
The Time-Dependent Multiple-Vehicle Prize-Collecting

Arc Routing Problem

Dan Black∗

University of Edinburgh Business School, 29 Buccleuch Place, Edinburgh, EH8 9JS, U.K.

Richard Eglese

Department of Management Science, Lancaster University Management School, Lancaster,

LA1 4YX, U.K.

Sanne Wøhlk1

CORAL - Cluster for OR and Logistics, Department of Economics and Business, Aarhus

University, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark

Abstract

In this paper, we introduce a multi vehicle version of the Time-Dependent Prize-
Collecting Arc Routing Problem (TD-MPARP). It is inspired by a situation
where a transport manager has to choose between a number of full truck load
pick-ups and deliveries to be performed by a fleet of vehicles. Real-life traffic
situations where the travel times change with the time of day are taken into
account.

Two metaheuristic algorithms, one based on Variable Neighborhood Search and
one based on Tabu Search, are proposed and tested for a set of benchmark
problems, generated from real road networks and travel time information. Both
algorithms are capable of finding good solutions, though the Tabu Search ap-
proach generally shows better performance for large instances whereas the VNS
is superior for small instances. We discuss the structural differences of the
implementation of the algorithms which explain these results.

∗Corresponding author
1Supported by NordForsk Project No. 25900.

Working Paper

1. Introduction

The problem under consideration is motivated by freight transport companies
with potential orders for full truck loads to be carried between pairs of pick up
points and destinations. A fleet of homogeneous vehicles is available at a depot
to carry out the jobs. All potential orders are known before any of the vehicles
leave the depot and the potential orders may be accepted or rejected by the
transport company. When the company fulfils an order by carrying out a job,
then the company receives a benefit or prize of a known value.

The objective is to maximize the sum of the prizes from the accepted orders
minus a travel cost proportional to the time taken to complete the accepted
orders and return to the depot.

We model this problem as a directed arc routing problem with prizes where each
job corresponds to a profitable arc and the prize is collected the first time the
arc is traversed. No further reward is obtained by a subsequent traversal of a
prize arc.

Travel times between locations may change according to the time of day and
day of week. This information is stored in an array known as a Road Timetable
[12] and the vehicles must complete their jobs and return to the depot within a
fixed time limit.

We define the Time-Dependent Multiple Vehicle Prize-Collecting Arc Routing
Problem (TD-MPARP) as follows.

Problem 1 (TD-MPARP). A directed multigraph G(V,A) with a particular

node designated as the depot node is given. Let the depot contain a set Q of

identical vehicles, let P ⊆ A be a set of n profitable arcs and let pr ≥ 0 be a

prize associated with arc r ∈ P. This prize is collected the first time the arc is

traversed. Furthermore, let ft(i, j) be the time it takes to travel from node i to

node j starting at time t and let ft(r) be the time it takes to traverse the r’th

profitable arc starting at time t. The goal is to construct a tour for each vehicle

starting from the depot at time Tmin and ending at the depot node by time Tmax,

such that the sum of prizes collected minus the total travel cost is maximized.

Waiting is not permitted initially at the depot node, nor at any node on the

route.

In [7] we considered a single vehicle version of this problem and presented a
VNS algorithm and a Tabu Search algorithm for solving it. In this paper,
we show how these algorithms can be extended to handle the multi–vehicle
problem as described above. The performances of the algorithms will be tested
on sets of benchmark problems and the results will be compared. The aim
of the experiments is to discover whether there are any significant differences
in the performances of the two algorithms for problems of different size and
when different amounts of computing time are available. The rest of the paper
is outlined as follows. Section 2 contains a review of related literature and

2

Section 3 provides a formal mathematical formulation of the problem. Section
4 describes the solution procedures and Section 5 describes the results from
the computational experiments. The final section contains some concluding
remarks.

2. Related Literature

Incorporating prizes or profitability within logistics problems has received an
increasing amount of attention. These problems are seen to reflect the real-
world situation where the amount of work available is beyond the capacity of
the vehicle fleet and some form of prioritization must take place. They move
beyond standard models, whether vehicle or arc routing, by incorporating two
objectives: prizes and travel cost. Within the Prize-collecting Arc Routing Lit-
erature (PARP), these two objectives are usually combined into a single mea-
sure of profit which is then maximized. A small number of papers take the
approach of maximizing only prizes subject to a cost constraint. No papers, to
our knowledge, minimize cost subject to a minimum prize constraint although
an equivalent problem has been examined within the prize-collecting Vehicle
Routing Problem (VRP) literature [10]. This section will consider several key
features of the PARP and how they are addressed within the literature.

2.1. Types of Prize

Within the Prize-collecting Arc Routing Problem literature, the nature of the
prizes collected takes several forms. In this subsection we shall provide examples
of prize types from the literature and then provide a broad categorization of
problems into efficiency oriented and overloaded problems.

The Privatized Rural Postman Problem (PRPP) is introduced by Aráoz et al.
[3]. The prizes in this problem consist of a single prize that cannot be collected
on repeated traversals of the associated arc. The paper presents a polyhedral
model and examines problem cases based on specific graph structures. This
problem is subsequently solved by Aráoz et al. [2] using a 2-phase algorithm.
At each phase, relaxations are solved using a heuristic and cuts are added to the
problem. If the LP relaxation used in the first phase does not find the optimal
solution, the algorithm resorts to the IP formulation of the second phase. An
equivalent problem, called the Profitable Arc Tour Problem, that allows the
prize associated with an edge to be collected more than once is presented in
Feillet et al. [14]. This problem is based on a logistics problem where stock
is moved between sites on a daily basis. The prize associated with each edge
corresponds to the saving of not using a “there and back” trip (which is how
the stock must be moved if there are uncollected prize arcs). The nature of this
problem means that there is no depot. Euchi et al. apply a meta-heuristic to
the same problem but with no correlation between arc length and prize value

3

[13]. A clustered variation of the PRPP is introduced by Aráoz et al. [1]. In this
case there is again a single prize per arc, but arcs are clustered geographically
and the prize of an arc can only be collected if all arcs of the corresponding
cluster are traversed. The clustering requirement leads to new cuts that can be
incorporated into the branch and bound search.

The Maximum Benefit Chinese Postman Problem (MBCPP) is introduced by
Malandraki and Daskin [21]. In this variation of the PARP, a prize can be
collected from an arc on more than one traversal. The first traversal will collect
an initial prize, the next traversal a lower prize, the next an even lower prize, and
so on. The multiple prizes of this problem correspond to real world problems
such as ploughing snowy streets, where repeated traversals of a road will have
some extra benefit. The problem is formulated as a minimum cost flow problem
and branch and bound is combined with sub-tour elimination cuts to find an
optimal solution. The MBCPP as defined in [21] is a directed problem. The
undirected variant is examined by Pearn and Wang [24] who propose a heuristic
solution method.

The nature of these prizes affects the overall problem objective such that Prize-
collecting Arc Routing Problems can be broadly categorized into efficiency ori-

ented and overloaded problems. An example of an efficiency oriented problem
is the MBCPP of Malandraki and Daskin [21]. There is no bound on the to-
tal amount of work or effort that can be spent when collecting the prizes. The
problem is concerned with determining at what point repeated traversal of prize
arcs is no longer profitable. A similar situation occurs for The Profitable Arc
Tour Problem of Feillet et al. [14]. In this case, there is a limit on the length of
prize collecting tours; however, there is no limit on the number of tours. Prizes
of arcs will remain uncollected if there is no profit in traversing them. The
clustered problem introduced by Aráoz et al. will only collect the clusters of
prizes if the overall profit is positive [1].

On the other hand, overloaded problems have too many arcs with profitable
prizes. This is due to a constraint on total effort. For example, the PARP
as defined in Black et al. has a constraint on driver shift time that limits the
number of arc traversals within a route [7]. If this limit were not in place, then
more arcs would be traversed and more prizes could be collected. A similar
problem is considered by Archetti et al. [4]. In this case, there are two bounds
on effort: travel time and total capacity related to the arcs where prizes are
collected. The objective of [4] is to maximize the total of the prizes collected.
This is in contrast to the usual maximization of profit. This work is extended in
[5] to consider both prize collecting arcs and arcs that must be traversed. This
problem is then solved using branch and cut. Zachariadis and Kiranoudis extend
the problem studied in [4] to include a secondary objective of minimizing travel
time [30]. Malandraki and Daskin examine the overlap of these definitions by
varying a time constraint added to an efficiency oriented problem and produce
a Pareto curve to show the relationship between the two criteria [21].

4

2.2. Variable Travel Times

One way that variable travel times or costs have been incorporated into Arc
Routing Problems is through the so-called windy graphs. In this case, the
travel time along an arc is dependent on the direction in which the arc is being
traversed. This type of problem structure was originally introduced to non-prize
collecting Arc Routing Problems; however, Corberán et al. [8] apply the windy

extension to the Clustered PARP of Aráoz et al. [1]. They produce a number
of inequalities for the problem that can be used as cuts within a branch and
bound solution approach.

A more recent development within the routing literature has been the use of
time-dependent travel times. These allow traffic congestion to be included
within models and have become possible due to increased access to real-world
traffic data. Ichoua et al. incorporate time-dependent travel times into the Ve-
hicle Routing and Scheduling Problem [18]. They introduce the First In First
Out or FIFO property of these travel times. This states that given a variable
journey time from location A to location B, then if vehicle 1 leaves A after ve-
hicle 2, then vehicle 1 cannot overtake vehicle 2. Eglese et al. use this property
when constructing a Road Timetable of time-dependent journey times between
the locations of a Capacitated Vehicle Routing Problem [12]. This is extended in
Maden et al. who use a case study and real-world traffic data [20]. This study
determines the benefit that can be obtained from using traffic data and also
includes a comparison of the CO2 emissions made by vehicles. Both of these
papers use meta-heuristics to find solutions to the problem. Calculating the cost
of neighborhood moves can be a laborious process when using time-dependent
travel data. The work of Harwood et al. examines the potential of using esti-
mates for these calculations [17]. An exact approach to solving time-dependent
VRPs was initially proposed by Soler et al. [28]. This involves transforming the
the problem into an Asynchronous Capacitated VRP, however, no analysis of
the performance of the method is provided. More recently, Dabia et al. have
presented a branch and price approach to solving a variation of the problem
where the starting time for each vehicle is a variable [9].

2.3. Full Truckload Transportation

A group of problems related to the PARP are the Full Truckload Transportation
Problems (FTTP’s). These problems consist of a Pickup and Delivery Problem
(PDP) where a set of items must be picked up from certain locations and deliv-
ered to other customer locations, yet only one item can be carried by a vehicle
at any one time. The obvious difference between these problems and PARP is
that for the FTTP all deliveries must made. A number of other differences occur
depending on problem definition. For example, the FTTP proposed by Gronalt
et al. is motivated by the distribution of goods between distribution centers
[15]. Such a problem will consist of moving multiple full truckloads rather than
individual loads. This problem class distinction has also been highlighted by

5

Arunapuram et al. [6]. This type of problem may also be modeled with vehicles
assigned to different depots. Most FTTP literature considers the problem as a
variation of Vehicle Routing Problems; however, Liu et al. describe the problem
as an Arc Routing Problem [19].

Several exact approaches to the FTTP have been proposed. Desrosier et al.
redefine the problem as a Constrained TSP by collapsing Full Truck Load deliv-
eries into a single node and modifying the associated journey times [11]. Aruna-
puram et al. use a Linear Programming relaxation that allows deliveries to be
omitted to add cuts to a branch and bound search [6]. Heuristic approaches
have also been suggested: Gronalt et al. extend the Clarke and Wright Savings
Algorithm to the Full Truck Load problem [15]. Different two-phase heuristic
approaches have been proposed by Liu et al. [19] and Nossack and Pesch [23]
both consisting of a construction and a neighborhood improvement stage.

3. Mathematical Formulation

In this section, we present a mathematical model for the TD-MPARP. The
model is an extension of the model for the single vehicle problem presented in
Black et al. [7].

The problem is defined based on the directed multigraph G(V,A). We consider
a set of profitable arcs, P indexed by r. If there is potential to collect a prize
from one of the original arcs multiple times, then the original arc is replaced by
a set of similar arcs between the same pair of nodes, where the number of arcs
between the pair of nodes corresponds to the maximum number of times the
prize can be collected. For each such profitable arc r ∈ P, we let αr ∈ V be the
source node, ωr ∈ V the target node, and pr the prize. For every node j ∈ V ,
we define R+

j = {r ∈ P |αr = j} to be the set of outgoing profitable arcs and

R−
j = {r ∈ P |ωr = j} to be the set of entering profitable arcs.

We consider a set Q of vehicles, each starting at the depot node d at time Tmin

and which must return to the depot by Tmax. For any pair of nodes, i and j,
and any time t, we define the function ft(i, j) to be the time it takes to travel
from node i to node j when starting at node i at time t and traveling along a
shortest time route. For any profitable arc r ∈ P, we denote by ft(r) the time
it takes to traverse r starting at time t. In theory, f could be any continuous
function, but in practice we will use the Road Timetable of Eglese et al. [12] to
estimate this function.

In order to make a mathematical model, we restate the problem in terms of
a node duplicated network G̃(Ṽ , Ã) as follows. For each node j ∈ V , we add
R+

j + R−
j nodes to Ṽ . We refer to these nodes as copies of j and refer to j as

the origin h(k) of a copy k of j.

We first define the profitable arcs in G̃. For each profitable arc r ∈ P, we select
nodes k and l in Ṽ such that k is a copy of αr and l is a copy of ωr. We add an

6

d

1 2

3 4

ds de

Figure 1: Example of instance (left) and the corresponding node duplicated network (right).

arc (k, l) to Ã to be associated with the profitable arc. We select these nodes
in Ṽ in such a way that every node in Ṽ is selected exactly once and therefore
adjacent to exactly one profitable arc. We let P̃ denote the set of these profitable
arcs in G̃, and use α̃r̃, ω̃r̃, and p̃r̃ to refer to the source node, target node, and
profit of r̃ ∈ P̃, respectively. We define the travel time function for these arcs
as f̃t(α̃r̃, ω̃r̃) = ft(r) ∀t.

Next, we define the deadheading arcs in G̃. For every pair of profitable arcs,
r̃ and r̃′ in P̃, we add deadheading arcs (ω̃r̃, α̃r̃′) and (ω̃r̃′ , α̃r̃) to Ã. For each

such deadheading arcs (k, l) ∈ Ã, we set the travel time function to f̃t(k, l) =
ft(h(k), h(l)). It follows directly that f̃t(k, l) = 0 if k and l are copies of the
same node in G, i.e. if h(k) = h(l).

Finally, we add two nodes, denoted by ds and de to Ṽ . These nodes are copies
of the depot and can be thought of as a super-source and a super-sink node.
For every node k ∈ Ṽ \ {ds, de}, we add deadheading arcs (ds, k) and (k, de)
with travel time functions f̃t(ds, k) = ft(d, h(k)) and f̃t(k, de) = ft(h(k), d),
respectively. Note that the travel time function is zero, if k is a copy of the
depot. Finally, we add an arc (ds, de) with travel time function f̃t(ds, de) = 0.

The construction of G̃(Ṽ , Ã) is illustrated in Figure 1, where only profitable
arcs are shown.

We use two types of decision variables for the construction of a mathematical
model: For any arc (i, j) in G̃ and every vehicle, q, let xq

ij be a binary variable
taking the value of 1, if (i, j) is traversed by vehicle q and zero otherwise. Let
tij be the time at which the traversal of the arc (i, j) starts. tij is defined for all
arcs, but for arcs where x

q
ij is zero for all values of q, the value of tij is without

interpretation. tij is independent of the vehicles.

7

max
∑

q∈Q

∑

r∈P̃

p̃rx
q
α̃rω̃r

−
∑

q∈Q

∑

(i,j)∈Ã

f̃tij (i, j)x
q
ij (1)

s.t.
∑

q∈Q

x
q
α̃rω̃r

≤ 1 ∀r ∈ P̃ (2)

∑

j∈Ṽ \{ds}

x
q
dsj

= 1 ∀q ∈ Q (3)

∑

j∈Ṽ \{de}

x
q
jde

= 1 ∀q ∈ Q (4)

∑

j∈Ṽ

x
q
ji −

∑

j∈Ṽ

x
q
ij = 0 ∀i ∈ Ṽ \ {ds, de}, ∀q ∈ Q (5)

tide
+ f̃tide (i, de)

∑

q∈Q

x
q
ide
≤ Tmax ∀(i, de) ∈ Ã (6)

tki + f̃tki
(k, i)

∑

q∈Q

x
q
ki ≤ tij + (2−

∑

q∈Q

(xq
ki + x

q
ij))M

∀(k, i), (i, j) ∈ Ã (7)

tki + f̃tki
(k, i)

∑

q∈Q

x
q
ki ≥ tij − (2−

∑

q∈Q

(xq
ki + x

q
ij))M

∀(k, i), (i, j) ∈ Ã (8)

x
q
dsde
≥ 0, integer ∀q ∈ Q (9)

x
q
ij ∈ {0, 1} ∀(i, j) ∈ Ã \ {(ds, de)}, ∀q ∈ Q (10)

tij ≥ Tmin ∀(i, j) ∈ Ã (11)

tdsj ≤ Tmin ∀(ds, j) ∈ Ã (12)

Here, (1) is the objective function maximizing the sum of the prizes minus
travel time. Constraint (2) ensures that each prize is collected at most once.
Constraints (3) and (4) ensure that all vehicles leave the super-source depot
and enter the super-sink depot using exactly one arc, respectively. (5) is the
flow conservation constraint and (6) ensures that all arrivals at the super-sink
depot are on time. Constraint (7) ensures that we do not start traversing an
arc before we have reached the source of the arc. M represents a sufficiently
large number. This constraint is non-binding for any arc (i, j) that is not being
traversed in the solution because the corresponding tij can take the value of
zero. Constraint (8) ensures that the model does not allow for waiting in the
nodes. Constraint (9) allows for vehicles to be left unused. Finally, (10) ensures
binarity while (11) and (12) ensure that all start times are legal.

8

By the construction of the graph G̃, every feasible vehicle tour is alternating
between an arc with a prize to be collected and a deadheading arc. As a conse-
quence of this fact combined with constraint (2), the following inequality holds
for any feasible solution:

∑

q∈Q

x
q
ij ≤ 1 ∀(i, j) ∈ Ã \ {(ds, de)}.

The fact that any arc except possibly the one between the super-source and the
super-sink is traversed at most once, explains why only one time variable, tij is
needed for each arc.

We stress the fact that a key feature of the problem studied is that the time to
travel from i to j is not constant, but rather it changes according to the time t at
which the traversal takes place. This is modeled via the function ft(i, j) which
changes with the parameter t. ft(i, j) directly influences the function f̃t(i, j),
which appears both in the objective function and in constraints (6) through (8),
resulting in a model which is not easily linearized.

4. Solution Procedure

We have developed two algorithms for solving the TD-MPARP: A Tabu Search
algorithm called LANTIME and a Variable Neighborhood Search algorithm
(VNS). Both algorithms are extensions of the algorithms constructed for han-
dling the single vehicle problem presented in [7]. In the following, we will shortly
outline the algorithms and focus on the parts of the algorithms which are dif-
ferent for this multi-vehicle problem.

4.1. LANTIME

LANTIME is a Tabu Search meta-heuristic that has been developed to tackle
the time-dependent VRP (with no prizes). It has been modified to tackle TD-
MPARP so as to provide a comparison for the VNS approach. The solution
structure used, while differing from the representation used by VNS, is not un-
common. A potential solution is stored as a set of vehicle routes plus a dummy
route. The implementation has been modified so that each route, rather than
consisting of a set of deliveries to single customers, consists of a set of non-
overlapping pick-ups and deliveries. The dummy route represents the prize arcs
that will not be traversed by the solution.

The original implementation of LANTIME included 4 neighborhood moves. For
the TD-MPARP empirical analysis has suggested that only the Insertion and
Swap moves are required. These are chosen stochastically with the former se-
lected 40% of the time and the latter 60%. LANTIME does not exhaustively
search a given neighborhood but looks for a good move. A key modification is

9

required to ensure that there is a balance between moves that add jobs to the
dummy route and that remove jobs from the dummy route. An infeasibility
penalty is used to ensure diversity in search along with a Tabu list and memory
structure to prevent dead-ends at local optima. More details of the Tabu search
heuristic can be found in [20].

4.2. Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a meta-heuristic proposed by Mlade-
nović and Hansen [22]. It has been used for a wide variety of optimization
problems [16] and proved to be very good at solving the TD-PARP [7]. In
modifying VNS for the TD-MPARP, the profitable arcs to be served will be or-
dered before splitting them into vehicle routes, i.e. a route-first, cluster-second

approach is adopted.

In our VNS algorithm, we store all n profitable arcs in an ordered list L. For
any i, j ≤ n, i < j, we use L[i : j] as short notation for the partial list L[i], L[i+
1], . . . , L[j].

The intuition behind our algorithm is that at any given time, the current solution
of the problem is determined by L by forcing the vehicles to service the jobs
in the order dictated by L. This way, the first vehicle services jobs L[1 : i],
the second vehicle services jobs L[i + 1 : j], and so forth until the last vehicle
services L[k + 1 : s], where i < j < k and s is a threshold. The value of s
is determined such that L[1 : s] yields the solution with the highest objective
value, among all values of s while giving the option of leaving some vehicles
unused. That way, the profitable arcs L[1 : s] are accepted, while the profitable
arcs in L[s + 1 : n] are not serviced in the solution. We explain the algorithm
for finding this optimal way of splitting L[1 : s] into vehicle routes in Section
4.2.1.

During the VNS algorithm, the order of L is changed, causing different solutions
for the vehicles. As a subroutine of VNS we use a Variable Neighborhood
Descent (VND) which uses a second threshold s′ = min(s + ǫ, n). During the
experiments, ǫ = 5 was found to be a good value. In the VND, we reorganize
the jobs in L[1 : s′], i.e. the jobs that are already accepted plus a few additional
jobs to add slightly more flexibility. In the VNS part of the algorithm, we
incorporate diversification by moving jobs from L[1 : s] to L[s + 1 : n] and/or
vice versa. Roughly speaking, the VNS part selects the jobs to be serviced and
the VND part reorganizes the serviced jobs.

In our implementation, the VND consists of the following 8 neighborhoods: Best
Move, Swap, 4 different Block moves, Drop Bad, and Add Best Best. The VNS
contains the following 11 neighborhoods: Add 5 random arcs, k-Block Add with
k ∈ 5, 2, 13, 17, Gamma Drop, Add Random Randomly, Drop Random, Drop
Best, New Start, Gamma Add Randomly. All neighborhoods are described in
detail in [7]. We have performed extensive computational experiments with

10

many combinations of both these and other neighborhoods and concluded that
this combination provides the best results for the smaller set of instances used
for this analysis.

Additional experiments were also carried out where the ordering of the jobs in L

was restricted to having jobs following each other that were close to each other
or close to the depot. However these restrictions did not lead to significantly
better solutions.

We use a skewed version of VNS where, in the first iteration, we only accept so-
lutions that are strictly better than the current solution, whereas in subsequent
iterations, given the current solution, x, we accept a new solution, x′′ if it is
strictly better than x or if OBJ(x′′) + βρ(x, x′′) > OBJ(xB), where xB is the
best solution seen thus far. ρ(x, x′′) is a measure of the difference between the
two input solutions and is defined as the number of jobs that are accepted in
one of the solutions but not in the other. β measures the willingness to accept

worsening solutions and is increased by 0.002|Q|xB

tmax

in each iteration, where Q is
the set of vehicles. Initially β = 0.

4.2.1. Splitting Procedure

Each time the order of the jobs in the list L is changed, the corresponding
vehicle solution has to be re-calculated. In this section, we describe our splitting
algorithm for doing this, which will be illustrated by an example.

The idea of optimally splitting a giant tour into several vehicle tours has been
used in various settings. Prins [25] uses such a tour splitting algorithm for the
vehicle routing problem, whereas Prins et al. [26] and Wøhlk [29] present similar
algorithms for undirected arc routing where edge flipping is necessary. Prins et
al. [27] provide a comprehensive survey of the use of splitting procedures in the
literature.

A splitting algorithm where the number of vehicle routes is unlimited would
apply to our problem as follows: Consider the order of the jobs given by L[1 : n].
We construct a network with n+1 nodes indexed by {0, . . . , n}. For any nodes
i ∈ {0, n−1} and j > i we add an arc to the network with length R(i, j) equal to
the objective value (sum of prizes minus sum of travel times) of a single vehicle
route servicing L[i + 1 : j] in the order dictated by L. Because the order of
the jobs is given, the value of R(i, j) can easily be calculated for all i, j with
j > i resulting in a feasible route. If such a route is not feasible due to the time
constraint, we set R(i, j) = −∞.

An example of such a network is shown in Figure 2 for a problem with 10 jobs,
where the numbers shown for each arc (i, j) are the values of R(i, j). Only arcs
with R(i, j) > −∞ are shown.

A longest path from node 0 to any node s, in this network yields the optimal
splitting of L along with the threshold s. In the example, the arcs of the longest

11

37 101 117 80 -28 -10 -2 -22 18 -291

172

229

230

283

143

148

-34

97

114

97

-13

8

-7

-188

-168

Figure 2: Example of tour splitting with unlimited vehicle routes.

path are shown in red. Here, it is optimal to service jobs 1 through 9 and
reject job 10 and as result, the solution consists of four vehicle routes servicing
L[1 : 2], L[3 : 5], L[6 : 8], and L[9], respectively and s = 9. This results in an
objective value of 570.

The problem with using a traditional tour splitting algorithm, such as the one
just described is that there is no control regarding the number of vehicles used.
In the example, the optimal splitting used 4 vehicles and in the worst case, n
vehicles could be used. To overcome these problems, we present here a state-
space procedure which incorporates the limitations on the number of vehicles
and the optional service. The state-space network corresponding to the example
is shown in Figure 3, where we assume that only three vehicles are available.

We construct a network with |Q| + 1 by n + 1 nodes indexed by {v, j} where
v ∈ {0, . . . , |Q|} and j ∈ {0, . . . , n} as illustrated in Figure 3 for our example
with 10 jobs and three vehicles. Here, v = 0 and j = 0 represents a dummy
vehicle and dummy job, respectively.

For v ∈ {0, . . . , |Q|−1} and i, j with j > i, we add an arc from {v, i} to {v+1, j}
if R(i, j) > −∞ and the route servicing jobs L[i + 1, j] can be performed by
vehicle v+1 while the solution respects the order of L. The latter implies that,
since only the first vehicle can service L[1], no arcs are leaving nodes {v, j} with
j = 0 and v > 0 or with v = 0 and j > 0. Furthermore, for v > 0 and i > 0,
arcs from {v, i} to {v+1, j} are only included if the arc can be part of a feasible
splitting of L.

A longest path from node {0, 0} to any node {v′, s} in this network yields the
optimal splitting of L along with the threshold s, where v′ provides the number
of vehicles used. In the example, the arcs of the longest path are shown in red.
Here, it is optimal to service jobs 1 through 7 using three vehicles servicing
L[1 : 2], L[3 : 5], and L[6 : 7], respectively and rejecting jobs L[8 : 10]. This
results in s = 7 and an objective value of 569, which is less than the result where
any number of vehicles could be used.

We use dynamic programming to find a longest path in this network. For this,
we define T (v, j) to be the objective value of servicing L[1 : j] in that order,
using v vehicles and let T (v, j) = −∞ if it is not possible to service L[1 : j] in

12

37 172

101 229 117 230 283

117 230 283

80 143 148

-28 -34 97

-10 114 97

Figure 3: Example of state-space network.

−∞

−∞

−∞

−∞

v

0

1

2

3

i and j

0 1 2 3 4 5 6 7 8

Figure 4: Table structure of the splitting algorithm.

that order using v vehicles. We seek the pair v′, s = argmaxv,j T (v, j) where v′

is the number of vehicles used, and L[1 : s] are the jobs to be serviced. Hence,
job s + 1 is the first job not serviced. Our splitting procedure is shown in
Algorithm 1 and Figure 4 shows the structure of the table, T , created by the
algorithm. In Figure 4, the unshaded cells are those with T (v, j) 6= −∞. The
areas with T (v, j) = −∞, determined by lines 4 and 16 in the algorithm are
shown in the figure. All other shaded areas in Figure 4 have a void value and
are not used in the algorithm.

5. Computational Experiments

5.1. Test Instances

We have generated a set of test instances for evaluation of the two procedures.
The instances are based on those presented in [7], where we arbitrarily have

13

Algorithm 1 Split Procedure

1: function Split

2: Determine R(i, j) ∀i, j with j > i

3: T (0, 0)← 0
4: T (0, 1)← −∞
5: for v = 0 to |Q| − 1 do ⊲ For each vehicle.
6: for i = v to T (v, i) = −∞ do
7: for j = i+ 1 to R(i, j) = −∞ do
8: if T (v, i) +R(i, j) > T (v + 1, j) then
9: T (v + 1, j) = T (v, i) +R(i, j)

10: end if
11: if T (v + 1, j) > BestObj then
12: BestObj = T (v + 1, j)
13: s = j

14: end if
15: end for
16: T (v + 1, j) = −∞ ⊲ First j not active in the for loop.
17: end for
18: end for
19: end function

used the third instance in each set to be extended to multiple vehicles. For the
London instances, we have used both the third and the fifth instance in order to
obtain a larger testbed. Table 1 gives some information on the data instances.
All instances are available at http://www.optimization.dk/TD-MPARP.

Instance RTT file No. vehicles No. prizes Start time Duration
A3 NW25 3, 5, 8 100 300 900
B3 NW25 3, 5, 8 100 300 900
C3 NW25 3, 5, 8 100 300 900
D3 NW25 3, 5, 8 100 300 900
E3 NW25 3, 5, 8 100 300 900
F3 NW100 3, 5, 8, 12 500 0 1440

London B3 london 3, 5, 8 75 360 600
London B5 london 3, 5, 8 75 360 600
London L3 london 3, 5, 8, 12 350 360 600
London L5 london 3, 5, 8, 12 350 360 600

Table 1: The test instances.

5.2. Results

The LANTIME algorithm was implemented on a PC with an Intel Core 2 Duo
CPU, running at 2.2GHz with 2 GB of memory and the VNS algorithm was
implemented on a PC with an Intel Core 2 Duo CPU, running at 2.40GHz and

14

Instance VNS LANTIME Best
Mean Max Min Mean Max Min known

mNW25-A3-3 5618.8 5837.8 5403.7 5553.3 5823.4 5451.2 6028.8
mNW25-A3-5 8038.2 8215.5 7858.1 8064.4 8201.8 7936.3 8588.2
mNW25-A3-8 10813.6 10889.4 10777.7 10872.0 11110.9 10588.7 11459.0
mNW25-B3-3 993.8 1089.3∗ 942.3 845.9 923.8 735.0 1089.3
mNW25-B3-5 1103.2 1130.8 1085.1 927.9 1021.7 808.1 1181.7
mNW25-B3-8 1081.5 1112.9 1053.8 909.9 1012.5 819.9 1199.9
mNW25-C3-3 8240.7 8451.8 8130.5 8372.5 8636.9 8178.8 8939.7
mNW25-C3-5 11516.9 11796.1 11277.9 11699.2 11962.8 11486.8 12250.2
mNW25-C3-8 13574.0 13574.0 13574.0 13785.7 13869.6 13708.4 13951.1
mNW25-D3-3 4255.2 4402.0 4182.8 4205.9 4344.9 4134.0 4413.4
mNW25-D3-5 6608.5 6736.8 6475.1 6503.5 6880.6 6262.4 6993.2
mNW25-D3-8 10016.7 10244.3 9920.6 9597.0 9864.6 9406.9 10372.5
mNW25-E3-3 5011.8 5096.2 4893.9 5057.3 5141.2 4974.7 5317.8
mNW25-E3-5 7237.4 7482.8 7022.0 7206.1 7321.3 7015.0 7693.7
mNW25-E3-8 9553.9 9723.5 9327.6 9844.9 9959.0 9644.1 10235.6
mNW100-F3-3 10775.0 11180.8 10489.0 12651.0 13237.9 11625.3 14118.0
mNW100-F3-5 16459.3 16481.6 16456.9 18333.7 20103.7 17163.2 20553.0
mNW100-F3-8 22312.0 22312.0 22312.0 25815.6 26605.4 24463.5 28746.0
mNW100-F3-12 29608.3 29608.3 29608.3 34734.4 35490.2 34069.3 38489.4
mlondon-B3-3 2399.2 2408.5 2389.4 2368.8 2402.3 2342.8 2463.0
mlondon-B3-5 2450.4 2461.3 2442.8 2451.2 2462.9 2429.1 2512.4
mlondon-B3-8 2438.7 2443.4 2436.2 2420.1 2454.6 2397.0 2512.1
mlondon-B5-3 2473.4 2533.9 2357.3 2427.9 2540.8 2348.4 2583.8
mlondon-B5-5 2807.1 2826.4 2769.1 2849.5 2879.7 2823.7 3101.0
mlondon-B5-8 2853.0 2862.5 2848.5 2841.1 2879.8 2808.0 2975.5
mlondon-L3-3 3458.5 3905.7 3138.2 4547.5 4790.8 4283.1 5483.4
mlondon-L3-5 4457.2 4664.8 4307.8 5866.6 6147.0 5497.6 7141.4
mlondon-L3-8 5900.6 5900.6 5900.6 8096.0 8476.9 7601.8 9399.5
mlondon-L3-12 7636.0 7636.0 7636.0 10263.2 10548.2 10052.3 11326.1
mlondon-L5-3 3652.0 3915.2 3235.7 4465.4 5047.7 4169.2 5651.2
mlondon-L5-5 4308.4 4591.3 4067.9 6147.8 6915.2 5478.6 7590.4
mlondon-L5-8 5501.1 5501.1 5501.1 8480.8 9133.7 8128.8 9822.9
mlondon-L5-12 7613.3 7613.3 7613.3 10800.7 11210.6 10104.9 12105.4

Table 2: Results from 1 minute computing time

with 2.97GB of RAM. Although not identical, the two PCs have similar run
time performance. The algorithms were both written in C++.

As for the single vehicle version of the problem [7], we run the two algorithms
with a time limit of 1 min, 10 min, and 30 min. For each time limit, we solve each
instance 10 times using different sets of random numbers within the algorithms.
For each such 10 solutions, we report the value of the best solution (max), the

15

Instance VNS LANTIME Best
Mean Max Min Mean Max Min known

mNW25-A3-3 5853.5 5924.0 5729.9 5695.5 5823.4 5609.2 6028.8
mNW25-A3-5 8359.0 8504.1 8140.0 8223.4 8342.2 8125.0 8588.2
mNW25-A3-8 11216.1 11336.3 11102.9 11087.2 11214.1 10939.3 11459.0
mNW25-B3-3 1000.4 1043.4 939.6 856.7 923.8 798.7 1089.3
mNW25-B3-5 1137.8 1169.0 1095.2 955.8 1021.7 887.7 1181.7
mNW25-B3-8 1131.5 1170.5 1080.1 959.8 1012.5 909.6 1199.9
mNW25-C3-3 8685.9 8939.7∗ 8531.9 8567.4 8636.9 8421.7 8939.7
mNW25-C3-5 12034.1 12137.7 11884.4 11867.7 12017.0 11730.6 12250.2
mNW25-C3-8 13884.9 13938.6 13832.5 13823.5 13900.4 13708.4 13951.1
mNW25-D3-3 4355.3 4413.4∗ 4288.9 4310.7 4370.9 4233.1 4413.4
mNW25-D3-5 6790.5 6883.0 6712.0 6672.7 6880.6 6568.9 6993.2
mNW25-D3-8 10154.2 10372.5∗ 9987.1 9897.0 10045.3 9594.4 10372.5
mNW25-E3-3 5231.1 5294.1 5152.4 5142.4 5230.1 5096.1 5317.8
mNW25-E3-5 7466.1 7577.6 7294.5 7349.7 7482.3 7280.4 7693.7
mNW25-E3-8 9946.3 10093.4 9813.6 10033.3 10185.2 9930.8 10235.6
mNW100-F3-3 12451.9 13072.8 11827.0 13344.0 14118.0∗ 12883.6 14118.0
mNW100-F3-5 17873.4 18565.4 17105.4 19502.7 20298.3 18988.5 20553.0
mNW100-F3-8 25148.6 25345.9 24967.8 27546.1 28259.4 26816.3 28746.0
mNW100-F3-12 32673.1 32673.1 32673.1 37261.1 38004.6 36534.6 38489.4
mlondon-B3-3 2426.4 2434.6 2410.6 2385.7 2413.6 2367.3 2463.0
mlondon-B3-5 2501.2 2512.4∗ 2476.3 2478.8 2489.9 2469.4 2512.4
mlondon-B3-8 2487.0 2500.2 2471.5 2468.7 2483.4 2457.4 2512.1
mlondon-B5-3 2555.5 2583.8∗ 2506.3 2515.0 2545.3 2462.6 2583.8
mlondon-B5-5 2909.1 3101.0∗ 2842.4 2881.5 2897.6 2867.6 3101.0
mlondon-B5-8 2916.5 2948.0 2888.2 2912.4 2928.0 2891.8 2975.5
mlondon-L3-3 4352.0 4667.9 4126.0 5231.9 5362.0 5103.6 5483.4
mlondon-L3-5 5483.5 5780.4 5111.6 6814.0 7128.6 6512.5 7141.4
mlondon-L3-8 7339.2 7595.2 7183.2 8953.1 9120.4 8764.6 9399.5
mlondon-L3-12 8733.5 8733.5 8733.5 11007.1 11241.3 10709.9 11326.1
mlondon-L5-3 4399.0 4578.7 4149.0 5427.2 5650.0 5254.9 5651.2
mlondon-L5-5 5556.0 5686.6 5430.7 7127.7 7398.5 6652.5 7590.4
mlondon-L5-8 7205.4 7506.1 6726.1 9236.0 9541.2 8887.1 9822.9
mlondon-L5-12 9100.4 9100.4 9100.4 11515.1 11808.4 11138.6 12105.4

Table 3: Results from 10 minute computing time

worst solution (min), and the mean of the 10 solutions.

The results are reported in tables 2 through 4, where the last column in each
table reports the best value obtained during any of the runs. This best known
value is often obtained in the 30 min runs. We indicate by bold font the best
solution obtained by one of the algorithms for the given run time. We use
an asterisk to indicate when the best solution coincides with the best known

16

Instance VNS LANTIME Best
Mean Max Min Mean Max Min known

mNW25-A3-3 5921.3 6028.8∗ 5801.9 5785.7 5860.3 5692.2 6028.8
mNW25-A3-5 8490.6 8588.2∗ 8345.4 8329.6 8506.9 8189.5 8588.2
mNW25-A3-8 11262.7 11459.0∗ 11076.7 11201.7 11405.4 11073.0 11459.0
mNW25-B3-3 1007.2 1030.3 967.6 904.3 964.2 801.7 1089.3
mNW25-B3-5 1160.0 1181.7∗ 1138.5 959.4 1021.7 905.8 1181.7
mNW25-B3-8 1162.1 1199.9∗ 1130.8 974.0 1012.5 921.5 1199.9
mNW25-C3-3 8774.6 8898.5 8588.9 8672.6 8912.1 8535.3 8939.7
mNW25-C3-5 12109.8 12250.2∗ 11975.9 11935.9 12017.0 11821.8 12250.2
mNW25-C3-8 13905.3 13951.1∗ 13869.9 13837.3 13903.0 13708.4 13951.1
mNW25-D3-3 4225.2 4357.0 4021.0 4354.3 4408.0 4305.0 4413.4
mNW25-D3-5 6882.0 6993.2∗ 6797.6 6754.3 6880.6 6663.5 6993.2
mNW25-D3-8 10189.5 10290.0 10043.1 9992.5 10089.2 9828.4 10372.5
mNW25-E3-3 5239.8 5317.8∗ 4964.5 5174.0 5279.3 5105.7 5317.8
mNW25-E3-5 7541.0 7693.7∗ 7440.1 7417.6 7532.5 7343.4 7693.7
mNW25-E3-8 10165.8 10235.6∗ 10104.2 10076.6 10185.2 10009.5 10235.6
mNW100-F3-3 13377.9 13711.9 12858.2 13681.8 14118.0∗ 13681.8 14118.0
mNW100-F3-5 19000.0 19558.4 18663.0 20050.1 20553.0∗ 20050.1 20553.0
mNW100-F3-8 25957.9 26192.8 25521.2 28339.7 28746.0∗ 28339.7 28746.0
mNW100-F3-12 34505.2 34771.2 34317.2 38101.0 38489.4∗ 38101.0 38489.4
mlondon-B3-3 2429.2 2463.0∗ 2404.9 2396.9 2419.3 2373.1 2463.0
mlondon-B3-5 2503.2 2511.7 2486.9 2482.9 2491.4 2475.5 2512.4
mlondon-B3-8 2499.2 2512.1∗ 2484.1 2476.9 2483.4 2469.0 2512.1
mlondon-B5-3 2553.1 2580.2 2466.5 2527.8 2545.3 2497.9 2583.8
mlondon-B5-5 2890.5 2937.8 2842.9 2897.3 2921.2 2880.0 3101.0
mlondon-B5-8 2937.3 2975.5∗ 2902.5 2923.3 2943.6 2912.8 2975.5
mlondon-L3-3 4568.2 4965.1 4163.7 5359.3 5483.4∗ 5236.2 5483.4
mlondon-L3-5 5928.7 6193.3 5685.1 7065.6 7141.4∗ 6880.4 7141.4
mlondon-L3-8 7744.8 7940.3 7548.4 9234.0 9399.5∗ 9062.7 9399.5
mlondon-L3-12 9939.7 9939.7 9939.7 11229.4 11326.1∗ 11097.6 11326.1
mlondon-L5-3 4714.3 4972.4 4408.8 5562.2 5651.2∗ 5425.5 5651.2
mlondon-L5-5 6083.7 6323.1 5857.9 7492.2 7590.4∗ 7336.6 7590.4
mlondon-L5-8 7791.7 8039.4 7578.9 9582.8 9822.9∗ 9374.7 9822.9
mlondon-L5-12 10189.0 10189.0 10189.0 11926.6 12105.4∗ 11742.7 12105.4

Table 4: Results from 30 minute computing time

solution for that instance.

Table 5 summarizes the results. Here, we first state the number of times each
algorithm obtained the best solution within the given run time. Next, we state
the number of times the best solution for each run time coincides with the
best known solution. In the second part of the table, we indicate the average,
minimum and maximum percentage variation of the solution profit for the 10

17

VNS LANTIME
1 min 10 min 30 min 1 min 10 min 30 min

Best solution 9 20 19 24 13 14
Best known obtained 1 6 14 0 1 12
Average variation 4.6 4.6 4.3 8.6 4.9 3.8
Minimum variation 6.6 0.0 0.0 1.2 0.8 0.6
Maximum variation 22.2 12.5 17.5 23.4 14.6 18.0

Table 5: Summary of the results

runs for each instance, where precentage variation is calculated as follows:

Percentage instance variation =
max value−min value

average value
· 100

Hence, these numbers report the amount of variation in the results obtained.

It is interesting to observe that for VNS, the minimum variation is sometimes
zero. This indicates that for at least one instance, all 10 runs have provided
the same solution value. One example of this behavior is found for the 10-
minute runs of instance mNW100-F3-12, where the VNS algorithm gets caught
in a local minimum. The average variation for VNS is relatively unaffected by
an increase in the run time, whereas the table shows that for LANTIME, the
average variation decreases when the run time increases. This indicates that
LANTIME converges to solutions of similar quality with increased run time.

We consider the relative performance of the two algorithms when the run time
is increased by comparing across Tables 2 through 4. For the 1-minute runs,
the LANTIME algorithm often outperforms VNS, but when a larger run time
is provided, the balance changes in favor of VNS.

Furthermore, for the three sets of large instances, F3, London L3, and Lon-
don L5, the LANTIME algorithm performs significantly better than the VNS
irrespectively of the time available.

From this analysis, we conclude that if only short run time is available, the
LANTIME algorithm is the best choice. If longer run time is available, the
VNS should be used, unless the instance is large, in which case LANTIME is
better.

The latter part of this conclusion can be explained by the structure of the
solutions in the algorithms. As explained in Section 4.1, in the implementation
of the LANTIME algorithm, each vehicle route is maintained and modified by
the neighborhoods. In the VNS, on the other hand (see Section 4.2), a giant
tour is maintained, and every time a neighbor solution needs to be evaluated,
the splitting procedure is executed to partition the tour into vehicle routes.
The run time of this splitting procedure increases with the instance size, and
in particular with the number of vehicles available. As a result, significantly

18

fewer solutions can be evaluated per time unit and as a result, fewer iterations.
Indeed, for the largest instances, when providing only one minute, the VND
algorithm reached its time limit before it finished its search from the first call
of the VNS, and therefore the algorithm terminated prematurely.

5.3. Results of Increasing the Number of Vehicles

Figure 5 shows how the average solution profit increases as vehicles are added
to a problem instance. The general shape of this curve is as expected. It begins
with a sharp increase as the highly profitable arcs can be added to the route of
the extra vehicle. This increase slows, at around 4 vehicles, as only less profitable
arcs remain. Eventually the curve reaches a plateau after all profitable arcs have
been included in the solutions found. Any extra vehicles beyond this point are
superfluous.

One interesting issue that can be observed is that the average performance of
LANTIME degrades after the plateau. This is due to the fact that increas-
ing the number of vehicles will increase the number of possible neighborhood
moves and hence the complexity of the search neighborhood. As neighborhood
complexity increases, a meta-heuristic, such as LANTIME, that does not ex-
haustively search each current neighborhood will not always make particularly
good neighborhood moves. Figure 6 shows the best and worst case solution
profits for both meta-heuristics. The poor average performance of LANTIME
can be explained by the increasingly poor worst case performance. That said,
the best case performance of LANTIME remains better than that for the VNS
meta-heuristic. For problem instances with increasingly complex neighborhoods
VNS rapidly converges to a local optimum. This optimum is a good solution
due to the exhaustive nature of the neighborhood search; however, the lack of
variance means that as the solution sample size increases LANTIME will be
more likely to find a more profitable solution.

6. Concluding Remarks

This paper has investigated a new problem in logistics and scheduling referred
to as the TD-MPARP. The TD-MPARP is related to other Prize-Collecting Arc
Routing Problems, but is different because it takes into account time-dependent
travel times between locations. This feature makes the model harder to solve
than problems where travel times are assumed to be static, but it also makes
the model more realistic, especially when applied in urban areas where traffic
congestion can lead to significant differences in journey times at different times
of day.

Literature related to the TD-MPARP has been reviewed and classified, particu-
larly noting the differences between efficiency oriented and overloaded problems.
The TD-MARP can be regarded as an example of an overloaded problem.

19

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

2 4 6 8 10 12 14

P
ro
fi
t

No. Vehicles

LANTIME mean
VNS mean

Figure 5: The effect of increasing the number of vehicles on profit for the mlondon-B3 instance
(run time 1 minute; sample size 10).

A precise mathematical formulation of the TD-MPARP has been produced.
However the formulation is highly non-linear and it would not be practical to
find exact optimal solutions using this formulation for problems of the size used
in this study. Two different styles of heuristic algorithms have been developed
to solve a set of benchmark instances.

Firstly, a tabu search based algorithm, named LANTIME, was modified so that
it could be applied to the TD-MPARP. Secondly, a new Variable Neighborhood
Search (VNS) algorithm was introduced for the TD-MPARP, based on an algo-
rithm developed by the authors for the TD-PARP, but extended to deal with
multiple vehicles.

The algorithms were tested over a range of different run times and the results
show that both algorithms are capable of providing good solutions. One algo-
rithm does not dominate the other under all conditions. Using the longest run
times of 30 minutes per instance, VNS tended to perform better on the smaller
instances, while LANTIME performed better on the larger instances.

Further experiments compare the results from the algorithms as the number of
vehicles increases. The best result from LANTIME is generally better than the
best result from VNS over a set of 10 runs. However, for an individual instance,
LANTIME exhibits a relatively poorer average performance as the number of
vehicles increases compared to the VNS algorithm.

The results show that good solutions can be found for the TD-MPARP for

20

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

2 4 6 8 10 12 14

P
ro
fi
t

No. Vehicles

LANTIME min
LANTIME max

VNS min
VNS max

Figure 6: The effect of increasing the number of vehicles on profit for the mlondon-B3 instance
(run time 1 minute; sample size 10).

problems of a size that might be encountered in practice. The incorporation of
time-dependent journey times enables situations where varying levels of traffic
congestion are significant to be modelled more accurately

7. References

References

[1] Julián Aráoz, Elena Fernández, and Carles Franquesa. The Clustered Prize-
Collecting Arc Routing Problem. Transportation Science, 43(3):287–300,
2009.

[2] Julián Aráoz, Elena Fernández, and Oscar Meza. Solving the Prize-
Collecting Rural Postman Problem. European Journal of Operational Re-

search, 196:886–896, 2009.

[3] Julián Aráoz, Elena Fernández, and Cristina Zoltan. Privatized Rural Post-
man Problems. Computers and Operations Research, 33:3432–3449, 2006.

[4] Claudia Archetti, Dominique Feillet, Alain Hertz, and M. Grazia Speranza.
The Undirected Capacitated Arc Routing Problem with Profits. Computers

and Operations Research, 37:1860–1869, 2010.

21

[5] Claudia Archetti, M. Grazia Speranza, Ángel Corberán, José M. Sanchis,
and Isaac Plana. The team orienteering arc routing problem. Transporta-

tion Science. In press., September 2013.

[6] Sundararajan Arunapuram, Kamlesh Mathur, and Daniel Solow. Vehi-
cle Routing and Scheduling with Full Truckloads. Transportation Science,
37(2):170–182, 2003.

[7] Dan Black, Richard Eglese, and Sanne Wøhlk. The time-dependent
prize-collecting arc routing problem. Computers and Operations Research,
40(2):526–535, 2013.

[8] Ángel Corberán, Elena Fernández, Carles Franquesa, and José M. Sanchis.
The Windy Clustered Prize-Collecting Arc Routing Problem. Transporta-
tion Science, 45(3):317–334, 2011.

[9] S. Dabia, S. Ropke, T. van Woensel, and T. De Kok. Branch and price
for the time-dependent vehicle routing problem with time windows. Trans-
portation Science, 47(3):380–396, November 2012.

[10] Mauro Dell’Amico, Francesco Maffioli, and Peter Vrbrand. On prize-
collecting tours and the asymmetric travelling salesman problem. Inter-

national Transactions in Operational Research, 2(3):297–308, July 1995.

[11] Jacques Desrosiers, Gilbert Laporte, Michel Sauve, Francois Soumis, and
Serge Taillefer. Vehicle Routing with Full Loads. Computers and Operations

Research, 15(3):219–226, 1988.

[12] Richard Eglese, Will Maden, and Alan Slater. A Road TimetableTM to
aid Vehicle Routing and Scheduling. Computers and Operations Research,
33:3508–3519, 2006.

[13] Jalel Euchi, Habib Chabchoub, and Adnan Yassine. Metaheuristics Op-
timization via Memory to Solve the Profitable Arc Tour Problem. 8th

International Conference of Modeling and Simulation, 2010.

[14] Dominique Feillet, Pierre Dejax, and Michel Gendreau. The Profitable Arc
Tour Problem: Solution with a Branch-and-Price Algorithm. Transporta-

tion Science, 39(4):539–552, 2005.

[15] Manfred Gronalt, Richard F. Hartl, and Marc Reimann. New Savings
Based Algorithm for Time Constrained Pickup and Delivery of Full Truck-
loads. European Journal of Operational Research, 151:520–535, 2003.

[16] Pierre Hansen, Nenad Mladenović, and José A. Moreno Pérez. Vari-
able Neighborhood Search. European Journal of Operational Research,
191(3):593–595, 2008.

22

[17] Kieran G. Harwood, Christine L. Mumford, and Richard Eglese. Investigat-
ing the Use of Metaheuristics for Solving Single Vehicle Routing Problems
with Time-Varying Traversal Costs. Journal of the Operational Research

Society, 64(1):34–47, 2013.

[18] S. Ichoua, Michel Gendreau, and Jean-Yves Potvin. Vehicle Dispatching
with Time-Dependent Travel Times. European Journal of Operational Re-

search, 144:379–396, 2003.

[19] Ran Liu, Zhibin Jiang, Richard Y.K. Fung, Feng Chen, and Xiao Liu.
Two-phase heuristic algorithms for full truckloads multi-depot capacitated
vehicle routing problem in carrier collaboration. Computers & Operations

Research, 37(5):950–959, May 2010.

[20] Will Maden, Richard Eglese, and Dan Black. Vehicle Routing and Schedul-
ing with Time-Varying Data: A Case Study. Journal of the Operational

Research Society, 61:515–522, 2010.

[21] Chryssi Malandraki and Mark S. Daskin. The Maximum Benefit Chinese
Postman Problem and the Maximum Benefit Traveling Salesman Problem.
European Journal of Operational Research, 65:218–234, 1993.

[22] N. Mladenović and P. Hansen. Variable Neighborhood Search. Computers

and Operations Research, 24:1097–1100, 1997.

[23] Jenny Nossack and Erwin Pesch. A truck scheduling problem arising in
intermodal container transportation. European Journal of Operational Re-

search, 230(3):666–680, November 2013.

[24] W.L. Pearn and K.H. Wang. On the Maximum Benefit Chinese Postman
Problem. Omega, 31:269–273, 2003.

[25] Christian Prins. A simple and effective evolutionary algorithm for the
vehicle routing problem. Computers and Operations Research, 31:1985–
2002, 2004.

[26] Christian Prins, Nacima Labadi, and Mohamed Reghioui. Tour splitting al-
gorithms for vehicle routing problems. International Journal of Production
Research, 47:507–536, 2009.

[27] Christian Prins, Philippe Lacomme, and Caroline Prodhon. Order-First
Split-Second Methods for Vehicle Routing Problems: A review. Trans-

portation Research Part C, 40:179–200, 2014.

[28] David Soler, José Albiach, and Eulalia Mart́ınez. A way to optimally solve
a time-dependent Vehicle Routing Problem with time windows. Operations

Research Letters, 37:37–42, 2009.

[29] Sanne Wøhlk. An approximation algorithm for the Capacitated Arc Rout-
ing Problem. The Open Operational Research Journal, 2:8–12, 2008.

23

[30] E.E. Zachariadis and C.T. Kiranoudis. Local Search for the Undirected
Capacitated Arc Routing Problem with Profits. European Journal of Op-

erational Research, 210:358–367, 2010.

24

