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Abstract This paper investigates the use of latent variable models inassessing escalation
in crime seriousness. It has two aims. The first is to contrasta mixed-effects approach to
modelling crime escalation with a latent variable approach. The paper therefore examines
whether there are specific subgroups of offenders with distinct seriousness trajectory shapes.
The second is methodological - to compare mixed-effects modelling used in previous work
on escalation with group-based trajectory modelling and growth mixture modelling (mix-
ture of mixed-effects models). The availability of software is an issue, and comparisons
of fit across software packages is not straightforward. We suggest that mixture models are
necessary in modelling crime seriousness, that growth mixture models rather than group-
based trajectory models provide the best fit to the data, and thatR gives the best software
environment for comparing models. Substantively, we identify three latent groups, with the
largest group showing crime seriousness increases with criminal justice experience (mea-
sured through number of conviction occasions) and decreases with increasing age. The other
two groups show more dramatic non-linear effects with age, and non-significant effects of
criminal justice experience. Policy considerations of these results are briefly discussed.
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1 Introduction

The term "escalation" has different meanings in the criminological literature. Some authors
such as Fagan and Western (2005) and Piquero et al. (2006) usethe term in relation to
increasing frequency of offending; others (e.g. Blumsteinet al. 1986) define escalation as a
tendency to move to more serious offence types. In this paperwe follow the second usage
of the term and refer to escalation in crime seriousness. Surprisingly little quantitative work
has been done in this area, with most work using crime type switching tables, fitting log-
linear models or using methods such as the forward escalation coefficient. Liu et al. (2011)
provides a literature review.

In previous work, alinear mixed-effects modelhas been used to model escalation in of-
fence seriousness over the criminal lifespan (Liu et al. 2011). This paper took a multi-level
modelling approach to the sequence of seriousness scores for each offender. This statistical
approach modelled sequences of seriousness scores with time-varying covariates and ac-
counted for between individual and within individual variability. The paper also identified
that there are two temporal scales - age and conviction occasion, and so examined two types
of escalation process - escalation associated with experience of the criminal justice process,
and escalation associated with age and maturation. The resulting model suggested some
interesting findings where ageing is associated with de-escalation, whereas increasing con-
viction occasions (court appearances) are associated withescalation. However, one potential
criticism of this work is that it did not consider that there may be different subpopulations
of offenders with different escalation processes. This paper therefore addresses this problem
and considers a variety of models which allow for different escalation trajectories.

In the disciplines of psychology, medicine, and criminology, the work of Nagin and
Land (1993) has popularised the use of group-based trajectory modelling, which assumes
that there are a number of latent subpopulations with different temporal trajectories present
in the data. While in criminology such models have been used for offending frequency,
there has been little work in estimating trajectories of crimeseverityover age and conviction
history. This is therefore an important research area for criminologists which is necessary
to understand how offenders develop their criminal careersin terms of the seriousness of
crimes.

Despite the popularity of Nagin’s model for understanding trajectories, there are a num-
ber of alternative statistical terminologies that have also been used. In the psychological
and sociological literature, the termsgrowth curve modeland growth mixture modelling
are commonly found. In addition, alternative terms such as the linear mixed-effects model,
theheterogeneity model, andlatent class linear mixed-effect modelcan also be found. The
terminology is confusing, and sometimes these terms refer to the same underlying model,
whereas others differ in important respects. However, theyall are designed to study and
model repeated observations over time, with many of these approaches taking account of
within individual and between individual variation.

The second new development of this paper is to examine the effect of time spent in
prison on crime escalation. We conceptualise this in terms of cumulative custodial sentence
awarded, measuring cumulative sentence length up to the current conviction occasion. In
effect, this means that there are now three types of escalation process - escalation associated
with experience of the criminal justice process, escalation associated with age and matura-
tion, and escalation associated with time spent in prison.

In section 2, we provide a methodological review, disentangling the multitude of terms
used in this area. We will group the current available statistical approaches on studying de-
velopmental trajectory into three main types of methodologies according to the assumptions
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made. In sections 3 and 4, we briefly discuss the conceptual issues involved in studying
escalation, before introducing the Offenders Index dataset. Then in the following section 5,
we firstly examine the existence of heterogeneity for the distribution of random effects, then
we apply two competing methods: group-based trajectory modelling and growth mixture
modelling to assess the existence of subpopulations in assessing escalation over conviction
history. We compare the results from our earlier study usinga linear mixed-effects model
with these two new approaches. In the last section, we discuss our results reaching some
tentative substantive conclusions.

2 Competing approaches for modelling trajectories

As already mentioned, there are a variety of terminologies that are commonly used by re-
searchers in studying developmental trajectories and longitudinal data. Indeed, it is often
confusing for researchers from different disciplines to understand the links between these
varying terminologies. Essentially, among these varying terminologies, there are three dis-
tinct statistical methodologies:mixed-effects modelling, mixture modelling, andmixtures of
mixed models.

This section firstly reviews the statistical properties andsoftware implementation op-
tions of each approach, and examines two existing comparison studies which examine these
methods.

We now define the framework for our models. We letYit represent the response variable,
for observationsi = 1, ...,m at the time pointst = 1, ...,ni . Herem is the total number of
cases, andni is the number of observations for each casei.

The repeated outcomes for eachi can be gathered into an vector of lengthni , yyyi =
(Yi1, ...,Yini ). The responses for alli are stacked into a long vector of lengthn; thus yyy =
(yyy1, ...,yyym), with n= ∑m

i=1 ni .

2.1 Mixed-effects modelling

The linear mixed-effects (LME) model (Laird and Ware 1982; Diggle et al. 2002) is a well
developed and popular statistical approach for the analysis of longitudinal data, which is well
described in many texts such as Pinheiro and Bates (2000) andVerbeke and Molenberghs
(2000). Another commonly used term is thegrowth curve model(GCM) (Rao 1965; Fearn
1977; Verbyla 1986; Verbyla and Venables 1988). These two terminologies essentially refer
to the same approach and estimate not only the overall growthor trajectory (fixed-effect) but
also the amount of variation across individuals in the growth parameters (random intercept
and random slopes).

The terminology of GCM is commonly used in the disciplines ofsociology, psychology,
and criminology and is used by the statistical package MPLUS. The conventional growth
curve model is often in a form of an intercept plus variables representing the time effect
(slopes), such as time and time squared which we refer to asgrowth factors. The variance of
the intercept and the polynomial time parameters are represented by random effects which
are multivariate normally distributed with means of 0 and anestimated variance-covariance
matrix (Diggle et al. 2002, Chap. 5). It is commonly used in conjunction with time-constant
explanatory variables to explain the variation in the growth random effects. Hwang and
Takane (2005) also pointed out that the conventional GCM assumes that the covariance
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matrix of repeated measurements is unstructured. Typically, GCM in the social sciences is
normally used with a relatively small and equal number of time points for each subject.

The linear mixed-effects model represents a broader framework of modelling than the
GCM. Typically, time-varying explanatory variables may also be included to explain within
individual-level variation and the number of time points can vary across each subject. It can
also provide a more flexible structure to define the covariance matrix, such as various forms
of serial correlation within subjects over time. Therefore, GCM can be viewed as one type
of model within linear mixed-effects modelling.

These two models therefore share a common approach to trajectory estimation - a mean
trajectory for all cases is estimated through a polynomial function of time, and variability
over cases is represented by random effects terms on the intercept, slope and higher order
polynomial terms.

In this paper, the terminology of thelinear mixed-effects(LME) model is preferred. The
model can be defined as follows:

Yit = XXX
′
it βββ +ZZZ

′
it uuui + εit , (1)

whereXXXit is a p-vector of fixed effects covariates,βββ = (β1, ...,βp) is a p-vector of unknown
regression coefficients for the fixed effects. The fixed effects of XXXit can include both time
varying and time constant covariates.ZZZit is a q-vector of random effects covariates, with a
q-vector of unknown subject-specific coefficientsuuui = (ui1, ...,uiq). It is common thatuuui =
(ui1,ui2), whereui1 is the random intercept andui2 is the random slope for time; withuuui ∼
MVN(000,VVV) and withVVV a two by two variance-covariance matrix of theuuui , with diagonal
termsvar(ui1) = v11, andvar(ui2) = v22 , and an off-diagonal covariancecov(ui1,ui2) =
v12 = v21. Hence, the two random terms have a correlation ofv12√

v11v22
. Finally, εit is the

residual error term withεit ∼ N(0,τ2).
However, the multivariate normality assumption on the random effects needs to be as-

sessed when applying the mixed-effects modelling approach. Studies from Verbeke and
Lesaffre (1996) and Verbeke and Molenberghs (2000) have pointed that lack of multivari-
ate normality for the random effects can seriously influenceestimates of the random effects
and is very difficult to check. However, inference for the fixed effects is shown to be ro-
bust to the assumption of multivariate normally distributed errors, except in the special case
when the error variance is correlated with a term representing interaction between a covari-
ate and time (Jacqmin-Gadda et al. 2007). Therefore, it willbe important for us to examine
whether heterogeneity exists in the underlying distribution of random effects estimated from
the model.

2.2 Mixture modelling approach

The second common approach to trajectory estimation is through group-based trajectory
modelling (GBTM) (Nagin 1999, 2005), which is also known as latent class growth analy-
sis (LCGA). This approach assumes that the population is composed of a mixture of distinct
groups defined by their developmental trajectories. Thus, instead of assuming a multivari-
ate normal distribution of random effects in the linear mixed-effects model, this approach
uses a finite number of groups to approximate a continuous distribution of random effects.
The groups can be considered to be latent classes. Each individual will have a probability
of belonging to a specific trajectory class - thus variability between individuals is repre-
sented through the varying individual probabilities of class trajectory membership. There-
fore, there is no specific inclusion of any underlying randomeffects, and homogeneity is
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assumed within each identified trajectory class. The terminology of group-based trajectory
model(GBTM) is preferred in this paper.

An alternative way of thinking about the GBTM approach is to conceptualise it as a
linear mixed-effects model but with a finite number of discrete random effects or mass
points (Laird 1978). The unknown mass points interact with the growth factors of time,
time-squared etc. to provide the equivalent of the random slopes in the mixed-effects model.
This is sometimes known as the non-parametric maximum likelihood (NPML) approach to
mixture modelling (Aitkin 1999).

The model can be generalised from the linear mixed-effects model Equation (1) in the
following way. Assuming the existence ofK classes, and given the latent classk with k =
1, ..,K, the model can be written as:

Yit |ci=k = XXX
′
1it βββ +XXX

′
2it αααk+ εit , (2)

whereXXX1it is a p-vector of common effect covariates, andβββ = (β1, ...,βp) is a p-vector
of unknown regression coefficients that have common effectsacross all classes. Addition-
ally, XXX2it is a q-vector of class-specific covariates, andαααk = (αk1, ...,αkq) is a q-vector of
unknown regression coefficients with the coefficients varying across classes.εit is the resid-
ual error term for each individuali at timet, whereεit ∼ N(0,τ2). Therefore, the residual
varianceτ2 is assumed to have a common variance across different classes. However, this
assumption can be extended by allowing class-specific residual variances (εitk).

Thus, conceptually, there are now two types of covariates which can be included in the
model. The first (βββ ) acts at the population level – the same as the fixed effect (βββ ) in Equation
(1), and assumes the effects are common for all individuals.The second (ααα) acts at the class-
level, and so the effects here will vary across classes. Thusif time (slope) and powers of time
are treated as class-specific covariates, then the shape of the developmental trajectory among
each latent class of individuals will vary. In summary, the group-based trajectory approach
can be more flexible as it allows risk factors (both time-varying and time-constant variables)
to vary across each latent class of individuals. In the linear mixed-effects model, in contrast,
there are no latent groups, and therefore varying effects ofcovariates cannot be estimated.

Implementations of this model for balanced data with the same number of time points
per case are available through the SAS procedure PROC TRAJ (Jones et al. 2001), and
via the MPLUS package, where the method is referred to as latent class growth analysis
(LCGA). For unbalanced data (unequal number of repeated measurements within each ob-
servation), thelcmmpackage inR (Proust-Lima and Liquet 2011), the Latent Gold package
(Vermunt and Magidson 2005) (using the latent regression option), and MPLUS (by fitting a
two-level model with a latent factor though the commandTWOLEVEL MIXTURE) are suitable
options. The difference in terms of modelling assumptions between thelcmmpackage with
the other two software packages is that both the Latent Gold package and MPLUS allow a
class-specific residual variance (εitk) if required, in contrast thelcmmpackage allows only
a class-independent residual variance (εit ). All of these implementations allow covariates at
both the class level and at the population level.

2.3 Mixtures of mixed models approach

While group-based trajectory modelling provides a framework to identify latent subpopula-
tions and to estimate their distinct trajectories, the model assumes that each class-specific
trajectory is a good representation for all members of its class. In other words, variation
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around the expected trajectory within a class is assumed to be zero. Additional models which
we term "mixtures of mixed models" have therefore been proposed to relax this assumption.

The simplest extension is theheterogeneity model(Verbeke and Lesaffre 1996; Verbeke
and Molenberghs 2000) which is basically a form of finite mixture model (McLachlan and
Peel 2004; Titterington et al. 1985). This model assumes that the population distribution
of trajectories is composed of a discrete number of latent subpopulations, each following
a conventional linear mixed-effects model. To avoid numerical convergence issues, their
method assumes a common variance-covariance structure forthe random effects in each
class. In other words, the individuals’ variation around the expected trajectories within each
class is the same.

A more flexible extension - thegrowth mixture model(GMM) - was proposed by Muthèn
and Shedden (1999), and relaxes the assumption of a common covariance matrix. For each
class, a unique covariance matrix of growth factors and intercept can be estimated. Proust
and Jacqmin-Gadda (2005) have proposed an alternative terminiology, thelatent class lin-
ear mixed-effect model(LCLMM), which covers both the growth mixture model and the
heterogeneity model when modelling continuous response variables.

Both methods can be thought either as an extension of the linear mixed-effects model
to handle heterogeneous populations (with the number of classes> 1), or as an extension
of group-based trajectory modelling to account for correlation between repeated measures
of the same subject and the variance within each subpopulation. The terminology ofgrowth
mixture model(GMM) is preferred in this paper.

The formal definition for GMM is as follows. Given the latent classk, the trajectory of
the outcome is described using a linear mixed-effects model, and is given by:

Yit |ci=k = XXX
′
1it βββ +XXX

′
2it αααk+ZZZ

′
it uuui + εit . (3)

where the vectors ofXXX1it , XXX2it , andZZZit are defined as in Equation 2. The termuuui is a q-
vector of the class-specific random effect coefficients, where the probability density ofuuui

Pr(uuui) = ∑K
k=1 πkΦ(µµµk,VVVk), whereuuui is assumed to follow a mixture ofK multivariate

Gaussians with probabilitiesπk and with different meansµµµk and covariance matricesVVVk,
with e.g.∑K

k=1 πkµµµk = 000 for identifiability 1. Therefore, whenk= 1, this model becomes the
linear mixed-effects model (Equation 1); alternatively, if the random effects are excluded
(uuuik = 000), it becomes the group-based trajectory model (Equation 2).

A further extension to the GMM is to replace the assumption ofmultivariate normality
of the class specific random effects above with a non-parametric alternative, estimating the
random effects distributions within each class by a series of mass points with unknown
masses and locations which are estimated from the data. Thismodel is termed the non-
parametric growth mixture model (NGMM) and has been considered by Kreuter and Muthèn
(2008) and Muthèn and Asparouhov (2009).

Software implementations of the GMM model can be found in either MPLUS or in
R. In MPLUS, both theMIXTURE andTWOLEVEL MIXTURE commands can be used. The
MIXTURE command is for the analysis of balanced data. In contrast, theTWOLEVEL MIXTURE

command can be used for unbalanced data with no time-dependent covariates. Additionally,
an option to this command allows a single time-dependent covariate (through the command
TWOLEVEL MIXTURE RANDOM). However, the setup of the coding is not straightforward. As
an alternative, a more flexible implementation of GMM which allows both for unbalanced

1 For identifiability,thelcmmpackage inR estimates the variance-covariance matrix of the last latent class,
and then a set of estimated class-specific proportional parameters is used to multiply the variance-covariance
matrix in order to compute the variances and covariances of each of the other classes.
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data and time-dependent covariates is provided by thelcmmpackage inR (Proust-Lima and
Liquet 2011).

In this paper,R is our preferred software as it is more flexible for dealing with unbalanced
data (see Appendix Table A), also it allows both time-varying and time-constant variables.
More importantly, thelcmmpackage provides a single framework for model comparison.

2.4 Other longitudinal latent variable models

Finally, in our review of longitudinal latent variable models for criminology, it is worth
mentioning another class of models known as variously as latent transition (Collins and
Lanza 2009), or latent Markov models (Bartolucci et al. 2013). These models assume that
the profiles of the latent classes are constant over time, butthat offenders will move or transit
from one latent state to another at known points in time. Pennoni (2014) has also suggested a
local likelihood version of the latent class model which allows class membership to change
at unknown time points. The term ‘hidden Markov model’ is also sometimes used when the
focus is on long time series of observations and where the number of cases is small and the
time sequence is long (Bartolucci et al. 2013, p. 5). These models have commonly been used
in criminology to identify patterning in the types of offences committed and how offenders
may transit from one type of offending to another as they age (Bartolucci et al. 2007; Francis
et al. 2010). Because the nature of these Markov models are rather different in concept to
the models in Section 2.1 - 2.3 (which assume that class membership does not change over
time), they will not be considered further in this paper.

2.5 Comparison studies

In comparing the above three approaches, there are two existing major studies.
Firstly, Kreuter and Muthèn (2008) used four mixture modelling alternatives: the growth

curve model, the group-based trajectory model (which they referred as latent class growth
analysis), the growth mixture model (GMM) and the non-parametric GMM, to analyse con-
viction histories in two longitudinal criminological datasets (the Cambridge Study in Delin-
quent Development data and the Philadelphia cohort study data). They used both BIC and
absolute standardised residuals for each response patternas criteria for model selection.
Their comparison methods focused on differences in overallfit, such as the average curve
on convictions by age at offence, and significance of the age effects for each modelling ap-
proach. For the Cambridge data, they found that the four alternative models suggested no
substantial differences in terms of number of classes, the characteristics of each class, the
shape of curves over age and the proportion in each class. However, the four alternative
approaches differed substantially for the Philadelphia cohort study. Their advice is essen-
tially not to focus on one strategy, but to consider a varietyof approaches before making
inferences.

In contrast, the work of Bushway et al. (2009) focused on examining and comparing
estimates of theindividual trajectoriesfrom thegrowth curve model(GCM) and thegroup-
based trajectory models(GBTM) based on offending prevalence data from a criminal career
and life course study (CCLS) in the Netherlands. In terms of their comparison method, they
first estimated separate trajectories for each individual offender by a method they called
the individual trajectory model(ITM). ITM simply takes a sequence of observed offences
from each offender as a subsample and estimates the individual trajectory through a cubic
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regression function. They then computed Bayesian estimates of the individual trajectories
from both the GCM and GBTM models. Finally they compared the Bayesian estimates to
the estimates given by ITM using two statistical measures ofbias: thesigned difference
(SDF) in the fitted probabilities of prevalence and theabsolute value of the signed difference
(ADF) of these probabilities, both of which were computed for each individual and at each
age. Their comparison methods thus do not compare methods tothe observed data, but
rather assess bias towards ITM. They conclude that the average trajectories obtained from
these three approaches are quite similar. On the other hand,for any given individual, these
approaches tell very different stories, although GCM and GBTM are far more consistent
relative to ITM.

Both of the above comparative studies also warn that care should be taken in assuming
the existence of latent classes where none exist. Debates inthis topic have been lively (Nagin
and Tremblay 2005; Raudenbush 2005; Sampson and Laub 2005) and have been followed
recently by a simulation study by Skarðhamar (2010) suggesting that evidence for groups
can be weak. However, Bushway et al. (2009) also warn that GCMand GBTM may not
detect classes with small numbers of cases which do not follow the general trend. Thus
current practice suggests that mixture based models need tobe used with care, but when
well applied, can provide insight into underlying structure.

3 Conceptual Issues in Escalation

Liu et al. (2011) reviewed a number of major studies on the topic of escalation from crimino-
logical literature, and found that mixed-effects models had not hitherto been used for mod-
elling crime seriousness. Liu et al. (2011) also identified various ways of measuring crime
seriousness, discussed methodological approaches in assessing crime seriousness, and indi-
cated that there were two types of temporal scales in crime escalation. This paper extends
the work of Liu et al. (2011), using an enlarged dataset and anadditional covariate repre-
senting time spent in custody, but focuses instead on the useof the various forms of mixture
models discussed above. Although the more detailed background information has been pro-
vided in our previous paper, we still need to briefly introduce how we measure escalation in
seriousness.

Following Liu et al. (2011), we used a recently developed measure of crime seriousness
(Francis et al. 2005) based on court sentencing to assess escalation. This research developed
a continuous score (score A in the report) for 405 separate offence codes, which, when
logged, ranged from a score of 9.9 for murder down to a score of0.0 for minor offences
such as driving without lights. Any specific court conviction can consist of a number of
offences brought to court at the same time. We took the seriousness of a court conviction to
be the maximum seriousness score of the convicted offences at that court appearance. Thus
we measure court conviction seriousness as the seriousnessof the worst convicted offence
rather than the total seriousness over all convicted offences in the court appearance. Liu
et al. (2011) makes the case as to why this is a sensible approach. Conceptually, we view
offending history as consisting of major offences with other minor offences committed at
the same time – for example, theft of a car and driving withoutinsurance. The severity of the
court conviction is therefore that of the major offence rather than the average of the severity
of the major and associated minor offences.
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Table 1 Offenders Index 1953 birth cohort: Number of court conviction appearances by gender from 1963
to 1999.

No. of conviction Total offenders
appearances Male Female Frequency %

2 convictions 1,368 292 1,660 34%
3 convictions 736 88 824 17%
4 convictions 493 62 555 12%
5 convictions 350 23 373 8%
6 convictions 218 23 241 5%
7 convictions 187 14 201 4%
8+ convictions 936 41 977 20%

Total (%)
4,288 543

4,831 100%
(89%) (11%)

4 Data and Variables

4.1 Offenders Index

Our dataset was based on that used by Liu et al. (2011). This was a 1 in 13 sample of all
England and Wales offenders born in 1953 and followed through to 1999. The dataset con-
tains details of all standard list offences for which an offender is found guilty and sentenced
in a court in England and Wales - the 1953 birth cohort data will contain offending histories
such as dates of conviction and types of offences, from age 10(the age of criminal respon-
sibility) up to age 46. Following Liu et al. (2011) we removedoffenders who had only a
single court appearance, and also those who were convicted for the first time after age 37.
The resulting dataset was larger than that used in Liu et al. (2011) as improved matching
of offences to seriousness scores meant that we discarded fewer unmatched cases. Our final
dataset consisted of 4,831 offenders with 4,288 males (89%) and 543 females (11%).

Table 1 shows the characteristics of the final sample by gender and number of court
conviction appearances. While the most common number of court appearances is two for
both males and females, around 20% of the sample have eight ormore convictions.

4.2 Variables

We define aconviction occasion(sometimes shortened to ‘conviction’) to be a distinct court
appearance where an offender has been found guilty of one or more offences. Thus, an
offender with two conviction occasions will have two separate court convictions at different
dates.

As described earlier, we define the seriousness of a conviction to be the maximum seri-
ousness score for all offences at that conviction. We then model the individual sequence of
seriousness scores over convictions. The observed sequences of seriousness in crime from
the first conviction are longitudinal sequences measured ateach conviction number.

We allow for both time varying and time constant covariates in our analysis. We include
the following time varying covariates.

Order of conviction This is the number of current and prior conviction occasions. This pro-
vides a partial indication of the effect of criminal justiceexperience on escalation.
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Age at conviction This is also a time varying covariate, and assesses the effect of maturation
on escalation. It is measured at the date of sentence.

Number of offences This is the number of separate offences ateach conviction occasion.
Liu et al. (2011) showed that the expected maximum seriousness score for a conviction
occasion increases with the number of offences at that occasion. A log transformation
of this variable was used.

Custodial sentence This is the cumulative custodial sentence length (in years) up but not
including the current conviction occasion for each offender. This is a proxy measure for
the time spent in prison; in general offenders serve between40% and 50% of sentences
awarded (Soothill et al. 2008).

We also include two time-constant covariates:gender(coded (1) male and (2) female) and
age at onset(the age at the first conviction occasion).

5 Assessing the nature of heterogeneity among offenders

We now return to the models outlined in section 2, and discusshow we might choose be-
tween the various alternatives. The simplest approach – thelinear mixed-effects model – is
based on the assumption of multivariate normality of the random effects, but Verbeke and
Lesaffre (1996) state that violation of this assumption mayseriously influence the parameter
estimates. Therefore, in this section, prior to any detailed modelling, we will be assessing
this assumption through graphical diagnostics from the fitted of a basic linear mixed-effects
model (including both random intercept and slope as well as controlling for the other vari-
ables listed in Section 4.22).

In testing the multivariate normality of the estimated random effects ( ˆui1 andûi2) we use
a joint test proposed by Holgersson (2006), which combines two graphical methods.

The first graphical method is acorrelation scatterplotof means against variances which
are computed from the multivariate data, the second method is aQ-Q plot of Mahalanobis
d2 and chi-square distribution quantiles. The joint visual examination of the two graphs can
provide a more robust test on detecting non-multivariate normality in situations when one
graph fails to detect but the other does. For example, the correlation scatterplot has power
to detect non-normality which theQ-Q plot cannot detect for simulated skewed normally
distributed data. In contrast, for data which comes from a mixture of normals with the same
mean but heterogeneous variances, theQ-Q plot is likely to detect non-normality, whereas
the correlation scatterplot supports normality. Therefore, the combination of these two tests
are powerful graphical tools to detect non-normality.

We first define thecorrelation scatterplot. Let XXX1, ...,XXXn be n i.i.d. random variables,
whereXXX j = (x j1, ...,x jp) is a p-vector of realisations, withj = 1, ...,n. In this study,n is
the total number of offenders, andp= 2 representing the estimated random intercept and
estimated random slope for each offender. LetXXX = (1/n)∑n

j=1 XXX j , whereXXX is a p-vector of

meansXXX =(x1, ...,xp) andSSS=(1/n)∑n
j=1 ∑(XXX j −XXX)(XXX j −XXX)−1, with SSS=(s1, ...,sp). If the

n random variables are normally distributed then the value ofLLL
′
XXX andLLL′SSSLLL are independent

(Lukacs 1942). Normally, eitherLLL = 111 (i.e. a sum) orLLL = 111///ppp (i.e. an average).
TheXXX j are multivariate normally distributed if and only ifLLL

′
XXX andLLL′SSSLLL are indepen-

dent. Therefore, we can bootstrapM samples of realisations fromXXX1, ...,XXXn to computeM

2 note that age is treated as piecewise linear through a one breakpoint representation as described in Section
6.1



Latent variable approaches in crime escalation 11

−0.004 0.000 0.004

0.
00

80
0.

00
95

(a)

LX

LS
L

0 5 10 15
0

50
10

0

(b)

Chi−square quantile

E
m

pi
ric

al
 q

ua
nt

ile

Fig. 1 (a) The scatterplot forLLL
′
XXX vs.LLL′SSSLLL of 400 bootstrapping samples from estimated random effects. (b)

Q-Q plot of MahalanobisD2 vs. quantiles ofχ2
2 .

paired values ofLLL
′
XXX and LLL′SSSLLL. If XXX j is normally distributed then the scatterplot ofLLL

′
XXX

againstLLL′SSSLLL should have no pattern of correlation.
The second graphical tool is theQ-Q plot of Mahalanobis distanced2 (Mahalanobis

1936) and is given by:

d2
j = (XXX j −XXX)

′
SSS−1(XXX j −XXX). (4)

Given thatXXX j is i.i.d. normally distributed, then thed2 measures are chi-square dis-
tributed. Therefore, the basic idea of thisQ-Q plot of the distanced2 is to display the graph
of the chi-square distribution quantilesQp(

j
n+1) againstd2

j which should display a approxi-
mately straight line on the diagonal if the data is multivariate normal.

These two graphical methods are applied to the data in this study, in order to test the
multivariate normality assumption on the distribution of the estimated random slope (the
order of conviction) and the random intercept in the linear mixed-effects model. This model
controls for a range of fixed effect covariates - namely, age with one breakpoint (at ages 18),
gender, number of offences at each conviction occasion (logtransformed), and cumulative
sentence length. 400 bootstrapped samples of the estimatedrandom effects ( ˆui1 and ûi2)
which were obtained from this mixed-effects model, andLLL

′
XXX and LLL′SSSLLL were computed,

taking L = 111. The 400 paired statistics are graphed in Figure 1(a). It clearly suggests that
there is a strong linear correlation between the means (LLL

′
XXX) and variances (LLL′SSSLLL) of the

joint distribution of estimated random intercept and slope. As the variance is increasing with
the mean, the plot rejects the assumption of multivariate normality. Figure 1(b) shows the
MalahanobisQ-Q plot. It shows a curvilinear relationship rather than the expected straight
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line, which suggests that heterogeneity of the random effects is present with structure arising
from a mixture of normals (Holgersson 2006).

In summary, both the scatterplot and theQ-Q plot suggest that the joint distribution of
estimated random intercept and slope does not follow a bivariate normal. However, a note of
warning is needed. Work by Verbeke and Lesaffre (1996) states that the test of heterogeneity
on random effects is fundamentally difficult as both the random intercept and slopes are al-
ready estimated under the multivariate normality assumption. Therefore, the estimates of the
random effects may be biased if this assumption is wrong. In addition, Verbeke and Molen-
berghs (2000) suggests thatQ-Q plots of the type suggested by Lange and Ryan (1989)
cannot differentiate a wrong distributional assumption for the random effects or the error
terms from a wrong choice of covariates. However, Eberly andThacheray (2005) suggests
that in the presence of a correctly specified mean model, the normality test of Lange and
Ryan (1989) detected non-normal random effect distributions with reasonable power that
increased as the non-normality grew more pronounced. In thepresence of a misspecified
mean model, they go on to state that such plots are more usefulas a general diagnostic
procedure. Our conclusion is that there is sufficient evidence from these plots to justify the
investigation of heterogeneity in more detail.

Therefore, in the next stage, it is necessary to apply both types of mixture modelling
approaches to investigate the heterogeneity in the population of offenders and to identify
where possible potential latent types of offender in terms of their development of seriousness
in crime.

6 Statistical modelling results

Our model-fitting strategy for mixture models is developed as follows. Firstly, we need to
identify the effect of covariates as either class-specific (with different parameter estimates in
each class) or class independent effects with the same estimates in each class. Our primary
interest in this analysis is in identifying any potential differences in the effects of age at con-
viction and criminal justice experience between classes, and we therefore make the age and
the order of conviction class-specific covariates, and makethe number of offences, gender
and custodial sentence length all class-independent covariates.

Secondly, the three statistical models described in section 2 are applied, using the co-
variates described previously, trying two, three and four class models for the mixture based
approaches. In terms of their goodness-of-fit, the three statistical models of their AIC/BIC
are compared. The result of three-class GMM model which is preferred as the final model
will be described.

6.1 Choice of non-linear effect

We propose that the effect of age or conviction order may be non-linear. For the effect of
conviction order, a quadratic term is examined through the three statistical models. However,
the quadratic term of conviction order is not significant (with p−value> 0.05) in any of the
three statistical models. Therefore, there is no evidence of non-linearity over convictions.

For the effect of age, we used a breakpoint model with one breakpoint. This will give a
flexible form of non-linearity for age which is consistent with earlier work on this dataset
(Liu et al. 2011). The breakpoint model for age assumes that the effect of age has different
slopes for different values of age, with the age effect piece-wise linear and continuous.
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Table 2 AIC and BIC values for various models by the LME model, the GBTM with two/three classes and
the GMM with two/three classes.

BIC AIC

LME 51079.28 50989.34
GBTM-2CLASS 49251.88 49167.61
GBTM-3CLASS 48604.29 48487.60
GMM-2CLASS 48515.76 48405.55
GMM-3CLASS 48126.13 47977.03

Such modelling terms are sometimes known as segmented regression model terms (Muggeo
2003). We estimate the breakpoint by a grid-point search, taking values of the breakpoint
from 12 to 45 at one year intervals and taking that value of of the breakpoint that minimises
AIC or BIC. For the one breakpoint, the break was estimated atage 18.

6.2 Three statistical models for criminal career escalation

The three types of trajectory model each controlled for the class-independent covariates of
gender, sentence length and the log of the number of offencesat each conviction occasion,
and the class-specific effects of order of conviction and ageat conviction with one breakpoint
(at age 18). The AIC and BIC values of the LME model, the GBTM with two and three
classes, and the GMM with two and three class solutions are compared in Table 2.

Table 2 clearly shows that both the GBTM and the GMM with two orthree classes
have smaller BICs/AICs than the LME model, indicating better goodness-of-fit by using a
mixture approach than the straightforward LME model. Moreover, in terms of the difference
between the two mixture modelling approaches, the GMM two-class model has smaller
BIC/AIC (48515.76/48405.55) than the GBTM two-class model(49251.88/49167.61), and
similarly the GMM three-class model also has smaller BIC/AIC (48126.13/47977.03) than
the GBTM three-class model (48604.29/48487.60).

A model with a four-class solution has also been attempted byboth GMM and GBTM.
Although both the AIC and BIC are smaller, suggesting a better goodness-of-fit, the inter-
pretation of the class-specific parameter estimates are farless clear. As we are concerned
about interpretability, we do not consider the four-class solutions further.

Table 3 shows the parameter estimates of the final growth mixture model for the three-
class solution, which was computed through thelcmmpackage inR. In this particular pack-
age, Proust-Lima and Liquet (2011) directly maximise the observed log-likelihood using a
modified Marquardt optimisation algorithm (Marquardt 1963), and the standard errors of
the covariates are directly computed using the inverse of the observed Hessian matrix.

In Table 3, the class-independent effects show that femaleshave a significantly lower
crime seriousness score compared to males (-0.123) and thatthe effect of time spent in
custody is small and non-significant (-0.002). The larger the number of offences within each
conviction occasion the more likely the conviction is to be serious.

There are three classes of offenders, consisting of a large first class with 92% of offend-
ers (class one), and two smaller classes each with 4% of offenders. Note that the percentages
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Table 3 Growth mixture model with three-class solution.

Class 1 (92%) Class 2 (4%) Class 3 (4%)
Coef. S.E Coef. S.E Coef. S.E

Intercept 3.926 0.052* 7.688 0.271* 14.050 0.445*
Order of conviction 0.010 0.002* 0.027 0.008* -0.039 0.087
Age at conviction:
≤ 18 -0.002 0.003 -0.216 0.017* -0.584 0.028*
18+ -0.012 <0.001* -0.027 0.005* 0.041 0.008*

Random Effects (Var):
Intercept (v11) 0.039 0.130 3.990
Order of conviction (v22) 0.012 0.041 1.261

Common effect: Coef. S.E
Sex (female) -0.123 0.015*
log(offences) 0.252 0.007*
Custodial sentence -0.002 0.003

Residual Var (τ2): 0.558
BIC (AIC): 48126.13 (47977.03)

* indicates significance at the 5% level.

of class membership which are presented in this table are theaverages of the estimated pos-
terior class probabilities3 of each individual.

Class one consists of the majority of offenders. The intercept of 3.926 lies below the
other two intercepts. Members of this class are generally de-escalating with age and escalat-
ing with their experience, although the age effect before age 18 (-0.002) is not statistically
significant. The coefficients of the order of conviction (0.010) and the age at conviction after
age 17 (-0.012) are very similar but with different signs. Therefore, the contradictory ef-
fects highlight that offenders with one conviction a year onaverage will show de-escalation,
whereas those with a large number of convictions a year will show escalation. The variances
of the random effects in this class are also small (0.039 and 0.012 for the intercept and slope
respectively).

The second class is formed of a small subset of offenders (4%). The estimate for the
intercept lies between the other two intercepts, which gives the mean seriousness level at age
10 is 5.532. De-escalation with age dominates the effect of escalating with their experience,
especially before age 18. For those aged 18 and older, again the coefficients of age (-0.027)
and order of conviction (0.027) are having the same effect size but with different signs,
showing increasing escalation with the number of distinct convictions. The variation among
individual’s intercepts (0.130) and slopes (0.041) is larger than the first class.

The third class contains another 4% of offenders, this smallsubset of offenders who
have a very high estimate of seriousness at age 10 (8.210). The de-escalation is strongest
up to age 17 (-0.584), and then becomes relative smaller but positive (0.041) for those aged
18 and older. However, the overall effect of age shows a strong de-escalation effect. The
effect of experience (the order of conviction) is not significant. The model estimates for the
third class show very interesting findings. Although class three contains 4% of offenders,
this group of offenders shows substantial variation withinoffenders, with variances of 3.990
and 1.261 for the random intercept and random slope respectively.

3 The posterior probability is the probability of each individual belongs to certain classk given dataXXX,
P(ci = k | XXXit ).
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It is worth highlighting that a model with a four-class solution is basically splitting class
three into two even smaller groups with very similar directional effects of the class-specific
estimates in the two new groups, but with different magnitudes. Since the dataset used in this
study is sizeable, then the AIC and BIC may not reach their minima until a large number of
classes have been fitted. Recent guidance suggests that it isimportant to stop at a meaningful
model with a smaller number of classes rather than searchingfor the best AIC/BIC with
larger number of classes which is less interpretable (Naginand Tremblay 2005). Therefore,
the GMM three-class model is preferred in this paper.

7 Comparison of the three statistical models

In this section, further examination of differences among the three statistical methodologies
in terms of their goodness-of-fit are needed. Firstly, the goodness-of-fit of the three models
(the LME model, the GBTM three-class model, the GMM three-class model) will be as-
sessed through graphical tools by comparing the differences between the observed scores
and the estimated scores at both marginal-level and individual cases. Then diagnostic mea-
sures such as AIC/BIC, and the Euclidean distance are used tocompare the three models.

7.1 Graphical goodness-of-fit at marginal-level

We focus first of all on the marginal goodness-of-fit for all three statistical models within
each class. The class membership which has been estimated from the three-class GMM
model (Table 3) is assigned to each individual offender. Themarginal means of observed
seriousness scores and predicted scores from the LME model,the GBTM approach, the
GMM approach are computed for each age of conviction and for each of the three classes.
The reason to look at the marginal seriousness scores by age at conviction is to be able to
present graphs of the marginal crime seriousness effects within the three groups by age,
as the age escalation effects differ strongly between the groups. The plots of the observed
scores and the fitted scores against age at conviction are shown in Figure 2. It is important
to clarify that in Figure 2 different offenders will contribute to each observed mean point, as
each offender has a different set of conviction ages.

Firstly, the character of each class is examined by looking at theobservedmean scores.
It is clearly shown that class 1 – Plot (a) – indicates that themajority (92%) of offenders
appear to stay relatively constant in their crime severity,but with a small tendency to de-
escalate with increasing age. Class two consists of 4% of offenders who, if they offend in
early adolescence, will start with a high serious offence, then de-escalate quickly between
the ages of 14 to 16 followed by a gentle de-escalation at later ages. In contrast, class three
shows remarkable diversity in crime seriousness especially between age 10 to 16 and from
age 35 onwards. This group seems to consist of groups of offenders either involved with
serious crimes at earlier age (between age 10 to 15), or late onset offenders with quite serious
offences, or even those offenders who were most delinquent with high serious crimes at both
an early age and from the late 30s onwards.

Secondly, the differences infittedmarginal means among the fitted three models are ex-
amined for each class. There is hardly any difference in class one between the three models.
However, for the more complex offending patterns found in class two and class three, the
differences among the three methods are starting to show. Onaverage, for both class two
and class three, estimates from the GMM appear to capture themore serious crimes more
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Fig. 2 Comparison of the observed marginal seriousness scores andthe estimated mean scores for the three
models plotted against age at conviction. Offenders have been grouped into three classes by assigned class
membership according to Table 3. Plot (a): for offenders whoare classified in class 1; plot (b): for offenders
who are classified in class 2; plot (c): for offenders who are classified in class 3.

accurately and also can fit the observed mean more smoothly than the GBTM, and certainly
better than the LME model, although the estimates from the GBTM also follow the mean
observed trajectories well compared with the mean estimated scores from the LME model.

7.2 Graphical goodness-of-fit for individual cases

From looking at Figure 2, a clear story of the characteristics of each class has been observed,
and some general marginal goodness-of-fit diagnostics havebeen presented. Therefore, the
next step is to examine theindividual offenders’ trajectories in crime seriousness and their
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Fig. 3 Comparison of the observed seriousness scores and estimated scores for the three models for two
individual offenders with varying number of convictions (labelled with offenders’ identification number) in
class 1 (plots (a) and (b)), 2 (plots (c) and (d)) and 3 (plots (e) and (f)) (Table 3), plotted against order of
conviction but labelled with age at conviction.
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fitted values over conviction occasions. The plots are prepared as follows. First a random
sample of around 100 individuals within each class is taken.Then, within each class, two
offenders were selected who represent some common offending patterns from these samples,
and also represent the range of total number of convictions.For an individual offender, the
sequence of seriousness score in crimes is presented by the order of conviction but labelled
with the age at conviction (on the x-axis). Graphical outputfrom class one is shown in Figure
3 plots (a) and (b), plots (c) and (d) show cases from class two, and plots (e) and (f) show
cases from class three.

First, examination of the two individual offenders from class one is undertaken (plots
(a) and (b) in Figure 3). As described before, class one consists of the majority of offenders
who are relatively stable in their seriousness in crime. In comparing the fitted models for the
two offenders, similar findings are found to those given by the marginal plot diagnostics in
Figure 2 (a) - namely that the three models give very similar estimates. The plot (b) (offender
771101) indicates that complex offending patterns will cause difficulty for any model. Basi-
cally, offender771101 is active in offending from age 12 to 40, with the seriousnessof most
of the offending at about 4.0 but with a few irregular episodes of high seriousness offending
in between. The sudden changes of severity in such a case cannot be captured accurately by
any of the three models. It is possible that this type of offending may need its own small
latent class which is not represented in the three group solution.

Two individual offenders from the second class (class two) are now shown in plots (c)
and (d) in Figure 3. As mentioned previously, class two consists of offenders with median
seriousness at early ages but de-escalating with increasing age, and also escalating with
increasing experience. For this class, estimates from boththe GMM and the GBTM are a
better fit than the LME model.

Finally, two offenders from class three are examined in plots (e) and (f). Offenders in
this class are general with high seriousness at early ages and also more diverse in terms
of their range of crime seriousness. In particular, the GMM captures the high seriousness
at the beginning of each trajectory better than the other twomodels, and adjusts better for
changing crime severity. Thus, the conclusion is the same asfor class two, with the GMM
method performing more sensitively than the other two models. For this particular group
of offenders, the common analytical issue is the sudden occurrence of the occasional high
serious crime as part of the criminal history which occur more often in this class than for the
offenders in the other two classes. This is represented in the model by the high estimates of
v11 andv22.

7.3 Comparison of goodness-of-fit by diagnostic measures

The diagnostic measure which is used to examine the goodness-of-fit is theEuclidean dis-
tance. The Euclidean distance is a mathematical term which is usedto measure the “ordi-
nary” distance between two points or sequences, and is defined as follows:

Dik(yyyik, ŷyyik) =
√

(yik1− ŷik1)2+ ...+(yikni − ŷikni )
2, (5)

whereyyyik is a vector of an observed sequence of seriousness scores foroffender i as-
signed to classk, with lengthni , and the vector of estimated scores is given byŷyyik. The
average Euclidean distances by class (assigned membershipaccording to Table 3) for each
fitted model are then shown in Table 4.
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Table 4 The average Euclidean distance measures for the LME model, the GBTM with three classes and the
GMM with three classes.

Class 1 Class 2 Class 3

LME 0.800 3.228 3.195
GBTM-3CLASS 0.808 3.089 2.381
GMM-3CLASS 0.788 2.933 1.600

Firstly, class one shows that the Euclidean distance measurements from LME and GBTM
models are very similar. In fact, the GBTM three-class modelhas a slightly greater average
distance than the LME model, indicating the LME model fits thedata slightly better the
GBTM for class one. In general, out of the three models, the GMM three-class model fits all
three classes the best, with the smallest distance for classone (0.788), class two (2.933), and
class three (1.600). In addition, the two mixture modellingapproaches (the GBTM three-
class and the GMM three-class) have improved the goodness-of-fit substantially for class
three.

8 Conclusions

This study has attempted to assess the existence of heterogeneity in the population of of-
fenders in terms of their seriousness of crimes. Three modelling approaches are used; the
linear mixed effect model, the group-based trajectory model and the growth mixture model.
These approaches all suggest that male offenders on averageare more likely to be convicted
of more serious offences than female offenders; in additionthe larger the number of of-
fences involved within a single conviction occasion the higher the seriousness level in this
conviction occasion will be. In contrast, the effect of custodial sentence varies from model
to model. However, models with a statistically significant custodial sentence effect all show
a small and positive effect, indicating that offenders escalate with increasing time spent in
prison, but the effects are small, with changes of 0.01 of a seriousness score point per year
or less. For the preferred GMM three-class model the effect of length of custodial sentence
is not significant.

This work contributes to some important policy implications on how to identify and se-
lectively target a small group of potentially dangerous offenders. In general, most offenders
in this sample are more likely to be involved with similar types of crimes with similar crime
seriousness as this study showed. Moreover, offenders who started with a relatively high se-
riousness crime at an early age have a tendency to de-escalate with age. For those offenders,
policy implications are clear: it is important for criminaljustice professionals to focus on
persistent offenders – those with large numbers of convictions in a short period of time – as
these individuals are most likely to escalate. This work importantly also identifies a group
of offenders (around 4%) with high diversity and high seriousness in crime. For this type
of offender, monitoring could be worthwhile as they are generalists in offending and more
likely to be involved in occasional high seriousness crimesin between other offences com-
pared to the other two types of offenders. They can be identified by early offending which
escalates rapidly in seriousness at young age.

There is still some future work needed to be carried out basedon this current study.
For example, this work compared the three modelling approaches statistically and identified
three types of offender according to their offending patterns. Offenders belonging to each
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class may share some common crime patterns in terms of the specific types of offences
involved. Therefore, a future study can focus on the examination of each class of offender
by considering various features of their criminal career, such as age at onset, type of first
crime, sequence of crimes, length of criminal career, and diversity of offending. The other
potential area of development would be the need to develop better searching methods for
a model with a larger number of classes (perhaps allowing thedetection of classes with a
small number of cases).
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Figures

Figure 1 (a) The scatterplot forLLL
′
XXX vs. LLL′SSSLLL of 400 bootstrapping samples from estimated

random effects. (b)Q-Q plot of MahalanobisD2 vs. quantiles ofχ2
2 .

Figure 2. Comparison of the observed marginal seriousness scores and the estimated
mean scores for the three models plotted against age at conviction. Offenders have been
grouped into three classes by assigned class membership according to Table 3. Plot (a): for
offenders who are classified in class 1; Plot (b): for offenders who are classified in class 2;
Plot (c): for offenders who are classified in class 3.

Figure 3. Comparison of the observed seriousness scores andestimated scores for the
three models for two individual offenders with varying number of convictions (labelled with
offenders’ identification number) in class 1 (Plot (a) and Plot (b)), 2 (Plot (c) and Plot (d))
and 3 (Plot (e) and Plot (f)) (Table 3), plotted against orderof conviction but labelled with
age at conviction.



Appendix

Table A List of terminologies in mixed-effects and mixture modelling, and the available software for the
analysis of a continuous response variable.

Terminology Software Package or option Type of data

Linear mixed-effects modelling
GCM MPLUS TYPE=RANDOM balanced data
LME R nlme, lme4, lcmm unbalanced data

Mixture modelling
GBTM SAS PROC TRAJ balanced data
LCGA MPLUS TYPE=MIXTURE balanced data

LatentGold Latent class regression unbalanced data
R lcmm unbalanced data

Mixture of mixed modelling
Heterogeneity MPLUS TYPE=TWOLEVEL MIXTURE unbalanced data

GMM
MPLUS TYPE=MIXTURE balanced data
R lcmm unbalanced data

LCLMM R lcmm unbalanced data
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