indicated that in the silent condition they integrated all of the different familiarization exemplars into a single category representation whose prototype was the overall average (see also Younger & Gotlieb, 1988, for evidence that infants form prototype representation for perceptual categories). In contrast, infants distinguished between the two subsets at either end of the morphing continuum when the same objects were accompanied by two different labels, forming two more restrictive, exclusive categories. If this result were due to labels merely enhancing visual processing overall (i.e. the trials simply being more interesting in the presence of speech) we would expect two categories to be formed regardless of how many different labels accompanied the visual stimuli. This is not the case – when a single label was presented with all stimuli infants formed just one large category. Our results therefore suggest that infants tracked the correspondences between labels and object features. Furthermore, the current pattern of results is incompatible with the auditory overshadowing hypothesis which predicts that visual processing in the presence of labels is less detailed than in silence: in order to form two categories infants had to process more detailed visual information to enhance the perceptual difference between the objects in the two subcategories. In particular our findings indicate that the condition with the largest amount of novel auditory stimulation (two novel labels) leads to the most detailed representation (two separate
subcategories). Together, these results therefore provide unequivocal evidence that labels can have a constructive role in category formation in infants prior to their first productive use of language.

One open question with regard to the infants’ performance on the test trials is why infants in all three conditions did not exhibit any preference on the first two test trials contrasting the overall and subcategory averages. A possible explanation is that novelty preference depends on a sort of “feature pop-out”. Since the stimuli were obtained using morphing, there were no clearly identifiable feature differences between stimuli presented side by side, i.e. between the overall average stimulus (no. 10) and the two subcategory averages (no. 4 or 16), respectively. It seems plausible that the lack of clear novelty could have prompted the infants to compare stimuli, resulting in overall similar looking times to both test items. Specifically, none of the stimuli used here (the overall average no. 10, and the subcategory averages no. 4 and 16) violate the familiarized category structure. Even if an infant has formed two categories during familiarization and the overall average (no. 10) is therefore perceived as relatively novel, the infant could attempt to integrate this stimulus into the previously constructed category structure by merely extending the category boundaries, without needing to completely re-form the categories. Similarly, if the infant has formed one category, the subcategory average is not implausible as a category member but merely further away from the overall category average.

Infants’ looking patterns on test trials containing a novel stimulus suggested competition effects between the two test stimuli presented side-by-side: pop-out of the features of the novel stimulus creates a novelty effect, and if the other stimulus is perceived as highly familiar it presents no competition to the novel item. In contrast, if the other item is perceived as less familiar infants will spend time exploring the
novel stimulus but also scan the other item because more processing is necessary to incorporate it into the established category. In other words, competition between the test items, or lack thereof, here reveals how different category boundaries have been formed.

One remaining open question is whether the observed constructive effect for labels in category formation is specific to language or if it extends to other forms of auditory input. In the work by Waxman and colleagues (Balaban & Waxman, 1997; Ferry et al., 2010; Fulkerson & Waxman, 2007) labels were contrasted with tone sequences and differential effects were found. However, as discussed above, these differences were interpreted by Sloutsky and colleagues as being due to the different familiarity of speech sounds and non-speech sounds. Even in studies that did not find positive effects for labels, non-linguistic sounds had a more detrimental impact than labels (Robinson & Sloutsky, 2007). Finally, the study by Plunkett et al (2008), which is the so far best controlled study, did not involve a non-speech sound condition. Therefore, in order to establish whether labels take a special role in shaping visual categories we tested an additional group of infants on a non-linguistic sound condition.

Experiment 2

The design and procedure for this experiment were identical to the 2-label condition in Experiment 1, except that instead of auditory labels non-language sounds were played.

Method
Participants

Seventeen 10-month-old infants participated in this study (mean age: 300 days, 8 girls). Six further infants were excluded due to fussiness (1) or technical problems (5).

Materials

The visual stimuli were the same as in Experiment 1. Two sounds were used: a tingling bell sound and a wooden xylophone tone sequence. Each sound lasted 1 s. Each sound was played three times during the presentation of a picture, starting at 2000 ms, 5000 ms and 8000 ms after stimulus onset. Half of the infants heard the bell sound with stimuli 1, 3, 5, 7 and the xylophone sound with stimuli 13, 15, 17, 19, and vice versa for the other half of the infants.

Procedure

The procedure was identical to Experiment 1.

Results

Familiarization

A paired t-test on average looking times for Blocks 1 and 2 of familiarization (Block 1: Trials 1-4, Block 2: Trials 5-8) revealed that there was a trend for infants to begin to habituate by the second block of familiarization (Block 1: $M = 6937$ ms, $SE = 446$; Block 2: $M = 5999$ ms, $SE = 573$, $t(16) = 2.033$, $p = .059$). An ANOVA on the average looking time per trial was conducted to compare looking time during
familiarization in Experiment 2 with the conditions of Experiment 1. This revealed a significant effect of Condition \(F(3,76) = 10.13, p = <.0005\). Post-hoc comparisons showed that infants in Experiment 2 spent approximately equal amounts of time gazing at the stimuli \((M = 6468 \text{ ms}, SE = 336)\) as those in the silent condition of Experiment 1 \((p > .99)\), i.e. they exhibited shorter familiarization looking times than the infants in the labeling conditions (one label: \(p = .023\); two labels: \(p = .001\)).

Test trials

Looking preference scores for all test trials are shown in table 1. Test trials and calculation of looking preferences were the same as in Experiment 1. For test trials 1 and 2 (overall average vs. subcategory average) a the preference score did not differ from chance \((t(16) = 1.48, p = .16, \text{two-tailed})\). In test trials pairing the novel with the overall average stimulus there was a marginally significant preference for the familiar item, i.e. the overall average, over the novel item \((t(16) = 2.01, p = .061, d = -.49)\). On the test trials pairing the novel stimulus with a subcategory average infants did not reliably prefer either stimulus on these two test trials (t-test on average preference scores: \(t(16) = 1.13, p = .28\)). In summary, infants’ results differed from those found in Experiment 1. The marginal familiarity preference exhibited when the novel stimulus was paired with the overall average stimulus indicates that infants formed a single category in the two-tone condition of Experiment 2.

Discussion
The two-label condition in Experiment 1 revealed that pairing objects from a single category with two labels led infants to split the category into two separate categories. Pairing the visual stimuli with two non-linguistic tones did not have the same effect. The only (marginal) preference shown by the infants was one for the overall average when it was paired with the novel item. This looking pattern can only be interpreted as a familiarity preference. As described above, familiarity preferences can occur when the familiarization stimuli are complex and/or infants have not become sufficiently familiarized during training.

In line with our interpretation of the results in Experiment 1, we have to interpret the familiarity preference here as indicative of infants forming a single category over the familiarization stimuli. This means that despite the presence of two distinct auditory stimuli infants are not persuaded that there are two visual categories – in contrast to the label condition, where their category representation was guided by the structure provided by the labels.

This result is compatible with the auditory overshadowing hypothesis in the sense that infants (a) seem to struggle with category formation, as indicated by the marginal results on familiarization and test preference, and (b) do not use the auditory stimuli to group the visual objects. Non-linguistic tone stimuli, unlike labels, therefore appear to interfere with infants’ processing of visual material. While category formation *per se* does not appear to be disrupted in Experiment 2, the finding is consistent with results from previous studies that showed that non-linguistic sounds do not facilitate category formation (Balaban & Waxman, 1997; Fulkerson & Waxman, 2007; Ferry et al., 2010, Robinson & Sloutsky 2007a; Sloutsky & Robinson, 2008).
General Discussion

Our aim in this paper was to investigate how object labels interact with visual information during category formation in preverbal 10-month-old infants. While a body of literature exists that has addressed this question we argued that methodological considerations left the results of these studies inconclusive. We argued that in order to investigate whether labels can constructively guide category formation and override visual similarities in young infants it is necessary to a) familiarize infants on a set of stimuli that could be parsed into one or two categories, b) test infants under varying labeling conditions (silence, one and two labels), c) include a novel test stimulus to ascertain whether at test infants show a novelty or a familiarity preference, and d) construct the stimulus set so that the effects of labels cannot be explained as processing less visual detail than without labels. We presented a paradigm that incorporates these considerations, familiarizing infants on a stimulus set that could be grouped into one large or two smaller categories. We found that on presentation in silence or when all objects were paired with the same label, infants formed a single category. In contrast, when half the objects were paired with one label and the other half with another, infants formed two separate categories in line with how the objects had been labeled. Conversely, when the objects were paired with non-linguistic sounds infants formed a single category, but exhibited familiarity preference. These results present clear evidence that in infants at the transition to language, labels interact with nonlinguistic information to constructively shape categories, and that these effects are specific to linguistic labels and do not extend to non-speech sounds.
The results of our studies reconcile arguments that sounds act to overshadow visual processing and that labels have a constructive effect on category formation. The results of Experiment 2 suggest that non-linguistic tones indeed interfere with visual processing so that infants did not form a category in the tone condition when in silence they did. However, whereas Sloutsky and colleagues (Sloutsky & Napolitano, 2003; Sloutsky & Robinson, 2008) argue that labels merely interfere less with visual processing than non-linguistic sounds but contribute nothing to category formation, our Experiment 1 clearly shows that labels do in fact constructively affect categorization. Therefore, depending on their nature, auditory signals can both interfere with and shape visual categories. Furthermore, recent results also indicate the temporal relationship between presentation of visual and auditory stimuli matters so that interference is especially strong when visual and auditory stimuli have a common onset (Althaus & Plunkett, 2015).

Some authors have discussed the role of labels in terms of whether they function as features that increase similarity between objects in a bottom-up manner (Sloutsky et al., 2007; Gliozzi et al., 2009) or whether they act in a referential manner, serving as “names” (Waxman & Gelman, 2009). Waxman & Markow (1995) described the role of labels as ‘invitations to form categories’ by highlighting common visual features, suggesting a top-down role for labels. Likewise, Waxman & Gelman (2009) argued that words are “referential” in nature, and as such are more than associates or perceptual features. Gliozzi et al. (2009), in contrast, demonstrated that even results such as those presented in Plunkett et al. (2008), which show a change in category formation based on label-object correlations, can be simulated with a connectionist model that treats labels as features.
In our study, labeling caused infants to use more restrictive criteria for a classification of two items as “similar” and effectively producing two smaller categories. The label therefore serves not so much as a mere additional feature, but instead it modulates the way in which visual features are used. As such our interpretation of the labels’ role is somewhere between the extremes of “labels as features” and “labels as names” – labeling has a supervisory function in the sense that it modulates the processing of similarity, but whether this is enough to establish a “referential” relationship between the labels and objects in these infants at just 10 months remains open. This interpretation is in line with recent computational models (Althaus & Mareschal, 2013; Westermann & Mareschal, 2014) that simulate the role of words in the context of categorization. Althaus & Mareschal (2013) demonstrated how early interactions between word learning and learning about objects led to improved category representations compared to isolated learning, without labels explicitly acting as supervisory signals. The model by Westermann & Mareschal (2014) shows how labels can affect the similarity relations between objects in a top-down manner by warping the perceptual similarity space to increase perceptual distance between objects that have different labels. Such a mechanism could also account for the results presented here.

Our findings fit well with recent theories about interactions of language with other domains. While the strong Whorfian hypothesis of linguistic determinism (Whorf, 1956) has been largely discounted over the last few decades, newer research is gradually establishing links between language processing and perception or cognition in adult processing (Boroditsky, 2001; Lupyan, Rakison & McClelland, 2007; Lupyan, 2008a, b). In particular, the “label feedback hypothesis” (Lupyan, 2012) suggests that language modulates cognitive processes, benefitting for example
visual search or recognition memory (Lupyan, 2008a, b). It seems likely that the effects we observe in the experiments presented here reflect early stages of these interactions between language and cognition.

To summarize, the studies presented in this paper show that labels have a constructive impact on category formation in preverbal infants: when a set of objects is accompanied by labels 10-month-old infants adapt their category structure in correspondence to how the objects are labeled. This ability necessitates a deeper processing of objects when they are paired with labels than when presented in silence, with different labels highlighting visual differences between objects. Our results further indicate that the effect of labels is not merely to enhance attention but that it is a constructive process in the sense that infants’ categorization behavior was contingent on the number of labels they heard and that they aligned their categories with the labels. Object labels are thus powerful stimuli that are able to direct infants’ attention to different visual dimensions in the construction of visual categories.

Acknowledgements

This work was supported by Economic and Social Research Council UK grant RES-000-22-3394 awarded to Gert Westermann. We are grateful to the parents and infants who took part in this study.
References

French, R. M., Mareschal, D., Mermillod, M., Quinn, P.C. (2004). The role of bottom-up processing in perceptual categorization by 3-to 4-month-old infants: Simulations and data. *Journal of Experimental Psychology: General, 133*(3), 382–397.

Footnotes

1. In order to ensure that results were not affected by either the order of test trials or the particular subcategory average used as the test item (4 vs. 16), we subjected the data from Experiments 1 and 2 to a mixed effects ANOVA with repeated factor Trial Type (novel vs. overall average, novel vs. subcategory average) and between-subjects factors Condition (silent, one label, two labels, two tones (Exp. 2)), Trial Order (overall average first, subcategory average first) and Subcategory Average No. (4, 16). This revealed a significant interaction between Trial Type and Condition ($F(3, 63) = 4.765, p = .005$) and a main effect of Condition ($F(3,61) = 3.441, p = .022$). No other effects were significant, all Fs < 1.81, ps > .15. We therefore conclude that there were no effects of test order and subcategory average number.
Tables

Table 1. Average preference scores obtained in the test trials of Experiments 1 and 2.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Overall average vs. Subcategory average (10 vs. 4/16)</th>
<th>Novel vs. Overall average (Novel vs. 10)</th>
<th>Novel vs. Subcategory average (Novel vs. 4/16)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SE)</td>
<td>t</td>
<td>M (SE)</td>
</tr>
<tr>
<td>Silent</td>
<td>.52 (.02)</td>
<td>0.67</td>
<td>.60 (.02) **</td>
</tr>
<tr>
<td>Two-label</td>
<td>.51 (.03)</td>
<td>0.26</td>
<td>.52 (.03)</td>
</tr>
<tr>
<td>One-label</td>
<td>.52 (.02)</td>
<td>0.8</td>
<td>.55 (.03)*</td>
</tr>
<tr>
<td>Two-tone (Expt. 2)</td>
<td>.55 (.04)</td>
<td>1.48</td>
<td>.46 (.02)(*)</td>
</tr>
</tbody>
</table>

Note. Proportions given were directed at the underlined stimulus. Averages marked with ** were significant at the .001-level, averages marked with * were significant at the .05 level.
Table 2. Average looking times obtained in the test trials of Experiments 1 and 2.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Overall average vs. Subcategory average (10 vs. 4/16)</th>
<th>Novel vs. Overall average (Novel vs. 10)</th>
<th>Novel vs. Subcategory average (Novel vs. 4/16)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M (SE))</td>
<td>(M (SE))</td>
<td>(M (SE))</td>
</tr>
<tr>
<td>Silent</td>
<td>2691 (276)</td>
<td>3530 (347)</td>
<td>3203 (395)</td>
</tr>
<tr>
<td>Two-label</td>
<td>3326 (341)</td>
<td>3601 (268)</td>
<td>3018 (281)</td>
</tr>
<tr>
<td>One-label</td>
<td>3471 (277)</td>
<td>3265 (260)</td>
<td>2824 (257)</td>
</tr>
<tr>
<td>Two-tone (Expt. 2)</td>
<td>3004 (333)</td>
<td>2991 (226)</td>
<td>2748 (336)</td>
</tr>
</tbody>
</table>

Note. Averaged looking times are given in milliseconds and were directed at the underlined stimulus.
Figure captions

Figure 1. Familiarization (top row) and test (bottom rows) stimuli. Test stimuli fall into the center of the familiarization stimuli continuum (no. 10) or into the center of each subcategory (nos. 4 and 16). There is also a novel stimulus that is visually distinct from the familiarization stimuli.
Figures

Figure 1

![Diagram of figures with labels: 1, 3, 5, 7, 13, 15, 17, 19, 4, 10, 16, Novel Stimulus]