PHYSICAL REVIEW B VOLUME 53, NUMBER 6 1 FEBRUARY 1996-II

Subdiffusive and superdiffusive quantum transport and generalized duality

Maura Sassetti
Istituto di Fisica di Ingegneria, Istituto Nazionale di Fisica della Materia, UniversitaGenova, I-16146 Genova, ltaly

Henning Schomerus
Fachbereich Physik, UniversitaGesamthochschule Essen, D-45117 Essen, Germany

Ulrich Weiss
Institut fir Theoretische Physik, Universit&tuttgart, D-70550 Stuttgart, Germany
(Received 16 November 1995

As a generic model for transport of interacting fermions through a barrier or interstitials in a lattice, quantum
Brownian motion in a periodic potential is studied. There is a duality transformation between the continuous
coordinate or phase representation and the discrete momentum or charge representation for general frequency-
dependent damping. Sub-Ohmic friction is mapped on super-Ohmic friction, and vice versa. The mapping is
exact for arbitrary barrier height and valid at any temperature. Thus all features of the continuous model can be
investigated from analytical or numerical analysis of the discrete model. Nonperturbative results for the
frequency-dependent linear mobility including subdiffusive and superdiffusive behaviors are reported.

Quantum Brownian motion in a periodic potenti@IBM) Here we restrict the attention to the QBM transport problem,
is a generic model for many transport phenomena in conas the transcription into the fermionic problem is
densed mattérMajor themes in the past have been the phe-Straightforward _ _
nomena of quantum coherence and localization. Transport of AS another essential reason for our study, it should be
charge in one-dimensional interacting Fermi systems througftressed that it is important to perform numerical real-time
barriers or impurities within the continuousphase repre- simulations of the dynamics within the equivalent discrete

: . - . . model. The discrete variables significantly reduce the rel-
sentation of the Luttinger-liquid ”.‘Od??"s .als_o descnbed.by. evant configuration space subject to Monte Carlo sampling
the above model. The harmonic liquid in the fermionic

X compared to the continuous model, and meaningful real-time
model away from the barrier corresponds to the thermal ressimylations  in  the interesting nonperturbative  low-

ervoir in the QBM model, and the conductance in the ﬁl’Sttemperature regime are possiB|e_

model corresponds to the mobility in the latter. Short-range The system-plus-bath Hamiltonian for a Brownian par-
electron-electron interaction with coupling paramei@r ticle of massM moving in a washboard potenti@lVB) with
(g<1 in the repulsive cagecorresponds to Ohmic damping periodQq and corrugation strengtid, is

in the connected QBM model, ardis related to the Ohmic o2 _

damping parameten by g=1/a. Moreover, unscreened Hwe = P*/2M =Voco32mQ/Qo)
long-range Coulomb repulsidrcorresponds to sub-Ohmic
damping in the related QBM modéleading to strong sup- +§a‘4
pression of the conductance at low temperatures. A variety of i ) o
other physical or chemical systems involves transport of{€re we r;ave mgludgd the usual potential renormalization
charge through barriers for Ohmic or super-OhmicteM 24(C,/2M,w,)Q” which provides invariance of the
damping®® coupling = ,c,X,Q under spatial translations. As far as

Schmid has shown for Ohmic dampinthat the continu- we are interested in properties of the particle, the coupling
ous QBM transport problem &=0 can be mapped on a constantsc,, and the parameters of the bath_are relevant
tight-binding model. The mapping resulted in a duality trans-(inly /;"; thE/ Spec“;' d_ensny of the couplingyg(w)
formation for the dc mobility in which diffusive and local- _(_Iq_Th )d“(cl:a.n;]a“g?)d.(w Tga). del with ; .
ized behavior are interchanged. The mapping was general- e dual tight-bin ”.]g( ) model with transfer matrix
ized later to finite T.> Similarly, the continuous phase elementV, and translational-invariant coupling is
representation of the fermionic problem is directly related to 0, iapli
a discrete charge representation. Hg=— 7(9% +H.c)

In this paper, we generalize the mapping to frequency-
dependent damping, e.g., unscreened Coulomb interactions 72 M2 d, 2
in the fermionic problem:* Our study will reveal an exact +2 oM + 2 (Ua_ WQ) @
mapping between the respective Hamiltonians. Then, upon “ “ e
using the equations of motion, an exact duality relation be- _
tween the respective frequency-dependent linear mobilities Q=0o> naja,; glaoP/i=23 alan;1,
or conductances will be derived. Results exhibiting super- : A
diffusive, diffusive, subdiffusive, and strictly localized be- whereqg is the TB lattice constant. In the discrete represen-
haviors, depending on the parameter regime, will be giventation, the operatoral and a,, create and annihilate a par-
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ticle at the siten, respectively. The spectral density of the ing (4) with (6), we obtain an exact relation between the
environmental coupling in the tight-binding model is damping functions of the two models,
JTB(w):(W/Z)Za(di/MaQa)g(w_Qa)'

H _ 2 2
In the first step of the mapping ¢f) onto(2), we perform yre(@)ywe(®) —iw]= k7M. @
the canonical transformations € 277/Qodo), With the relationJ(w) =M wRey(w), we then have
paq_mawaxav Xa%pa/mawa—kpca/’(mawi’ ‘]WB(w):(KZIMZ)J TB(w)/|7TB(w)|2! (8)
Q—Pl«k, P—>—KQ+2 CoXolwy . Irp(@)=(k*IM?) ywg( @)/ o +i yws(w)|?. )

Thus, by use of5), the spectral density of the one model can

In the intermediate form of the Hamiltonian, the modes ofpe calculated for any form of the spectral density of the other
the environment are coupled with each other. The corremogel.

sponding term of the Hamiltonian is To be definite, let us assume a simple power-law form for
5 5 5 ) the spectral density of the WB model in the entire relevant
He=S) Pa M0 X, i( S waa) _ frequency range,
~ | 2m, 2 2M | < o,
Jwe(w) = ns0(w/®)5, 0<s<2, (10

In the next step, we diagonalizdg, thereby introducing
canonical variablesr, and u,, and parameter$!, and
Q,. By the transformation, the interaction term o (i geas—1
(kQ/M)2 ¢ X,/ w, is changed int@Q= ,d, u,. Ywe(@)=ys(—10l®)7, @)
The mapping of(1) onto (2) is completed on imposing With ys=7s/[Msin(zs/2)]. Here we have introduced for
spatial invariance of the coupling,d, u,Q, s#1 a reference frequendy so that the coupling strength
vs has the usual dimension of frequency. The cesd de-
scribes (frequency-independentOhmic dissipation, while
the cases<1 ands>1 are usually referred to as sub-Ohmic
and super-Ohmic friction.

By (3), the mapping is constrained, as we shall see. We are now in the position to make a check on the con-
The relation between the spectral functiodgg(w)  sistency of the conditiofB). There follows from(6) that the
and Jrg(w) results from properties of the dynamical constraint(3) is satisfied ifA (w) vanishes at zero frequency.
matrix A,p(w) of the reservoir HamiltonianHgz. We  Now, upon inserting11) in (4), we see that the condition

have A,p(w)=B,p(w)+CoCp/Mw,0g, Where B,g(w)  lim,  ,A(w)—0 is satisfied fors in the range 8<s<2. For

= 5aﬁma(wi—w2). Observing that the coupling terms are in s=2, we havey,g(w—0)*w. Damping becomes ineffec-
the form of an exterior vector product, it is straightforward totive in this limit, and the only remaining effect is mass
calculate the ratio of the determinants of the matrideand  renormalizatiori?

resulting in the spectral damping function,

KM=, d?/M Q2. ©)

B, A Y(w)=deA(w)/deB(w), We have thus demonstrated an exact duality between the
5 weak corrugation modéll) and the tight-binding mod€R).
A ):1+i2 Ca In the mapping, the continuous coordinafe in the WB
@ M< mawi(wi—wZ) model is identified, up to a scale factor]/with the quasi-
momentumP in the dual TB model. The mapping is possible
=1+iywe(o)/ . (4)  only for nonvanishing dissipation since otherwise the scale

ctor is infinity. Strictly speaking, the mapping holds under
e condition lim,_ w?/J(w)—0. There are no restrictions
on the form ofJ(w) at finite frequencies except those en-
forced on physical grounds. There follows froi®) or (9)
that the spectral densitlyg(w) < w® of the weak corrugation

) 20 (=, J(w") model maps on the spectral densitys(w—0)*w® of the
y(w)= lim W—ML do o (07— 02— iesgn) (5  dual TB model, whers’ =2—s. Thus formally in the spec-
0" tral densities of the coupling, the poweiis mapped on the
On the other hand, we may resolye, for B,z and then ~Power 2—s. Physically, this means that sub-Ohmic and
switch to the unitarily equivalent form in which is diago- super-Ohmic friction are interchanged in the transformation,
nal. A (0)=6,,M (02— w?). We then haveB (w) while Ohmic friction is mapped on Ohmic friction.
:A’ (‘;f)_(M/zé)d“d aFrom.this we find h Upon inserting(10) into (5) and using(9), the spectral
ap avpe density of the dual TB model takes the form

In the second line, we have introduced the spectral dampinﬁ‘;l
function yyg(w). The functiony(w) is defined in terms of
the continuous spectral density of the couplii@) of the
respective model by

A(w)—l—M A K2 »(w/®)*°
- 2 = 2_ 2 J - .
K Moy m ) re(@) =7 1+[cot( 7S/2) — (M &/ 79) (wl @)%~ 52
=—i(M%k?) 0 yrp(w), (6)

In contrast to the chosen form falyg(w), the function
where in the second line we have us€), and where Jig(w) exhibits a soft cutoff. Physically, this is due to the
vra(w) is the damping function of the TB model. Combin- finite mass of the particle in the washboard potential model
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which provides a natural cutoff in the spectral density. In thefriction has been restricted to the TB model with a very high
Ohmic case, the expression fdfg(w) reduces to the Drude cutoff frequency of the bath modes. Much of the theoretical
form ! Ja(@)x /[ 1+ (ol v,)?]. interest has been concentrated on the localization transition
After having completed the mapping of the Hamiltonians,at T=0 at friction strengthatg=1 and on the renormaliza-
we turn to a study of the respective linear ac mobilities. Firsttion group flows. For a discussion of this, and of the impli-

we observe that by the above unitary transformations a cocations of the duality relation for the WB model, we refer to
ordinate autocorrelation function of the WB model is trans-the |iterature-2''2In many interesting cases, e.g., charge

formed into a momentum autocorrelation function of the asyransfer in chemical reactions. the densltys(w) is not in
sociated TB model. From this we find for the linear mobility the simple power-law form(10), and also the finite band-

of the WB model width o, may have important influence on the dynamics.
s @)= — i 0Xrg( @)/ K2, (12) Nevertheless, the associated spectral dedsiyw) is gi\{en
) ) by (9), and one may now take advantage of performing nu-
where X+g(w) is the Fourier transform of the retarded mo- merical simulations of the equivalent TB model. We wish to
mentum response function of the TB model. On the othegmphasize that even the crossover from quantum tunneling
hand, the ac mobility of the TB model is related to the FOU-, thermal hopping across the barrier can be studied in the
rier transformYTB(w) of the respective retarded coordinate equivalent TB model.
response function of the TB model by According to the generalization given here, important
(13) conclusions can now be drawn also for non-Ohmic damping.
In the sequel, we present results obtained by analytic meth-
To relateXtg(w) to Y1g(w), we use the equations of motion ods for the TB model at low temperatures and high-

pre(w)=—ioYrg(w).

resulting from(2). This yields frequency cutoff. Upon usinfl7), we then describe the im-
5 ) s 2 2 plications for the dual WB model.
0 Xrp(w) =M o yrp(w) =M w0 y1a(®) Ya(w). Consider now first the TB model for super-Ohmic damp-
Using this, and the relationd2), (13), and(7), we find for INd- It has been shown in earlier worK that the TB model
the linear ac mobility the exact relations for 1<s'<2 is perturbative irvg at finite T and has a dif-

fusive limit urg(w—0)=u, whereu depends on tempera-
) ture and the leading term is of ordmﬁ. With decreasing
rwe(@)= ¥ 18(®) = —7 Yra(@)u (@), (14 temperature, the effective transfer matrix element of the
super-Ohmic TB model scales to higher values for fixed
wrs(@)=(M/ )] ywe(w) —io] and forT=0 andw—0 it even scales to infinity. Hence the
9 o o model becomes nonperturbative\#§ in this limit. We have
— (M) ywe(w) —iw]“uwe(®). (15  peen able to perform the resummation of the full power

The expression&?)—(9), (14), and (15) are the central rela- Series inVg.'* Interestingly, we find that the asymptotic
tions of the duality. Since they have been derived by usindehavior is independent ofV, and is wrg(w—0)
canonical transformations and commutation relations, they:(—iw/&))l‘s'uo. Thus, the tight-binding lattice is com-
are not restricted to the discrete representatiofinMost  pletely dissolved in this limit, and the mobility is that of a
remarkably, the duality holds foany spectral formof the  free super-Ohmic Brownian particle. In linear response, the
damping kernel, with the only restriction that damping re-mean position grows superdiﬁusivé&,{Q(t))octS'.
mains effective at zero frequency. Thus, there is a far more |n contrast, the sub-Ohmic TB modesd’ 1) is nonper-
general dual7it%/ between these models than considered in eg(jpative inV2 at finite T in the limit «—0. We have been
lier studiest"® Here, the corresp_o_ndenge.ls shown for theable again to sum the full power series\nﬁ,m'“yielding
frequency-dependent linear mobility. It is important that no e . L ani-s
restrictions were placed of and onV,. subdiffusive behav'or'f’“TB(wjo)f(_'“’/“’), fo, and
So far, we have considered the length sc&lgsndg, as  the subleading term isc(1NVg)(—iw/@)* . The linear
free parameters. In order to simplify the relation between thénobility vanishes in the dc limit. Regarding the behavior in

2

ac mobilities, we now make the specific choice the time regime, in linear response, the mean position
(Q(t)) grows sluggishly with subdiffusive power lat#/ . As
MysQodo/2mh=Mys/xk=1. (16)  the temperature is decreased, the effective transfer matrix

Then the standard dimensionless coupling parametefdeément of the sub-_Ohmic TB model scales to lower values
aws=:M ySQ(z)/th and ag=:M 7Sq(2)/27rﬁ are related by for fixed w, and atT=0 it vanishes with an essential singu-

Q= —1 larity «cexp(—constw) as w— 0. Hence the mobility van-
Qo o= ws= /T8 : : . ishes faster than any power ofin the zero-frequency limit
In the remainder of the discussion, we confine ourselve$® yp quency fimit,

to the low-frequency regimew/ w)<1, in which the and the Paftic'e gets strictly localized. .
relations(14) ac:1d (15))/ begome g;vnﬁﬁneztric. Upon usin@), Upon using these results of the TB model and the relation

; ; _. (17) with the mappings’—2—s, we now immediately get
(11), and(16), we obtain the relationso=:1/My5) results for the mobility of the WB model.
wwe(@) =@/ w)3 o= (1@l 0)? ?ug(w). (17) The linear mobility of the sub-Ohmic WB model at finite

Tis uwe(w—0)=(—iw/®)' °uq, and the subleading cor-
For s=1, this reduces to the duality relation of the Ohmic rection is — (—iw/®)? 2. The potential represents an ir-
caseutg(w) + uwe(w) = uo. Most analytic work on Ohmic  relevant perturbation in this regime. The mean position of the
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particle (Q(t)) grows subdiffusively=t® with s<1,%i.e.,  tion. Using the “bosonized” language, charge transfer in a
just as in the absence of the potential, and the leading potem.uttinger liquid through a barrier or impurityis also de-
tial corrections grow a$?s~ !, which is in agreement with scribed by models of the forrfl) or (2). Hence, the results
the findings in Ref. 15. AT=0, the termxw' "%, represent-  also apply to charge transport in correlated fermion systems.
ing the free Brownian particle, is canceled by the asymptotiGror instance, the linear conductanG¢w) of the impurity
expression resulting from the full power seriesM§. As a  scattering problem is related to the linear mobilitgw) in
result, the mean position of the particle grows even slowethe washboard potential with perio, by G(w)
than in the free sub-Ohmic case. _ =e?u(w)/Qj. Further, the equilibrium noise spectrum of
In the super-Ohmic WB model at finife, the superdiffu- 1o current is given bf(w) =% wcothfiw/2kgT)G(w). The

sive contnpuuon of the frg:-e Brownian motion Is Cance.ledinteresting case of unscreened Coulomb interactions in the
once again, and we find slower diffusive behavior

Lws(—0)= const. On the contrary, &i=0 the potential impurity scattering problerfiand in tunneling between edge

is an irrelevant perturbation in the super-Ohmic WB model.f;ta;isth?:lizglc“ogsle?T:ntian_ngl]lnri%u'giﬁ;\:{gs?ofz;o
Thus we obtain the superdiffusive characteristics of the free 9 y ging o

. . ive characteristics of the freg = /z).
lIiBr;Oi;anan particle uwe(w—0)=(=iw/®)" “uo in this In conclusion, we have shown that there exists a general

L : . _duality transformation between a quantum Brownian particle
Considering the fact that the system becomes increasingl; : : T
- . i i a continuous washboard potential and a dissipative tight-
sensitive to its low-frequency properties as the temperature

e : .§1|nd|ng model. Because the tight-binding approximation ig-
decreased, the above characteristics are fully consistent Wiibres excited states at each lattice site, one might think that a

Feh%s'gitiﬂ;u'E['r?en'micgili?u?s'or(;n'rzsd:i‘\r:;ﬁ)msgu anrdesdseecc;eaiségg’_‘;_eneral mapping between the two models is impossible. We
P ' Y 1S prog y supp ave shown, however, that the tight-binding model is fully

stant low frequency in both models. This is due to the dI'sensitive to all aspects of both the quantum and the thermal

Xﬁ:ﬁ'rg? Sfoicst[]al edr?(;nh%r}g é:r:t'i?? ( ﬁefﬂoﬁiﬁoisoerr:rfgﬁce OEopping dynamics of the continuous model. In fact, the tight-
Y: P ping ty inding model is reconciled with the continuous model by

V.Vith decreasing temperature in bOt.h models since the reSpe'fs'roperly taking into account the change in the spectral den-
tive spectral damping function vanishes at zero frequency.

The duality relations presented here are directly reIevan%'ty'
to numerical simulation of quantum transport in a continuous We thank R. Egger and L.S. Schulman for valuable dis-
periodic potential for any form of the spectral damping func-cussions.
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