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1 Introduction

The term "escalation” has different meanings in the crifoigical literature. Some authors
such as Fagan and Western (2005) and Piquero et al. (2008heigerm in relation to
increasing frequency of offending; others (e.g. Blumsetial. 1986) define escalation as a
tendency to move to more serious offence types. In this papdbllow the second usage
of the term and refer to escalation in crime seriousnesgrisurgly little quantitative work
has been done in this area, with most work using crime typé&himg tables, fitting log-
linear models or using methods such as the forward escalediefficient. Liu et al. (2011)
provides a literature review.

In previous work, dinear mixed-effects modehs been used to model escalation in of-
fence seriousness over the criminal lifespan (Liu et al120Ihis paper took a multi-level
modelling approach to the sequence of seriousness scoreado offender. This statistical
approach modelled sequences of seriousness scores witvdirying covariates and ac-
counted for between individual and within individual vénilitly. The paper also identified
that there are two temporal scales - age and conviction megand so examined two types
of escalation process - escalation associated with exyperief the criminal justice process,
and escalation associated with age and maturation. Thétingsmodel suggested some
interesting findings where ageing is associated with dalagon, whereas increasing con-
viction occasions (court appearances) are associate@sgtiation. However, one potential
criticism of this work is that it did not consider that thereyrbe different subpopulations
of offenders with different escalation processes. Thispé#perefore addresses this problem
and considers a variety of models which allow for differestadation trajectories.

In the disciplines of psychology, medicine, and criminglothe work of Nagin and
Land (1993) has popularised the use of group-based trajectodelling, which assumes
that there are a number of latent subpopulations with diffetemporal trajectories present
in the data. While in criminology such models have been usedffending frequency,
there has been little work in estimating trajectories afhaseverityover age and conviction
history. This is therefore an important research area fioninplogists which is necessary
to understand how offenders develop their criminal cargetsrms of the seriousness of
crimes.

Despite the popularity of Nagin’s model for understandiragetctories, there are a num-
ber of alternative statistical terminologies that haveo ddleen used. In the psychological
and sociological literature, the terngsowth curve modeand growth mixture modelling
are commonly found. In addition, alternative terms suchhadinear mixed-effects model
the heterogeneity modeandlatent class linear mixed-effect modeln also be found. The
terminology is confusing, and sometimes these terms refére same underlying model,
whereas others differ in important respects. However, #ieware designed to study and
model repeated observations over time, with many of thepeoaphes taking account of
within individual and between individual variation.

The second new development of this paper is to examine tleetedf time spent in
prison on crime escalation. We conceptualise this in terfasimulative custodial sentence
awarded, measuring cumulative sentence length up to thlenturonviction occasion. In
effect, this means that there are now three types of esoalpttocess - escalation associated
with experience of the criminal justice process, escatadissociated with age and matura-
tion, and escalation associated with time spent in prison.

In section 2, we provide a methodological review, diseniagghe multitude of terms
used in this area. We will group the current available siadsapproaches on studying de-
velopmental trajectory into three main types of methodigl®gccording to the assumptions
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made. In sections 3 and 4, we briefly discuss the conceptsia¢ssinvolved in studying
escalation, before introducing the Offenders Index datd$en in the following section 5,
we firstly examine the existence of heterogeneity for theitigtion of random effects, then
we apply two competing methods: group-based trajectoryefliod and growth mixture
modelling to assess the existence of subpopulations irssisgeescalation over conviction
history. We compare the results from our earlier study usitigear mixed-effects model
with these two new approaches. In the last section, we disousresults reaching some
tentative substantive conclusions.

2 Competing approachesfor modelling trajectories

As already mentioned, there are a variety of terminologies a&re commonly used by re-
searchers in studying developmental trajectories anditlmigal data. Indeed, it is often
confusing for researchers from different disciplines tdenstand the links between these
varying terminologies. Essentially, among these varyarginologies, there are three dis-
tinct statistical methodologiesixed-effects modellingnixture modellingandmixtures of
mixed models

This section firstly reviews the statistical properties anftware implementation op-
tions of each approach, and examines two existing compesismies which examine these
methods.

We now define the framework for our models. We¥gtrepresent the response variable,
for observations = 1,...,m at the time pointg¢ = 1,...,n;. Herem is the total number of
cases, and; is the number of observations for each case

The repeated outcomes for eaicban be gathered into an vector of lengthy, =
(Yi1,...,Yin;). The responses for allare stacked into a long vector of lengththusy =

(yla“'vym)v withn= 2{11 N;.

2.1 Mixed-effects modelling

The linear mixed-effects (LME) model (Laird and Ware 1982gdpe et al. 2002) is a well
developed and popular statistical approach for the arsbf$ongitudinal data, which is well
described in many texts such as Pinheiro and Bates (2000Yenhéke and Molenberghs
(2000). Another commonly used term is tp@wth curve modelGCM) (Rao 1965; Fearn
1977; Verbyla 1986; Verbyla and Venables 1988). These twnitlogies essentially refer
to the same approach and estimate not only the overall grawithjectory (fixed-effect) but
also the amount of variation across individuals in the ghoparameters (random intercept
and random slopes).

The terminology of GCM is commonly used in the disciplinesotiology, psychology,
and criminology and is used by the statistical package MPLTH& conventional growth
curve model is often in a form of an intercept plus variablesresenting the time effect
(slopes), such as time and time squared which we refergooagh factors The variance of
the intercept and the polynomial time parameters are repted by random effects which
are multivariate normally distributed with means of 0 anckatimated variance-covariance
matrix (Diggle et al. 2002, Chap. 5). It is commonly used injoaction with time-constant
explanatory variables to explain the variation in the growandom effects. Hwang and
Takane (2005) also pointed out that the conventional GCMrass that the covariance
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matrix of repeated measurements is unstructured. TypjdalCM in the social sciences is
normally used with a relatively small and equal number oktjpoints for each subject.

The linear mixed-effects model represents a broader framieaf modelling than the
GCM. Typically, time-varying explanatory variables mag@be included to explain within
individual-level variation and the number of time point®ieary across each subject. It can
also provide a more flexible structure to define the covadamatrix, such as various forms
of serial correlation within subjects over time. Therefd&CM can be viewed as one type
of model within linear mixed-effects modelling.

These two models therefore share a common approach tottngj@stimation - a mean
trajectory for all cases is estimated through a polynomiatfion of time, and variability
over cases is represented by random effects terms on thiegpteslope and higher order
polynomial terms.

In this paper, the terminology of thmear mixed-effect ME) model is preferred. The
model can be defined as follows:

Yi = Xie B+ Zig Ui + &, 1)

whereXj; is a p-vector of fixed effects covariatg®= (B, ..., Bp) is ap-vector of unknown
regression coefficients for the fixed effects. The fixed ¢ffed X;; can include both time
varying and time constant covariat&. is a g-vector of random effects covariates, with a
g-vector of unknown subject-specific coefficienfs= (Ui1, ..., Ug). It is common that; =
(ui1, Ui2), whereui; is the random intercept ang, is the random slope for time; witly ~
MVN(0O,V) and withV a two by two variance-covariance matrix of thg with diagonal
termsvar(ui1) = vi1, andvar(ui2) = Vo2 , and an off-diagonal covarian@\v(ui, Ui2) =

Vi2 = Vp1. Hence, the two random terms have a correlation;%.%. Finally, & is the

residual error term witls; ~ N(0, 72).

However, the multivariate normality assumption on the candeffects needs to be as-
sessed when applying the mixed-effects modelling appro8tidies from Verbeke and
Lesaffre (1996) and Verbeke and Molenberghs (2000) havetgmbithat lack of multivari-
ate normality for the random effects can seriously influezgtémates of the random effects
and is very difficult to check. However, inference for the @ixeffects is shown to be ro-
bust to the assumption of multivariate normally distrilolggrors, except in the special case
when the error variance is correlated with a term represettiteraction between a covari-
ate and time (Jacgmin-Gadda et al. 2007). Therefore, itogilimportant for us to examine
whether heterogeneity exists in the underlying distridnutf random effects estimated from
the model.

2.2 Mixture modelling approach

The second common approach to trajectory estimation isitfirgroup-based trajectory
modelling (GBTM) (Nagin 1999, 2005), which is also known ateht class growth analy-
sis (LCGA). This approach assumes that the population igpoged of a mixture of distinct

groups defined by their developmental trajectories. Tmstead of assuming a multivari-
ate normal distribution of random effects in the linear rdbedfects model, this approach
uses a finite number of groups to approximate a continuoushdison of random effects.

The groups can be considered to be latent classes. Eaclidinaliwill have a probability

of belonging to a specific trajectory class - thus variapibetween individuals is repre-
sented through the varying individual probabilities ofssdrajectory membership. There-
fore, there is no specific inclusion of any underlying randeifects, and homogeneity is
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assumed within each identified trajectory class. The testogy of group-based trajectory
model(GBTM) is preferred in this paper.

An alternative way of thinking about the GBTM approach is tmeeptualise it as a
linear mixed-effects model but with a finite number of disereandom effects or mass
points (Laird 1978). The unknown mass points interact with growth factors of time,
time-squared etc. to provide the equivalent of the randapes in the mixed-effects model.
This is sometimes known as the non-parametric maximumiti@etl (NPML) approach to
mixture modelling (Aitkin 1999).

The model can be generalised from the linear mixed-effectdeinEquation (1) in the
following way. Assuming the existence Bf classes, and given the latent cl&ssith k =
1,..,K, the model can be written as:

Vitoi=k = X1t B + Xoi Ak + & 2

whereXj;; is a p-vector of common effect covariates, aid= (B4, ..., Bp) is ap-vector
of unknown regression coefficients that have common effectgss all classes. Addition-
ally, Xzt is a g-vector of class-specific covariates, and= (ay, ..., 0kg) iS @ g-vector of
unknown regression coefficients with the coefficients yagacross classes; is the resid-
ual error term for each individualat timet, whereg; ~ N(O, 12). Therefore, the residual
variancer? is assumed to have a common variance across different sladeever, this
assumption can be extended by allowing class-specificuakigriancesg).

Thus, conceptually, there are now two types of covariatdsiwtan be included in the
model. The firstB) acts at the population level —the same as the fixed efdn(Equation
(1), and assumes the effects are common for all individdidls.secondd) acts at the class-
level, and so the effects here will vary across classes. ifklioee (slope) and powers of time
are treated as class-specific covariates, then the shapeddtelopmental trajectory among
each latent class of individuals will vary. In summary, tleugp-based trajectory approach
can be more flexible as it allows risk factors (both time-uagyand time-constant variables)
to vary across each latent class of individuals. In the limeiaed-effects model, in contrast,
there are no latent groups, and therefore varying effeats\driates cannot be estimated.

Implementations of this model for balanced data with theesaomber of time points
per case are available through the SAS procedure PROC TRA&q Xt al. 2001), and
via the MPLUS package, where the method is referred to astlatass growth analysis
(LCGA). For unbalanced data (unequal number of repeateduneaents within each ob-
servation), thécmmpackage irk (Proust-Lima and Liquet 2011), the Latent Gold package
(Vermunt and Magidson 2005) (using the latent regressitiop and MPLUS (by fitting a
two-level model with a latent factor though the commaW@LEVEL MIXTURE) are suitable
options. The difference in terms of modelling assumpticesveen thdcmmpackage with
the other two software packages is that both the Latent Gatttgge and MPLUS allow a
class-specific residual variancgy) if required, in contrast themmpackage allows only
a class-independent residual variangg).(All of these implementations allow covariates at
both the class level and at the population level.

2.3 Mixtures of mixed models approach

While group-based trajectory modelling provides a framwvto identify latent subpopula-
tions and to estimate their distinct trajectories, the rhadsumes that each class-specific
trajectory is a good representation for all members of i&s<l In other words, variation
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around the expected trajectory within a class is assumeelzetn. Additional models which
we term "mixtures of mixed models" have therefore been pegdo relax this assumption.

The simplest extension is tteterogeneity modéVerbeke and Lesaffre 1996; Verbeke
and Molenberghs 2000) which is basically a form of finite migtmodel (McLachlan and
Peel 2004; Titterington et al. 1985). This model assumesstifgapopulation distribution
of trajectories is composed of a discrete number of latebpspulations, each following
a conventional linear mixed-effects model. To avoid nug@rconvergence issues, their
method assumes a common variance-covariance structutbefoandom effects in each
class. In other words, the individuals’ variation aroune éxpected trajectories within each
class is the same.

A more flexible extension - thgrowth mixture mod€lGMM) - was proposed by Muthén
and Shedden (1999), and relaxes the assumption of a commaarias@we matrix. For each
class, a unique covariance matrix of growth factors andéefe can be estimated. Proust
and Jacgmin-Gadda (2005) have proposed an alternativintelogy, thelatent class lin-
ear mixed-effect modéLCLMM), which covers both the growth mixture model and the
heterogeneity model when modelling continuous responsables.

Both methods can be thought either as an extension of therliméxed-effects model
to handle heterogeneous populations (with the number sket- 1), or as an extension
of group-based trajectory modelling to account for cotietabetween repeated measures
of the same subject and the variance within each subpopnlathe terminology ofrowth
mixture mode(GMM) is preferred in this paper.

The formal definition for GMM is as follows. Given the lateriassk, the trajectory of
the outcome is described using a linear mixed-effects maael is given by:

Vit =k = X/litB +X/2itak+2;t Ui + &t ©))

where the vectors oKjjt, Xo, andZiare defined as in Equation 2. The tetmis ag-
vector of the class-specific random effect coefficients, r@liee probability density of;
Pr(u) = zﬁzlmtb(uk,vk), wherey; is assumed to follow a mixture d multivariate
Gaussians with probabilities; and with different meangt, and covariance matricaéy,
with e.g.5K_, r&p, = 0 for identifiability *. Therefore, whek = 1, this model becomes the
linear mixed-effects model (Equation 1); alternativefythe random effects are excluded
(uk = 0), it becomes the group-based trajectory model (Equafion 2

A further extension to the GMM is to replace the assumptiomaoftivariate normality
of the class specific random effects above with a non-par&raternative, estimating the
random effects distributions within each class by a serfesass points with unknown
masses and locations which are estimated from the data.mddel is termed the non-
parametric growth mixture model (NGMM) and has been comeidiby Kreuter and Muthen
(2008) and Muthén and Asparouhov (2009).

Software implementations of the GMM model can be found ihegitMPLUS or in
R. In MPLUS, both theMIXTURE and TWOLEVEL MIXTURE commands can be used. The
MIXTURE command is for the analysis of balanced data. In contrasTWOLEVEL MIXTURE
command can be used for unbalanced data with no time-depecolariates. Additionally,
an option to this command allows a single time-dependerdaréte (through the command
TWOLEVEL MIXTURE RANDOM). However, the setup of the coding is not straightforward. A
an alternative, a more flexible implementation of GMM whidloas both for unbalanced

1 For identifiability,thelcmmpackage irR estimates the variance-covariance matrix of the lasttaless,
and then a set of estimated class-specific proportionahpeteas is used to multiply the variance-covariance
matrix in order to compute the variances and covarianceadf ef the other classes.
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data and time-dependent covariates is provided bjcthenpackage irR (Proust-Lima and
Liquet 2011).

In this paperR is our preferred software as itis more flexible for dealingminbalanced
data (see Appendix Table A), also it allows both time-vagyamd time-constant variables.
More importantly, thdcmmpackage provides a single framework for model comparison.

2.4 Other longitudinal latent variable models

Finally, in our review of longitudinal latent variable mdsgdor criminology, it is worth
mentioning another class of models known as variously antdtansition (Collins and
Lanza 2009), or latent Markov models (Bartolucci et al. 20T3ese models assume that
the profiles of the latent classes are constant over timehhatioffenders will move or transit
from one latent state to another at known points in time. Benf2014) has also suggested a
local likelihood version of the latent class model whicloats class membership to change
at unknown time points. The term ‘hidden Markov model’ isstsd®metimes used when the
focus is on long time series of observations and where théruof cases is small and the
time sequence is long (Bartolucci et al. 2013, p. 5). Thesagatschave commonly been used
in criminology to identify patterning in the types of offeescommitted and how offenders
may transit from one type of offending to another as they Bget6lucci et al. 2007; Francis
et al. 2010). Because the nature of these Markov models #rer rdifferent in concept to
the models in Section 2.1 - 2.3 (which assume that class mmsinipedoes not change over
time), they will not be considered further in this paper.

2.5 Comparison studies

In comparing the above three approaches, there are twangxiegjor studies.

Firstly, Kreuter and Muthén (2008) used four mixture madelhalternatives: the growth
curve model, the group-based trajectory model (which tleégrred as latent class growth
analysis), the growth mixture model (GMM) and the non-pattimn GMM, to analyse con-
viction histories in two longitudinal criminological datets (the Cambridge Study in Delin-
qguent Development data and the Philadelphia cohort stutd).dehey used both BIC and
absolute standardised residuals for each response patetriteria for model selection.
Their comparison methods focused on differences in ovétaiuch as the average curve
on convictions by age at offence, and significance of the égete for each modelling ap-
proach. For the Cambridge data, they found that the fourreltee models suggested no
substantial differences in terms of number of classes, ltlagacteristics of each class, the
shape of curves over age and the proportion in each classewowthe four alternative
approaches differed substantially for the Philadelphiaocostudy. Their advice is essen-
tially not to focus on one strategy, but to consider a var@tapproaches before making
inferences.

In contrast, the work of Bushway et al. (2009) focused on emang and comparing
estimates of théndividual trajectoriesfrom thegrowth curve modglGCM) and thegroup-
based trajectory mode(&BTM) based on offending prevalence data from a crimine¢ea
and life course study (CCLS) in the Netherlands. In term&efrtcomparison method, they
first estimated separate trajectories for each individdf@nder by a method they called
theindividual trajectory mode(ITM). ITM simply takes a sequence of observed offences
from each offender as a subsample and estimates the individjectory through a cubic
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regression function. They then computed Bayesian esti@dtéhe individual trajectories
from both the GCM and GBTM models. Finally they compared tlagdsian estimates to
the estimates given by ITM using two statistical measurebia$: thesigned difference
(SDF) in the fitted probabilities of prevalence and &bsolute value of the signed difference
(ADF) of these probabilities, both of which were computeddach individual and at each
age. Their comparison methods thus do not compare methotie tobserved data, but
rather assess bias towards ITM. They conclude that the geerajectories obtained from
these three approaches are quite similar. On the other Famahy given individual, these
approaches tell very different stories, although GCM andlr®@Bare far more consistent
relative to ITM.

Both of the above comparative studies also warn that careldhe taken in assuming
the existence of latent classes where none exist. Debadtes topic have been lively (Nagin
and Tremblay 2005; Raudenbush 2005; Sampson and Laub 200%)a&e been followed
recently by a simulation study by Skardhamar (2010) sugugesihat evidence for groups
can be weak. However, Bushway et al. (2009) also warn that GGMGBTM may not
detect classes with small numbers of cases which do notwfdlhe general trend. Thus
current practice suggests that mixture based models neleel tsed with care, but when
well applied, can provide insight into underlying struetur

3 Conceptual Issuesin Escalation

Liu et al. (2011) reviewed a number of major studies on thetopescalation from crimino-
logical literature, and found that mixed-effects modeld hat hitherto been used for mod-
elling crime seriousness. Liu et al. (2011) also identifiadous ways of measuring crime
seriousness, discussed methodological approaches ssagserime seriousness, and indi-
cated that there were two types of temporal scales in crirogl&son. This paper extends
the work of Liu et al. (2011), using an enlarged dataset anddalitional covariate repre-
senting time spent in custody, but focuses instead on thefike various forms of mixture
models discussed above. Although the more detailed bagkdrimformation has been pro-
vided in our previous paper, we still need to briefly introgllhow we measure escalation in
seriousness.

Following Liu et al. (2011), we used a recently developedsueaof crime seriousness
(Francis et al. 2005) based on court sentencing to assesatist. This research developed
a continuous score (score A in the report) for 405 separdena# codes, which, when
logged, ranged from a score of 9.9 for murder down to a scof&@for minor offences
such as driving without lights. Any specific court convictican consist of a number of
offences brought to court at the same time. We took the sam@ss of a court conviction to
be the maximum seriousness score of the convicted offeni¢katacourt appearance. Thus
we measure court conviction seriousness as the seriousht#issworst convicted offence
rather than the total seriousness over all convicted offeric the court appearance. Liu
et al. (2011) makes the case as to why this is a sensible agprGanceptually, we view
offending history as consisting of major offences with othenor offences committed at
the same time — for example, theft of a car and driving withiestirance. The severity of the
court conviction is therefore that of the major offence eatthan the average of the severity
of the major and associated minor offences.
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Table 1 Offenders Index 1953 birth cohort: Number of court coneictappearances by gender from 1963
to 1999.

No. of conviction Total offenders

appearances Male Female| Frequency %
2 convictions 1,368 292 1,660 34%
3 convictions 736 88 824 17%
4 convictions 493 62 555 12%
5 convictions 350 23 373 8%
6 convictions 218 23 241 5%
7 convictions 187 14 201 4%
8+ convictions 936 41 977 20%

4,288 543
Total (%) 89%)  (11%) 4,831  100%

4 Data and Variables
4.1 Offenders Index

Our dataset was based on that used by Liu et al. (2011). Thésawlain 13 sample of all
England and Wales offenders born in 1953 and followed thidodl999. The dataset con-
tains details of all standard list offences for which an wdfer is found guilty and sentenced
in a court in England and Wales - the 1953 birth cohort dathowittain offending histories
such as dates of conviction and types of offences, from adéhgétage of criminal respon-
sibility) up to age 46. Following Liu et al. (2011) we removeffenders who had only a
single court appearance, and also those who were conviatdtd first time after age 37.
The resulting dataset was larger than that used in Liu eR@llL) as improved matching
of offences to seriousness scores meant that we discanded diematched cases. Our final
dataset consisted of 831 offenders with £88 males (89%) and 543 females (11%).

Table 1 shows the characteristics of the final sample by gesdg number of court
conviction appearances. While the most common number at egpearances is two for
both males and females, around 20% of the sample have eigitrerconvictions.

4.2 Variables

We define aonviction occasiolisometimes shortened to ‘conviction’) to be a distinct tour
appearance where an offender has been found guilty of oneoce offences. Thus, an
offender with two conviction occasions will have two separgourt convictions at different
dates.

As described earlier, we define the seriousness of a coonititibe the maximum seri-
ousness score for all offences at that conviction. We thedeiibe individual sequence of
seriousness scores over convictions. The observed sexiehseriousness in crime from
the first conviction are longitudinal sequences measuredct conviction number.

We allow for both time varying and time constant covariatestr analysis. We include
the following time varying covariates.

Order of conviction This is the number of current and priomdotion occasions. This pro-
vides a partial indication of the effect of criminal justieeperience on escalation.
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Age at conviction This is also a time varying covariate, asgkases the effect of maturation
on escalation. It is measured at the date of sentence.

Number of offences This is the number of separate offenceaet conviction occasion.
Liu et al. (2011) showed that the expected maximum seriassseore for a conviction
occasion increases with the number of offences at that mrtas log transformation
of this variable was used.

Custodial sentence This is the cumulative custodial seeténgth (in years) up but not
including the current conviction occasion for each offandlis is a proxy measure for
the time spent in prison; in general offenders serve betw@éh and 50% of sentences
awarded (Soothill et al. 2008).

We also include two time-constant covariatgender(coded (1) male and (2) female) and
age at onsefthe age at the first conviction occasion).

5 Assessing the nature of heterogeneity among offenders

We now return to the models outlined in section 2, and disbesswe might choose be-
tween the various alternatives. The simplest approach lirtbar mixed-effects model — is
based on the assumption of multivariate normality of theloam effects, but Verbeke and
Lesaffre (1996) state that violation of this assumption seyously influence the parameter
estimates. Therefore, in this section, prior to any dedaif@delling, we will be assessing
this assumption through graphical diagnostics from theditif a basic linear mixed-effects
model (including both random intercept and slope as welloagrolling for the other vari-
ables listed in Section £p

In testing the multivariate normality of the estimated ramdeffects (i1 andui,) we use
a joint test proposed by Holgersson (2006), which combiwesgraphical methods.

The first graphical method is@rrelation scatterplobf means against variances which
are computed from the multivariate data, the second metha®iQ plot of Mahalanobis
d? and chi-square distribution quantiles. The joint visuarmination of the two graphs can
provide a more robust test on detecting non-multivariatenadity in situations when one
graph fails to detect but the other does. For example, theletion scatterplot has power
to detect non-normality which th@-Q plot cannot detect for simulated skewed normally
distributed data. In contrast, for data which comes fromauné of normals with the same
mean but heterogeneous variances,@@ plot is likely to detect non-normality, whereas
the correlation scatterplot supports normality. Thereftine combination of these two tests
are powerful graphical tools to detect non-normality.

We first define thecorrelation scatterplatLet X1, ..., X, be ni.i.d. random variables,
whereX; = (Xj1,...,Xjp) is a p-vector of realisations, with= 1,...,n. In this study,n is
the total number of offenders, anp= 2 representing the estimated random intercept and
estimated random slope for each offender. Xet (1/n) Y X, whereX is a p-vector of

meansX = (X, ...,Xp) andS= (1/n) 37_; 3 (Xj —X)(X; —X) %, with S= (sy, ..., sp). If the
nrandom variables are normally distributed then the value ¥fandL'SLL are independent
(Lukacs 1942). Normally, eithdr =1 (i.e. a sum) ok = 1/p (i.e. an average).

The X are multivariate normally distributed if and onIyI.i.fY andL’SL are indepen-
dent. Therefore, we can bootstri¥psamples of realisations frods, ..., X,, to computeM

2 note that age is treated as piecewise linear through a oakpniat representation as described in Section
6.1
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Fig.1 (a) The scatterplot fok' X vs. L'SL of 400 bootstrapping samples from estimated random effémts
Q-Q plot of MahalanobiD? vs. quantiles ofZ.

paired values oL'X andL’SL If X j is normally distributed then the scatterplot IofX
againstL’SIL should have no pattern of correlation.

The second graphical tool is tH@-Q plot of Mahalanobis distance? (Mahalanobis
1936) and is given by:

d? = (Xj —X) SH(X; - X). 4

Given thatX; is i.i.d. normally distributed, then thé? measures are chi-square dis-
tributed. Therefore, the basic idea of ti@sQ plot of the distance? is to display the graph
of the chi-square distribution quantil@q,(ﬁ) againstdj2 which should display a approxi-
mately straight line on the diagonal if the data is multiagginormal.

These two graphical methods are applied to the data in thdysin order to test the
multivariate normality assumption on the distribution bétestimated random slope (the
order of conviction) and the random intercept in the lineatet-effects model. This model
controls for a range of fixed effect covariates - namely, aijle @ne breakpoint (at ages 18),
gender, number of offences at each conviction occasiont{éogformed), and cumulative
sentence length. 400 bootstrapped samples of the estimetddm effectsifr and ui2)
which were obtained from this mixed-effects model, 40X and L'SL were computed,
takingL = 1. The 400 paired statistics are graphed in Figure 1(a)elrl suggests that
there is a strong linear correlation between the meh'rg)(and variancesL(SL) of the
joint distribution of estimated random intercept and sldf®ethe variance is increasing with
the mean, the plot rejects the assumption of multivariatenabty. Figure 1(b) shows the
MalahanobigQ-Q plot. It shows a curvilinear relationship rather than thpested straight
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line, which suggests that heterogeneity of the random tsffepresent with structure arising
from a mixture of normals (Holgersson 2006).

In summary, both the scatterplot and QeQ plot suggest that the joint distribution of
estimated random intercept and slope does not follow aibieanormal. However, a note of
warning is needed. Work by Verbeke and Lesaffre (1996) stat the test of heterogeneity
on random effects is fundamentally difficult as both the mandntercept and slopes are al-
ready estimated under the multivariate normality asswmpfiherefore, the estimates of the
random effects may be biased if this assumption is wrongdditian, Verbeke and Molen-
berghs (2000) suggests th@tQ plots of the type suggested by Lange and Ryan (1989)
cannot differentiate a wrong distributional assumptiontfe random effects or the error
terms from a wrong choice of covariates. However, Eberly Binacheray (2005) suggests
that in the presence of a correctly specified mean model, ahmality test of Lange and
Ryan (1989) detected non-normal random effect distrilnstiovith reasonable power that
increased as the non-normality grew more pronounced. Iptbgence of a misspecified
mean model, they go on to state that such plots are more usefalgeneral diagnostic
procedure. Our conclusion is that there is sufficient exidenom these plots to justify the
investigation of heterogeneity in more detail.

Therefore, in the next stage, it is necessary to apply bgibstyf mixture modelling
approaches to investigate the heterogeneity in the popnulaf offenders and to identify
where possible potential latent types of offender in terfitbair development of seriousness
in crime.

6 Statistical modelling results

Our model-fitting strategy for mixture models is developsdalows. Firstly, we need to
identify the effect of covariates as either class-speaifith(different parameter estimates in
each class) or class independent effects with the sameatetinm each class. Our primary
interest in this analysis is in identifying any potentigfeliences in the effects of age at con-
viction and criminal justice experience between classesyee therefore make the age and
the order of conviction class-specific covariates, and nt&enumber of offences, gender
and custodial sentence length all class-independentietesr

Secondly, the three statistical models described in se&iare applied, using the co-
variates described previously, trying two, three and fdass models for the mixture based
approaches. In terms of their goodness-of-fit, the threaésstal models of their AIC/BIC
are compared. The result of three-class GMM model whichegepred as the final model
will be described.

6.1 Choice of non-linear effect

We propose that the effect of age or conviction order may lrelinear. For the effect of
conviction order, a quadratic term is examined throughtthest statistical models. However,
the quadratic term of conviction order is not significantttwp—value> 0.05) in any of the
three statistical models. Therefore, there is no evidefcem-linearity over convictions.
For the effect of age, we used a breakpoint model with onekprat. This will give a
flexible form of non-linearity for age which is consistenttiivearlier work on this dataset
(Liu et al. 2011). The breakpoint model for age assumes tieagtfect of age has different
slopes for different values of age, with the age effect pieise linear and continuous.



Latent variable approaches in crime escalation 13

Table 2 AIC and BIC values for various models by the LME model, the GBWith two/three classes and
the GMM with two/three classes.

| BIC AIC

LME 51079.28 50989.34
GBTM-2CLASS | 49251.88 49167.61
GBTM-3CLASS | 48604.29 48487.60
GMM-2CLASS | 48515.76  48405.55
GMM-3CLASS | 48126.13 47977.03

Such modelling terms are sometimes known as segmentedgsagrenodel terms (Muggeo
2003). We estimate the breakpoint by a grid-point seardingavalues of the breakpoint
from 12 to 45 at one year intervals and taking that value ohefidreakpoint that minimises
AIC or BIC. For the one breakpoint, the break was estimatedjatl8.

6.2 Three statistical models for criminal career escatatio

The three types of trajectory model each controlled for thessindependent covariates of
gender, sentence length and the log of the number of offeatoesch conviction occasion,
and the class-specific effects of order of conviction andsagenviction with one breakpoint
(at age 18). The AIC and BIC values of the LME model, the GBTMhwivo and three
classes, and the GMM with two and three class solutions arnpaced in Table 2.

Table 2 clearly shows that both the GBTM and the GMM with twotlmee classes
have smaller BICs/AICs than the LME model, indicating begfeodness-of-fit by using a
mixture approach than the straightforward LME model. Meepin terms of the difference
between the two mixture modelling approaches, the GMM tlegss model has smaller
BIC/AIC (48515.76/48405.55) than the GBTM two-class mod&251.88/49167.61), and
similarly the GMM three-class model also has smaller BIQA#8126.13/47977.03) than
the GBTM three-class model (48604.29/48487.60).

A model with a four-class solution has also been attempteloty GMM and GBTM.
Although both the AIC and BIC are smaller, suggesting a bei@dness-of-fit, the inter-
pretation of the class-specific parameter estimates afedarclear. As we are concerned
about interpretability, we do not consider the four-clagsitions further.

Table 3 shows the parameter estimates of the final growthuneixhodel for the three-
class solution, which was computed throughlttrempackage irR. In this particular pack-
age, Proust-Lima and Liquet (2011) directly maximise theewbed log-likelihood using a
modified Marquardt optimisation algorithm (Marquardt 186&nd the standard errors of
the covariates are directly computed using the inverseeobbiserved Hessian matrix.

In Table 3, the class-independent effects show that fenfeles a significantly lower
crime seriousness score compared to males (-0.123) andhehaffect of time spent in
custody is small and non-significant (-0.002). The largenthmber of offences within each
conviction occasion the more likely the conviction is to kecus.

There are three classes of offenders, consisting of a lagieliss with 92% of offend-
ers (class one), and two smaller classes each with 4% ofdd#fsnNote that the percentages
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Table 3 Growth mixture model with three-class solution.

Class 1 (92%) Class 2 (4%) Class 3 (4%)
Coef. S.E Coef. S.E Coef. S.E

Intercept 3.926  0.052* 7.688 0.271*| 14.050 0.445*
Order of conviction 0.010 0.002* 0.027 0.008*| -0.039 0.087
Age at conviction:

<18 -0.002 0.003 -0.216  0.017*| -0.584  0.028*

18+ -0.012 <0.001*| -0.027 0.005* 0.041  0.008*
Random Effects (Var):
Intercept ¢11) 0.039 0.130 3.990
Order of conviction ¥22) 0.012 0.041 1.261
Common effect: Coef. S.E
Sex (female) -0.123 0.015*
log(offences) 0.252 0.007*
Custodial sentence -0.002 0.003
Residual Var t?): 0.558
BIC (AIC): 48126.13 (47977.03)

* indicates significance at the 5% level.

of class membership which are presented in this table ar@#rages of the estimated pos-
terior class probabilitied of each individual.

Class one consists of the majority of offenders. The infgroé 3.926 lies below the
other two intercepts. Members of this class are generalysdalating with age and escalat-
ing with their experience, although the age effect before H)(-0.002) is not statistically
significant. The coefficients of the order of conviction MPand the age at conviction after
age 17 (-0.012) are very similar but with different signsefifore, the contradictory ef-
fects highlight that offenders with one conviction a yeaawarage will show de-escalation,
whereas those with a large number of convictions a year tdlhsescalation. The variances
of the random effects in this class are also small (0.039 abitP(or the intercept and slope
respectively).

The second class is formed of a small subset of offenders. (##&) estimate for the
intercept lies between the other two intercepts, whichgjilie mean seriousness level at age
10 is 5.532. De-escalation with age dominates the effecs@dlating with their experience,
especially before age 18. For those aged 18 and older, dgagoefficients of age (-0.027)
and order of conviction (0.027) are having the same effer but with different signs,
showing increasing escalation with the number of distincivictions. The variation among
individual’s intercepts (0.130) and slopes (0.041) isdartpan the first class.

The third class contains another 4% of offenders, this sediket of offenders who
have a very high estimate of seriousness at age 10 (8.218)d&@+escalation is strongest
up to age 17 (-0.584), and then becomes relative smallerdsitiye (0.041) for those aged
18 and older. However, the overall effect of age shows a gtdmiescalation effect. The
effect of experience (the order of conviction) is not sigrfit. The model estimates for the
third class show very interesting findings. Although clds®é contains 4% of offenders,
this group of offenders shows substantial variation withffienders, with variances of 3.990
and 1.261 for the random intercept and random slope respbcti

3 The posterior probability is the probability of each indival belongs to certain clagsgiven dataX,
P(ci = k| Xit).
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It is worth highlighting that a model with a four-class sabutis basically splitting class
three into two even smaller groups with very similar direntl! effects of the class-specific
estimates in the two new groups, but with different magr@sui®bince the dataset used in this
study is sizeable, then the AIC and BIC may not reach theiimmaruntil a large number of
classes have been fitted. Recent guidance suggests thatpbgant to stop at a meaningful
model with a smaller number of classes rather than seardbimtihe best AIC/BIC with
larger number of classes which is less interpretable (NagéhTremblay 2005). Therefore,
the GMM three-class model is preferred in this paper.

7 Comparison of the three statistical models

In this section, further examination of differences amdrgthree statistical methodologies
in terms of their goodness-of-fit are needed. Firstly, thedgess-of-fit of the three models
(the LME model, the GBTM three-class model, the GMM thresssl model) will be as-
sessed through graphical tools by comparing the diffeiebetween the observed scores
and the estimated scores at both marginal-level and ingiidases. Then diagnostic mea-
sures such as AIC/BIC, and the Euclidean distance are usmmhpare the three models.

7.1 Graphical goodness-of-fit at marginal-level

We focus first of all on the marginal goodness-of-fit for alleth statistical models within
each class. The class membership which has been estimatedtie three-class GMM
model (Table 3) is assigned to each individual offender. iaeginal means of observed
seriousness scores and predicted scores from the LME mib@elGBTM approach, the
GMM approach are computed for each age of conviction anddoh @f the three classes.
The reason to look at the marginal seriousness scores byt @gewaction is to be able to
present graphs of the marginal crime seriousness effetténwthe three groups by age,
as the age escalation effects differ strongly between thepg: The plots of the observed
scores and the fitted scores against age at conviction annshd-igure 2. It is important
to clarify that in Figure 2 different offenders will conttite to each observed mean point, as
each offender has a different set of conviction ages.

Firstly, the character of each class is examined by lookingesobservedmean scores.
It is clearly shown that class 1 — Plot (a) — indicates thatrifegority (92%) of offenders
appear to stay relatively constant in their crime sevehity, with a small tendency to de-
escalate with increasing age. Class two consists of 4% ehdérs who, if they offend in
early adolescence, will start with a high serious offenbentde-escalate quickly between
the ages of 14 to 16 followed by a gentle de-escalation atafes. In contrast, class three
shows remarkable diversity in crime seriousness espgdiativeen age 10 to 16 and from
age 35 onwards. This group seems to consist of groups ofd#fsreither involved with
serious crimes at earlier age (between age 10 to 15), orriatt offenders with quite serious
offences, or even those offenders who were most delinquigmtigh serious crimes at both
an early age and from the late 30s onwards.

Secondly, the differences fitted marginal means among the fitted three models are ex-
amined for each class. There is hardly any difference irs@dae between the three models.
However, for the more complex offending patterns found assltwo and class three, the
differences among the three methods are starting to shovaverage, for both class two
and class three, estimates from the GMM appear to capturadne serious crimes more
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Fig. 2 Comparison of the observed marginal seriousness scorebhamdtimated mean scores for the three
models plotted against age at conviction. Offenders haeea lgeouped into three classes by assigned class
membership according to Table 3. Plot (a): for offenders at@oclassified in class 1; plot (b): for offenders
who are classified in class 2; plot (c): for offenders who daesified in class 3.

accurately and also can fit the observed mean more smootmtile GBTM, and certainly
better than the LME model, although the estimates from th@KBilso follow the mean
observed trajectories well compared with the mean estirsteres from the LME model.

7.2 Graphical goodness-of-fit for individual cases
From looking at Figure 2, a clear story of the charactessticeach class has been observed,

and some general marginal goodness-of-fit diagnostics leee presented. Therefore, the
next step is to examine thidividual offenders’ trajectories in crime seriousness and their
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Fig. 3 Comparison of the observed seriousness scores and estis@iees for the three models for two
individual offenders with varying number of convictionglgelled with offenders’ identification number) in
class 1 (plots (a) and (b)), 2 (plots (c) and (d)) and 3 (ple}safid (f)) (Table 3), plotted against order of
conviction but labelled with age at conviction.
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fitted values over conviction occasions. The plots are pegpas follows. First a random
sample of around 100 individuals within each class is takéwn, within each class, two
offenders were selected who represent some common offgpditerns from these samples,
and also represent the range of total number of convictieosan individual offender, the
sequence of seriousness score in crimes is presented bydtreod conviction but labelled
with the age at conviction (on the x-axis). Graphical oufporin class one is shown in Figure
3 plots (a) and (b), plots (c) and (d) show cases from classawd plots (e) and (f) show
cases from class three.

First, examination of the two individual offenders from sdaone is undertaken (plots
(a) and (b) in Figure 3). As described before, class one stigf the majority of offenders
who are relatively stable in their seriousness in crime oimaring the fitted models for the
two offenders, similar findings are found to those given g/ rirarginal plot diagnostics in
Figure 2 (a) - namely that the three models give very simétineates. The plot (b) (offender
771101) indicates that complex offending patterns will cause dlitfiy for any model. Basi-
cally, offender771101 is active in offending from age 12 to 40, with the seriousrafssost
of the offending at about 4.0 but with a few irregular episodehigh seriousness offending
in between. The sudden changes of severity in such a casetdaoaptured accurately by
any of the three models. It is possible that this type of affeg may need its own small
latent class which is not represented in the three grougisolu

Two individual offenders from the second class (class twe)reow shown in plots (c)
and (d) in Figure 3. As mentioned previously, class two csissif offenders with median
seriousness at early ages but de-escalating with inceagia, and also escalating with
increasing experience. For this class, estimates from thettGMM and the GBTM are a
better fit than the LME model.

Finally, two offenders from class three are examined ing(e) and (f). Offenders in
this class are general with high seriousness at early agkéslao more diverse in terms
of their range of crime seriousness. In particular, the GNMdgtares the high seriousness
at the beginning of each trajectory better than the otherrhadels, and adjusts better for
changing crime severity. Thus, the conclusion is the sanferadass two, with the GMM
method performing more sensitively than the other two madebr this particular group
of offenders, the common analytical issue is the suddenroeee of the occasional high
serious crime as part of the criminal history which occur enafiten in this class than for the
offenders in the other two classes. This is representeceimitdel by the high estimates of
V11 andvoo.

7.3 Comparison of goodness-of-fit by diagnostic measures

The diagnostic measure which is used to examine the goodfid¢isss the Euclidean dis-
tance The Euclidean distance is a mathematical term which is ts@deasure the “ordi-
nary” distance between two points or sequences, and is dedméllows:

Dik(Yi,Yik) = \/(yikl —Vik1)2+ ..+ (Yikn, — Yikn )%, (5)

wherey;, is a vector of an observed sequence of seriousness scoreffcioderi as-
signed to clask, with lengthn;, and the vector of estimated scores is givenyRy The
average Euclidean distances by class (assigned membeaxstdpling to Table 3) for each
fitted model are then shown in Table 4.
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Table4 The average Euclidean distance measures for the LME mb@eGBTM with three classes and the
GMM with three classes.

| Class1 Class2 Class3

LME 0.800 3.228 3.195
GBTM-3CLASS 0.808 3.089 2.381
GMM-3CLASS 0.788 2.933 1.600

Firstly, class one shows that the Euclidean distance measnts from LME and GBTM
models are very similar. In fact, the GBTM three-class mddel a slightly greater average
distance than the LME model, indicating the LME model fits tlaa slightly better the
GBTM for class one. In general, out of the three models, theMzhtee-class model fits all
three classes the best, with the smallest distance for atees§).788), class two (2.933), and
class three (1.600). In addition, the two mixture modellagproaches (the GBTM three-
class and the GMM three-class) have improved the goodrfdissnibstantially for class
three.

8 Conclusions

This study has attempted to assess the existence of hateiyga the population of of-
fenders in terms of their seriousness of crimes. Three ringedpproaches are used; the
linear mixed effect model, the group-based trajectory rhadd the growth mixture model.
These approaches all suggest that male offenders on avamg®re likely to be convicted
of more serious offences than female offenders; in additi@nlarger the number of of-
fences involved within a single conviction occasion theheigthe seriousness level in this
conviction occasion will be. In contrast, the effect of @aal sentence varies from model
to model. However, models with a statistically significanstodial sentence effect all show
a small and positive effect, indicating that offenders kEgeawith increasing time spent in
prison, but the effects are small, with changes of 0.01 ofi@sgness score point per year
or less. For the preferred GMM three-class model the effeldrmth of custodial sentence
is not significant.

This work contributes to some important policy implicasaon how to identify and se-
lectively target a small group of potentially dangerougnffers. In general, most offenders
in this sample are more likely to be involved with similar égoof crimes with similar crime
seriousness as this study showed. Moreover, offenders tatted with a relatively high se-
riousness crime at an early age have a tendency to de-eseétlatage. For those offenders,
policy implications are clear: it is important for crimingistice professionals to focus on
persistent offenders — those with large numbers of comristin a short period of time — as
these individuals are most likely to escalate. This workantgntly also identifies a group
of offenders (around 4%) with high diversity and high sesioess in crime. For this type
of offender, monitoring could be worthwhile as they are galists in offending and more
likely to be involved in occasional high seriousness crimdsetween other offences com-
pared to the other two types of offenders. They can be idedtlfiy early offending which
escalates rapidly in seriousness at young age.

There is still some future work needed to be carried out basethis current study.
For example, this work compared the three modelling appresmstatistically and identified
three types of offender according to their offending pate©Offenders belonging to each
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class may share some common crime patterns in terms of tl#fisggpes of offences
involved. Therefore, a future study can focus on the exatioinaf each class of offender
by considering various features of their criminal careaghsas age at onset, type of first
crime, sequence of crimes, length of criminal career, amdrslity of offending. The other
potential area of development would be the need to develtprigearching methods for
a model with a larger number of classes (perhaps allowingl¢hection of classes with a
small number of cases).
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Figures

Figure 1 (a) The scatterplot far X vs. L'SL of 400 bootstrapping samples from estimated
random effects. (bR-Q plot of MahalanobiD? vs. quantiles of3.

Figure 2. Comparison of the observed marginal seriousnases and the estimated
mean scores for the three models plotted against age atctionvi Offenders have been
grouped into three classes by assigned class membershiplanceto Table 3. Plot (a): for
offenders who are classified in class 1; Plot (b): for offeadeho are classified in class 2;
Plot (c): for offenders who are classified in class 3.

Figure 3. Comparison of the observed seriousness scoresséinthted scores for the
three models for two individual offenders with varying nuenlef convictions (labelled with
offenders’ identification number) in class 1 (Plot (a) andti®b)), 2 (Plot (c) and Plot (d))
and 3 (Plot (e) and Plot (f)) (Table 3), plotted against omferonviction but labelled with
age at conviction.



Appendix

Table A List of terminologies in mixed-effects and mixture modwdj and the available software for the
analysis of a continuous response variable.

Terminology | Software | Package or option | Type of data
Linear mixed-effects modelling
GCM MPLUS TYPE=RANDOM balanced data
LME R nlme Ime4, lcmm unbalanced data
Mixture modelling

GBTM SAS PROC TRAJ balanced data

LCGA MPLUS TYPE=MIXTURE balanced data
LatentGold | Latent class regression unbalanced data
R lcmm unbalanced data

Mixture of mixed modelling
Heterogeneity| MPLUS TYPE=TWOLEVEL MIXTURE | unbalanced data

MPLUS TYPE=MIXTURE balanced data
GMM

R lcmm unbalanced data
LCLMM R lcmm unbalanced data
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