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We show that topologically protected defect states can exist in open (leaky or lossy) systems even when
these systems are topologically trivial in the closed limit. The states appear from within the continuum, thus
in the absence of a band gap, and are generated via exceptional points (a spectral transition that occurs in
open wave and quantum systems with a generalized time-reversal symmetry), or via a degeneracy induced
by charge-conjugation symmetry (which is related to the pole transition of Majorana zero modes). We
demonstrate these findings for a leaking passive coupled-resonator optical waveguide with asymmmetric
internal scattering, where the required symmetries (non-Hermitian versions of time-reversal symmetry,
chirality, and charge conjugation) emerge dynamically.
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Fundamental symmetries appear in a new light when
they are discussed within the context of open systems,
where particles escape via leakage to the outside world or
are absorbed within the material. In these situations one
typically encounters decaying normal modes that can be
described via the complex eigenfrequencies ωn of an
effective non-Hermitian Hamiltonian, with H ≠ H†. This
description applies, e.g., on the level of the Helmholtz
equation for dielectric microresonators or photonic crystals,
where leaky losses enter through the boundary conditions
while absorption renders the refractive index complex [1].
Such systems still obey reciprocity H ¼ HT, while the
antiunitary time-reversal symmetry T HT ¼ H� ≠ HT ¼
H is in general broken.
There has beenmuch recent interest in open settingswhere

a generalized antiunitary symmetry PT HPT ¼ H still
exists [2–6]. Here P stands for parity, in this context under-
stood to be a unitary involution with P2 ¼ 1 that is often
realized by a geometric reflection or inversion. True PT
symmetry requires amplifying (active) regions, arranged such
that they are mapped via P onto corresponding absorptive
parts, while leakage needs to be negligible. Eigenfrequencies
ωn then are either real or occur in a complex-conjugated pair
[7], giving rise to a novel type of mode competition in lasers
[8–12]. The more general case of a symmetry

PT ðH þ iγÞPT ¼ H þ iγ ð1Þ

with a finite offset γ also encompasses suitably arranged
passive systems whereP now transforms between regions of
different losses, while uniform leakage is also admitted. The
constraints on the spectrum then apply to the shifted frequen-
ciesΩn ¼ ωn þ iγ, which are either real or appear alongwith
a partner Ω�

n. Among the many applications, these features
can be used, e.g., to engineer band structures in periodic

mediawhere the dispersion is still effectively real or possesses
some well-defined additional complex branches [13–16].
The advent of topological insulators and superconduc-

tors [17,18] has taught us that the classification of univer-
sality classes in terms of time-reversal symmetry is
incomplete. Two related symmetries, chirality [19,20]
and charge conjugation [21], need to be accounted for to
identify band structures associated with finite topological
quantum numbers [22], with the most prominent conse-
quence being the formation of spatially localized defect
states at interfaces (points, edges, or surfaces) between
topologically distinct domains. In particular, a unitary
chiral antisymmetry XðH −Ωð0ÞÞX ¼ −ðH − Ωð0ÞÞ enfor-
ces the spectrum to be symmetric around a central
frequency Ωð0Þ, giving rise to frequency pairs Ωð0Þ �Ωn.
A similar spectral constraint is also enforced by the
antiunitary charge-conjugation symmetry C ¼ T X that
can appear in superconducting systems; this yields pairs
Ωð0Þ þΩn, Ωð0Þ −Ω�

n and stabilizes unpaired resonances
(broadened Majorana zero modes) at ReΩn ¼ 0 [26–28].
Within this conventional classification, a necessary require-
ment for topological nontriviality is the existence of a band
gap, into which the defect states then fall. The nascent field
of topological photonics [29–44] has embarked to realize
photonic analogues of these symmetries, while the
(beneficial or detrimental?) role of non-Hermitian loss
and gain has been considered only in settings which are
already topological in the Hermitian limit [44–51].
Here we identify, for the simple example of a coupled-

resonator chain, a mechanism by which topologically pro-
tected defect states can appear in open (non-Hermitian)
systems even when their closed (Hermitian) limit is topo-
logically trivial. The defect states form at an interface of two
regions with different non-Hermiticity, and appear from
the continuum of the band structure via two distinct

PRL 115, 200402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 NOVEMBER 2015

0031-9007=15=115(20)=200402(6) 200402-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.200402
http://dx.doi.org/10.1103/PhysRevLett.115.200402
http://dx.doi.org/10.1103/PhysRevLett.115.200402
http://dx.doi.org/10.1103/PhysRevLett.115.200402


symmetry-protected spectral transitions—where one is asso-
ciatedwithPT symmetry (thus, non-Hermitian time-reversal
symmetry), while the other is associated with PC symmetry
(thus, the analogously generalized charge-conjugation sym-
metry that arises from the simultaneous presence of a chiral
symmetry). Therefore, robust states as desired for topological
photonics can be obtained by combining symmetries with
non-Hermitian effects that go beyond the universal classi-
fication of electronic systems.
Dynamical realization of non-Hermitian parity-time and

charge-conjugation symmetry.—We first describe how the
required symmetries can be implemented in a simple passive
resonator chain, with losses solely provided due to leakage
but without any need of absorption or amplification (which
then also translates to analogous open quantum systems).
This can be achieved in a coupled-resonator optical wave-
guide [52–54]which consists of identical asymmetric cavities
[55], as sketched in Fig. 1(a). Each individual resonator
features two modes—a counterclockwise (CCW) propagat-
ing mode with amplitude an and a clockwise (CW) propa-
gatingmodewith amplitude bn, whichwe group into a vector
ψn ¼ ðan; bnÞT . Resonator arrays in which these two modes
are well decoupled feature in setups that realize photonic
topological edge states in analogy to the quantum-Hall effect
[34,38]. In our setting, however, the internal coupling

between these modes is desired, and the key feature is that
this coupling canbemade asymmetric byopening the system,
even if no magnetic field is applied—as has been established
in recent works on individual resonators [55–60]. The
coupling of the modes is then described by a non-
Hermitian internal Hamiltonian [55,60]

h ¼
�
Ωð0Þ A

B Ωð0Þ

�
; ð2Þ

where the constants A ≠ B� and Ωð0Þ account for the
asymmetric internal scattering and the losses within the
cavity. Throughout the chain, the coupling between adjacent
resonators is dominantly between CCW and CW waves, so
that the coupling matrix is [60,61]

t ¼
�

0 W

W 0

�
: ð3Þ

In coupled-mode approximation, the stationary wave equa-
tion then takes the form

ωψn ¼ hψn þ tðψnþ1 þ ψn−1Þ; ð4Þ
which admits Bloch solutions ψn ¼ expðiknÞΨ. The asso-
ciated Bloch Hamiltonian is

hðkÞ ¼
�

Ωð0Þ Aþ 2W cosðkÞ
Bþ 2W cosðkÞ Ωð0Þ

�
; ð5Þ

and leads to the dispersion relation ω�ðkÞ ¼ Ωð0Þ þ Ω�ðkÞ,

Ω�ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ 2W cos kÞðBþ 2W cos kÞ

p
; ð6Þ

where the subscript� labels two bands. The symmetry about
Ωð0Þ is a consequence of a chiral symmetry with
Xψn ¼ σzψn, which maps the bands onto each other. The
chiral symmetry is thus realized by the freedomof the relative
sign of the CCW and CW amplitudes (a gauge freedom
compatible with time-reversal symmetry which generically
appears in systems with two mutually coupled sublattices).
As shown by exact numerical calculations [60,61], for

representative resonator geometries A, B and W are almost
real, and can be further tuned towards real values by
adjustments of a few shape parameters. We thus neglect the
imaginary parts of these parameters. Apart from an offset
γ ¼ iImΩð0Þ, the dispersion is then either real (in some
range of k) or purely imaginary (in the complementary
range of k). These k ranges are joined by degeneracies,
known as exceptional points [62–66], where ω�ðkÞ ¼ Ωð0Þ,
thus cos k ¼ −A=2W or cos k ¼ −B=2W. A completely
real dispersion with a gap is achieved if jA=2Wj > 1 and
jB=2Wj > 1, provided AB > 0 [see the phase diagram in
Fig. 1(b) and representative dispersions in Fig. 1(c)].
The underlying symmetry can be made explicit by a

basis change, ϕn ¼ 2−1=2ðiσx þ 1Þψn, where σx is a Pauli
matrix, after which the Bloch Hamiltonian takes the form

FIG. 1 (color online). (a) Coupled-resonator waveguide with
internal asymmetric scattering (couplings A and B) between a
counterclockwise (CCW) and a clockwise (CW) wave compo-
nent, and coupling W between CCW and CW components in
neighboring resonators. For real couplings this system realizes
non-Hermitian versions of time-reversal symmetry, chirality, and
charge conjugation. (b) Phase diagram for the bulk dispersion (6).
The dispersion can be real and gapped, exhibit 2 or 4 exceptional
points (EPs) at which real and imaginary branches meet, or be
fully imaginary. In the examples in (c), A=W ¼ 4 and B=W ¼ 3
(real gapped dispersion), A=W ¼ 4 and B=W ¼ 1 (2EPs),
A=W ¼ 1 and B=W ¼ −1 (4EPs), as well as A=W ¼ 4 and
B=W ¼ −3 (imaginary dispersion). (d) Corresponding represen-
tation of the complex bands on the Bloch sphere (upper band Ωþ,
red; lower band Ω−, blue).
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~hðkÞ¼1

2

�
2Ωð0Þ þ iðA−BÞ AþBþ4Wcosk

AþBþ4W cosk 2Ωð0Þ− iðA−BÞ

�
: ð7Þ

The Hamiltonian is now symmetric, as required by reci-
procity (which is hidden in the basis of CCW and CW
modes since propagating waves are complex), and fur-
thermore exhibits a passive PT symmetry (1) with P ¼ σx
and γ ¼ −ImΩð0Þ. The chiral symmetry is transformed to
X ¼ σy, and commutes with PT . This realizes all the
symmetries mentioned in the introduction, including
PC ¼ PT X , with respect to the central frequency Ωð0Þ.
From here on, we work in terms of the shifted frequencies
Ω ¼ ω −Ωð0Þ, for which the dispersion is directly given
by Eq. (6).
Having established these symmetries we now return to the

basis ofCCWandCWmodes and discuss topological aspects
of the band structure. For this we consider the k dependence
of the Bloch vectorsΨðkÞ, whichwe interpret as pseudospins
with polarization vector ~P ¼ hðσx; σy; σzÞi. In the Hermitian
limit B ¼ A (both real), the two bands Ω�ðkÞ ¼ �ðAþ
2W cos kÞ arise from k-independent pseudospins

Ψ� ¼ 2−1=2ð1;�1ÞT , with ~P ¼ ð�1; 0; 0Þ pointing along
the x axis. The absence of any winding of the pseudospin
renders the system topologically trivial, so that we do not
expect any defect states in the presence of interfaces, even if
there is a gap. In the non-Hermitian case, we can write
Ψ�ðkÞ ∝ ½Aþ 2W cos k;Ω�ðkÞ�T . As shown in Fig. 1(d),
the polarization vector now acquires k dependence; it is
confined to the xz planewhen the dispersion is real and to the
yz plane when the dispersion is imaginary. These branches

are again joined at the exceptional points, where ~P points up

or down along the z axis, with ~P−ðkÞ ¼ RzðπÞ~PþðkÞ related
by a π rotation about the z axis. In particular, the way these
points are connected depends on whether A > B or A < B
[with the two cases related by a rotationRxðπÞ by π about the
x axis]. Does the system now admit defect states?
Defect states.—In order to answer this question, we

create a defect in the chain by inverting the orientation of
the resonators in half of the system [see Fig. 2(a)]. From the
traditional perspective of Hermitian systems, the defect
cannot be classified as topological, and does not give rise to
any defect states. In the non-Hermitian setting, we will see
that the defect acquires topological features in a spectral
phase transition at which localized defect states emerge [as
illustrated in Fig. 2(b)]. The phase transition takes the form
of a PT -induced exceptional point along one part of the
phase boundary, while it is associated with a PC-induced
degeneracy along the other parts of the phase boundary
[this is summarized in Figs. 2(c) and 2(d), to which we refer
throughout the remaining discussion].
It is easy enough to identify the conditions for the

formation of defect states. In the presence of the defect, the
wave equation takes the form

FIG. 2 (color online). (a) Coupled-resonator waveguide
with a defect, created by inverting the orientation of the
resonators in half of the system. In the closed limit, the
system is trivial, and the defect does not create any bound
states. (b) Defect states in a system of 300 resonators, with
A=W ¼ 1.9 (left panel) and A=W ¼ 2.5 (right panel),
while B=W ¼ 1. (c) Phase diagram indicating the existence
of defect states, as well as their extended-state precursors
(realizing perfect interband transitions, PIC). The boundaries
of the defect phase are given by degeneracy conditions.
At the PT boundary, the extended PIC states bifurcate into
pairs Ωn, Ω�

n of defect states that are related by the PT
symmetry. At the PC boundary one encounters a degeneracy
of charge-conjugated partner states Ωn, −Ω�

n, beyond which
the defect states are non-normalizable. (d) Bloch-sphere
position of the defect states (rods) relative to the bulk
dispersion (lines) [parameters A=W ¼ 1.7, 1.81 (PT), 1.9,
2.5, 3.32 (PC), 4 with B=W ¼ 1, as indicated by the white
circles in (c)].
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Ωψn ¼ hnψn þ tðψnþ1 þ ψn−1Þ; ð8Þ
where now hn ¼ ðh −Ωð0ÞÞ for n < 0 (left half of the
chain) and hn ¼ ðh −Ωð0ÞÞT for n ≥ 0 (right half of
the chain). At any fixed Ω, in each half of the system
the solutions are still obtained from a superposition of
Bloch waves with

2W cos k� ¼ c� ¼ −
Aþ B
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA − BÞ2

4
þ Ω2

r
ð9Þ

associated with pseudospins

ΨðLÞ
� ðΩÞ ∝

�
Aþ c�

Ω

�
; ΨðRÞ

� ðΩÞ ∝
�

Ω
Aþ c�

�
: ð10Þ

Each of the values cþ, c− are associated with a pair of
Bloch waves with propagation factors expðik�Þ ¼ λ�,
expð−ik�Þ ¼ ðλ�Þ−1, where we choose k� such that jλ�j ≥
1 if k� is complex. We now match the solutions with
propagation factor expðik�Þ in the left part to the solutions
with propagation factor expð−ik�Þ in the right part. One
then finds the condition

ðΩ − 2WÞ2Ω − ABΩ ¼ ðA − BÞ2W=2 ð11Þ
for defect states with a symmetric wave function, and

−ðΩþ 2WÞ2Ωþ ABΩ ¼ ðA − BÞ2W=2 ð12Þ

for defect states with an antisymmetric wave function.
Because of the PT symmetry, solutions are again either real
or appear in complex conjugated pairs. Furthermore, chirality
maps Ω → −Ω, corresponding to a transformation between
symmetric and antisymmetric wave functions. Thus, the
defect states come in a quadruple of frequencies Ωn, Ω�

n,
−Ωn, −Ω�

n. The condition that the corresponding wave
function indeed decays leads to the phase diagram in
Fig. 2(c).
In this phase diagram, the Hermitian case A ¼ B defines a

diagonal. The defect states are confined to a region away from
the diagonal, which is bounded by two different transitions.
Along the curves labeled PT, where 27ðAþ BÞ4 ¼
16A2B2ð1þ AB=W2Þ þ 8ð8W2 þ 9ABÞðAþ BÞ2, a pair
of real solutions Ωn of Eq. (11) bifurcates into a pair of
complex-conjugated solutions. Before this exceptional point,
the solutions are real, with jλ�j ¼ 1, and describe the
scattering of an incoming extended state in one band into
an outgoing extended state in the other band. This region of
perfect interband conversion is labeled PIC. At the excep-
tional point, the propagation factors λþ of the two solutions
coalesce, and so do the factors λ−; beyond the exceptional
point we then have jλ�j > 1, giving rise to properly normal-
izable defect states. The same scenario occurs simultaneously
for the chirality-related solutions ofEq. (12). The secondkind
of transition appears along the curves labeled PC, where
A2 þ 6ABþ B2 ¼ 32W2. There, a complex solution Ωn of

Eq. (11) coalesces with a charge-conjugated solution−Ω�
n of

Eq. (12), meaning that they are purely imaginary. This is
similar to the pole transition of broadened Majorana zero
modes, which are then pinned to the imaginary axis and
become their own charge-conjugated partner. These transi-
tions also occur in skew-Hamiltonian ensembles governing
the topological transitions in Josephson junctions [67]. In the
present problem, the PC transition signals the point where the
matching conditions can be fulfilled only by combining
decayingwith increasingwave functions,which occurswhen
one of the wave numbers kþ, k− crosses the real axis.
At both types of transition, the defect states therefore

interact with the real branch of the dispersion relation
Ω�ðkÞ (for the exceptional points along the PT boundary),
or with the purely imaginary branch of this dispersion
relation (for the charge-conjugation-induced degeneracy
along the PC boundary). On the level of the wave functions,
this interaction is again revealed via the corresponding
polarization vectors. Focusing on the wave function in the
left part of the system, we have

~PðLÞ
− ðΩÞ ¼ −~PðLÞ

þ ðΩ�Þ ð13Þ

for the two partial waves ΨðLÞ
� given in Eq. (10), while the

PT and chiral symmetries relate

~PðLÞ
� ðΩ�Þ ¼ −RyðπÞ~PðLÞ

� ðΩÞ; ð14Þ
~PðLÞ
� ð−ΩÞ ¼ RzðπÞ~PðLÞ

� ðΩÞ; ð15Þ

where Ra denotes a π rotation about axis a. [We also have
~PðRÞ
� ðΩÞ ¼ RxðπÞ~PðLÞ

� ðΩÞ.] In Fig. 2(d), we show how these
polarization vectors interact. In the PIC phase, each state

corresponds to a pair of opposite vectors ~PðLÞ
� confined to

the xz plane (the locus of the real dispersion branch), with
chirality-related partner states connected by a π rotation
about the z axis. At the PT transition, the vectors bifurcate
and move out of the xz plane. In the defect phase, the two

vectors ~PðLÞ
� for a given defect state make an angle, but

remain related by a π rotation about the y axis. The partner
state with frequency Ω� points into the opposite direction,
while the chirality-related states are still obtained by a π
rotation about the z axis. At the PC transition, each state
collides with a charge-conjugated partner at a point in the
yz plane (the locus of the imaginary dispersion branch).
These interactions all occur at symmetry-protected posi-
tions, which renders the defect phase topologically stable.
For numerical verification of this robustness in finite and
disordered systems, see [68].
In summary, robust defect states can exist in open

systems that are topologically trivial in the closed limit.
We illustrated this for a leaky optical resonator chain where
defect states appear at an interface between regions in
which Hermiticity is broken in different ways (in contrast,
non-Hermiticity is not sufficient to create edge states at the
end of a finite sample). The states are topologically
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protected as they arise in spectral phase transitions that are
linked to the spontaneous breaking of fundamental sym-
metries (parity-time symmetry and charge-conjugation
symmetry) for a sufficient degree of non-Hermiticity in
the system. The required symmetries are realized when the
couplings in the propagating wave basis are real. As this
does not require any absorption, the formation mechanisms
described here also translate to analogous geometrically
open quantum systems, including electronic systems which
are suitably coupled to external reservoirs. Our observa-
tions raise new questions, such as whether it is possible to
characterize these systems in terms of topological quantum
numbers, and more generally whether they can be under-
stood by a suitable extension of the conventional topo-
logical classification of closed systems.
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