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As a generic model for transport of interacting fermions through a barrier or interstitials in a lattice, quantum
Brownian motion in a periodic potential is studied. There is a duality transformation between the continuous
coordinate or phase representation and the discrete momentum or charge representation for general frequency-
dependent damping. Sub-Ohmic friction is mapped on super-Ohmic friction, and vice versa. The mapping is
exact for arbitrary barrier height and valid at any temperature. Thus all features of the continuous model can be
investigated from analytical or numerical analysis of the discrete model. Nonperturbative results for the
frequency-dependent linear mobility including subdiffusive and superdiffusive behaviors are reported.

Quantum Brownian motion in a periodic potential~QBM!
is a generic model for many transport phenomena in con-
densed matter.1 Major themes in the past have been the phe-
nomena of quantum coherence and localization. Transport of
charge in one-dimensional interacting Fermi systems through
barriers or impurities within the continuousu-phase repre-
sentation of the Luttinger-liquid model2 is also described by
the above model. The harmonic liquid in the fermionic
model away from the barrier corresponds to the thermal res-
ervoir in the QBM model, and the conductance in the first
model corresponds to the mobility in the latter. Short-range
electron-electron interaction with coupling parameterg
~g,1 in the repulsive case! corresponds to Ohmic damping
in the connected QBM model, andg is related to the Ohmic
damping parametera by g51/a. Moreover, unscreened
long-range Coulomb repulsion3 corresponds to sub-Ohmic
damping in the related QBM model,4 leading to strong sup-
pression of the conductance at low temperatures. A variety of
other physical or chemical systems involves transport of
charge through barriers for Ohmic or super-Ohmic
damping.5,6

Schmid has shown for Ohmic damping7 that the continu-
ous QBM transport problem atT50 can be mapped on a
tight-binding model. The mapping resulted in a duality trans-
formation for the dc mobility in which diffusive and local-
ized behavior are interchanged. The mapping was general-
ized later to finite T.1 Similarly, the continuous phase
representation of the fermionic problem is directly related to
a discrete charge representation.

In this paper, we generalize the mapping to frequency-
dependent damping, e.g., unscreened Coulomb interactions
in the fermionic problem.3,4 Our study will reveal an exact
mapping between the respective Hamiltonians. Then, upon
using the equations of motion, an exact duality relation be-
tween the respective frequency-dependent linear mobilities
or conductances will be derived. Results exhibiting super-
diffusive, diffusive, subdiffusive, and strictly localized be-
haviors, depending on the parameter regime, will be given.

Here we restrict the attention to the QBM transport problem,
as the transcription into the fermionic problem is
straightforward.2

As another essential reason for our study, it should be
stressed that it is important to perform numerical real-time
simulations of the dynamics within the equivalent discrete
model. The discrete variables significantly reduce the rel-
evant configuration space subject to Monte Carlo sampling
compared to the continuous model, and meaningful real-time
simulations in the interesting nonperturbative low-
temperature regime are possible.9

The system-plus-bath Hamiltonian for a Brownian par-
ticle of massM moving in a washboard potential~WB! with
periodQ0 and corrugation strengthV0 is

HWB5P2/2M2V0cos~2pQ/Q0!
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Here we have included the usual potential renormalization
term (a(ca

2/2mava
2)Q2 which provides invariance of the

coupling (acaxaQ under spatial translations. As far as
we are interested in properties of the particle, the coupling
constantsca and the parameters of the bath are relevant
only via the spectral density of the couplingJWB(v)
5(p/2)(a(ca

2/mava)d(v2va).
The dual tight-binding~TB! model with transfer matrix

elementV0 and translational-invariant coupling is
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whereq0 is the TB lattice constant. In the discrete represen-
tation, the operatorsan

† andan create and annihilate a par-
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ticle at the siten, respectively. The spectral density of the
environmental coupling in the tight-binding model is
JTB(v)5(p/2)(a(da

2/MaVa)d(v2Va).
In the first step of the mapping of~1! onto~2!, we perform

the canonical transformations (k52p\/Q0q0),

pa→2mavaxa , xa→pa /mava1Pca /kmava
2 ,

Q→P/k, P→2kQ1(
a

caxa /va .

In the intermediate form of the Hamiltonian, the modes of
the environment are coupled with each other. The corre-
sponding term of the Hamiltonian is

HR5(
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F pa
2

2ma
1
mava
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2

2 G1
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2M S (
a

caxa

va
D 2.

In the next step, we diagonalizeHR , thereby introducing
canonical variablespa and ua , and parametersMa and
Va . By the transformation, the interaction term
(kQ/M )(acaxa /va is changed intoQ(adaua .

The mapping of~1! onto ~2! is completed on imposing
spatial invariance of the coupling(adauaQ,

k2/M5(
a

da
2/MaVa

2 . ~3!

By ~3!, the mapping is constrained, as we shall see.
The relation between the spectral functionsJWB(v)

and JTB(v) results from properties of the dynamical
matrix Aab(v) of the reservoir HamiltonianHR . We
have Aab(v)5Bab(v)1cacb /Mvavb , where Bab(v)
5dabma(va

22v2). Observing that the coupling terms are in
the form of an exterior vector product, it is straightforward to
calculate the ratio of the determinants of the matricesA and
B, D21(v)[detA(v)/detB(v),

D21~v!511
1

M(
a

ca
2

mava
2~va

22v2!

511 igWB~v!/v. ~4!

In the second line, we have introduced the spectral damping
function gWB(v). The functiong(v) is defined in terms of
the continuous spectral density of the couplingJ(v) of the
respective model by

g~v!5 lim
e→01

2v

ipME
0

`

dv8
J~v8!

v8~v822v22 i esgnv!
. ~5!

On the other hand, we may resolveAab for Bab and then
switch to the unitarily equivalent form in whichA is diago-
nal, Ãab(v)5dabMa(Va

22v2). We then haveB̃ab(v)
5Ãab(v)2(M /k2)dadb . From this we find

D~v!512
M

k2(
a

da
2

Ma~Va
22v2!

52 i ~M2/k2!vgTB~v!, ~6!

where in the second line we have used~3!, and where
gTB(v) is the damping function of the TB model. Combin-

ing ~4! with ~6!, we obtain an exact relation between the
damping functions of the two models,

gTB~v!@gWB~v!2 iv#5k2/M2. ~7!

With the relationJ(v)5MvReg(v), we then have

JWB~v!5~k2/M2!J TB~v!/ugTB~v!u2, ~8!

JTB~v!5~k2/M2!J WB~v!/uv1 igWB~v!u2. ~9!

Thus, by use of~5!, the spectral density of the one model can
be calculated for any form of the spectral density of the other
model.

To be definite, let us assume a simple power-law form for
the spectral density of the WB model in the entire relevant
frequency range,

JWB~v!5hsṽ~v/ṽ !s, 0,s,2, ~10!

resulting in the spectral damping function,

gWB~v!5gs~2 iv/ṽ !s21, ~11!

with gs5hs /@Msin(ps/2)#. Here we have introduced for
sÞ1 a reference frequencyṽ so that the coupling strength
gs has the usual dimension of frequency. The cases51 de-
scribes ~frequency-independent! Ohmic dissipation, while
the casess,1 ands.1 are usually referred to as sub-Ohmic
and super-Ohmic friction.

We are now in the position to make a check on the con-
sistency of the condition~3!. There follows from~6! that the
constraint~3! is satisfied ifD(v) vanishes at zero frequency.
Now, upon inserting~11! in ~4!, we see that the condition
limv→0D(v)→0 is satisfied fors in the range 0,s,2. For
s>2, we havegWB(v→0)}v. Damping becomes ineffec-
tive in this limit, and the only remaining effect is mass
renormalization.10

We have thus demonstrated an exact duality between the
weak corrugation model~1! and the tight-binding model~2!.
In the mapping, the continuous coordinateQ in the WB
model is identified, up to a scale factor 1/k, with the quasi-
momentumP in the dual TB model. The mapping is possible
only for nonvanishing dissipation since otherwise the scale
factor is infinity. Strictly speaking, the mapping holds under
the condition limv→0v

2/J(v)→0. There are no restrictions
on the form ofJ(v) at finite frequencies except those en-
forced on physical grounds. There follows from~8! or ~9!
that the spectral densityJWB(v)}vs of the weak corrugation
model maps on the spectral densityJTB(v→0)}vs8 of the
dual TB model, wheres8522s. Thus formally in the spec-
tral densities of the coupling, the powers is mapped on the
power 22s. Physically, this means that sub-Ohmic and
super-Ohmic friction are interchanged in the transformation,
while Ohmic friction is mapped on Ohmic friction.

Upon inserting~10! into ~5! and using~9!, the spectral
density of the dual TB model takes the form

JTB~v!5
k2

hs

ṽ~v/ṽ !22s

11@cot~ps/2!2~M ṽ/hs!~v/ṽ !22s#2
.

In contrast to the chosen form forJWB(v), the function
JTB(v) exhibits a soft cutoff. Physically, this is due to the
finite mass of the particle in the washboard potential model
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which provides a natural cutoff in the spectral density. In the
Ohmic case, the expression forJTB(v) reduces to the Drude
form,1 JTB(v)}v/@11(v/g1)

2#.
After having completed the mapping of the Hamiltonians,

we turn to a study of the respective linear ac mobilities. First,
we observe that by the above unitary transformations a co-
ordinate autocorrelation function of the WB model is trans-
formed into a momentum autocorrelation function of the as-
sociated TB model. From this we find for the linear mobility
of the WB model

mWB~v!52 ivXTB~v!/k2, ~12!

whereXTB(v) is the Fourier transform of the retarded mo-
mentum response function of the TB model. On the other
hand, the ac mobility of the TB model is related to the Fou-
rier transformYTB(v) of the respective retarded coordinate
response function of the TB model by

mTB~v!52 ivYTB~v!. ~13!

To relateXTB(v) to YTB(v), we use the equations of motion
resulting from~2!. This yields

v2XTB~v!5 iMvgTB~v!2M2v2gTB
2 ~v!YTB~v!.

Using this, and the relations~12!, ~13!, and~7!, we find for
the linear ac mobility the exact relations

mWB~v!5
M

k2g TB~v!2
M2

k2 gTB
2 ~v!m TB~v!, ~14!

mTB~v!5~M /k2!@gWB~v!2 iv#

2~M2/k2!@gWB~v!2 iv#2mWB~v!. ~15!

The expressions~7!–~9!, ~14!, and~15! are the central rela-
tions of the duality. Since they have been derived by using
canonical transformations and commutation relations, they
are not restricted to the discrete representation in~2!. Most
remarkably, the duality holds forany spectral formof the
damping kernel, with the only restriction that damping re-
mains effective at zero frequency. Thus, there is a far more
general duality between these models than considered in ear-
lier studies.1,7,8 Here, the correspondence is shown for the
frequency-dependent linear mobility. It is important that no
restrictions were placed onT and onV0 .

So far, we have considered the length scalesQ0 andq0 as
free parameters. In order to simplify the relation between the
ac mobilities, we now make the specific choice

MgsQ0q0 /2p\[Mgs /k51. ~16!

Then the standard dimensionless coupling parameters
aWB5:MgsQ0

2/2p\ andaTB5:Mgsq0
2/2p\ are related by

Q0 /q05aWB51/aTB .
In the remainder of the discussion, we confine ourselves

to the low-frequency regimev/gWB(v)!1, in which the
relations~14! and ~15! become symmetric. Upon using~7!,
~11!, and~16!, we obtain the relation (m05:1/Mgs)

mWB~v!5~ i ṽ/v!s21m02~ i ṽ/v!2s22mTB~v!. ~17!

For s51, this reduces to the duality relation of the Ohmic
case,mTB(v)1mWB(v)5m0 . Most analytic work on Ohmic

friction has been restricted to the TB model with a very high
cutoff frequency of the bath modes. Much of the theoretical
interest has been concentrated on the localization transition
at T50 at friction strengthaTB51 and on the renormaliza-
tion group flows. For a discussion of this, and of the impli-
cations of the duality relation for the WB model, we refer to
the literature.1,2,11,12 In many interesting cases, e.g., charge
transfer in chemical reactions, the densityJWB(v) is not in
the simple power-law form~10!, and also the finite band-
width vc may have important influence on the dynamics.
Nevertheless, the associated spectral densityJTB(v) is given
by ~9!, and one may now take advantage of performing nu-
merical simulations of the equivalent TB model. We wish to
emphasize that even the crossover from quantum tunneling
to thermal hopping across the barrier can be studied in the
equivalent TB model.

According to the generalization given here, important
conclusions can now be drawn also for non-Ohmic damping.
In the sequel, we present results obtained by analytic meth-
ods for the TB model at low temperatures and high-
frequency cutoff. Upon using~17!, we then describe the im-
plications for the dual WB model.

Consider now first the TB model for super-Ohmic damp-
ing. It has been shown in earlier work5,13 that the TB model
for 1,s8,2 is perturbative inV0

2 at finiteT and has a dif-
fusive limit mTB(v→0)5m̄, wherem̄ depends on tempera-
ture and the leading term is of orderV0

2 . With decreasing
temperature, the effective transfer matrix element of the
super-Ohmic TB model scales to higher values for fixedv,
and forT50 andv→0 it even scales to infinity. Hence the
model becomes nonperturbative inV0

2 in this limit. We have
been able to perform the resummation of the full power
series inV0

2 .14 Interestingly, we find that the asymptotic
behavior is independent ofV0 and is mTB(v→0)
5(2 iv/ṽ)12s8m0 . Thus, the tight-binding lattice is com-
pletely dissolved in this limit, and the mobility is that of a
free super-Ohmic Brownian particle. In linear response, the
mean position grows superdiffusively,10 ^Q(t)&}ts8.

In contrast, the sub-Ohmic TB model (s8,1) is nonper-
turbative inV0

2 at finiteT in the limit v→0. We have been
able again to sum the full power series inV0

2 ,13,14 yielding

subdiffusive behaviormTB(v→0)5(2 iv/ṽ)12s8m0 , and
the subleading term is}(1/V0

2)(2 iv/ṽ)222s8. The linear
mobility vanishes in the dc limit. Regarding the behavior in
the time regime, in linear response, the mean position

^Q(t)& grows sluggishly with subdiffusive power lawts8. As
the temperature is decreased, the effective transfer matrix
element of the sub-Ohmic TB model scales to lower values
for fixedv, and atT50 it vanishes with an essential singu-
larity }exp(2const/v) as v→0. Hence the mobility van-
ishes faster than any power ofv in the zero-frequency limit,
and the particle gets strictly localized.

Upon using these results of the TB model and the relation
~17! with the mappings8→22s, we now immediately get
results for the mobility of the WB model.

The linear mobility of the sub-Ohmic WB model at finite
T is mWB(v→0)5(2 iv/ṽ)12sm0 , and the subleading cor-
rection is2(2 iv/ṽ)222sm̄. The potential represents an ir-
relevant perturbation in this regime. The mean position of the
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particle ^Q(t)& grows subdiffusively}ts with s,1,10 i.e.,
just as in the absence of the potential, and the leading poten-
tial corrections grow ast2s21, which is in agreement with
the findings in Ref. 15. AtT50, the term}v12s, represent-
ing the free Brownian particle, is canceled by the asymptotic
expression resulting from the full power series inV0

2 . As a
result, the mean position of the particle grows even slower
than in the free sub-Ohmic case.

In the super-Ohmic WB model at finiteT, the superdiffu-
sive contribution of the free Brownian motion is canceled
once again, and we find slower diffusive behavior,
mWB(v→0)5const. On the contrary, atT50 the potential
is an irrelevant perturbation in the super-Ohmic WB model.
Thus we obtain the superdiffusive characteristics of the free
Brownian particle mWB(v→0)5(2 iv/ṽ)12sm0 in this
limit.

Considering the fact that the system becomes increasingly
sensitive to its low-frequency properties as the temperature is
decreased, the above characteristics are fully consistent with
physical intuition. For sub-Ohmic damping and decreasing
temperature, the mobility is progressively suppressed at con-
stant low frequency in both models. This is due to the di-
verging spectral damping functiong(v) for v→0. On the
contrary, for super-Ohmic damping the mobility is enhanced
with decreasing temperature in both models since the respec-
tive spectral damping function vanishes at zero frequency.

The duality relations presented here are directly relevant
to numerical simulation of quantum transport in a continuous
periodic potential for any form of the spectral damping func-

tion. Using the ‘‘bosonized’’ language, charge transfer in a
Luttinger liquid through a barrier or impurity2 is also de-
scribed by models of the form~1! or ~2!. Hence, the results
also apply to charge transport in correlated fermion systems.
For instance, the linear conductanceG(v) of the impurity
scattering problem is related to the linear mobilitym(v) in
the washboard potential with periodQ0 by G(v)
5e2m(v)/Q0

2 . Further, the equilibrium noise spectrum of
the current is given byS(v)5\vcoth(\v/2kBT)G(v). The
interesting case of unscreened Coulomb interactions in the
impurity scattering problem,4 and in tunneling between edge
states of fractional quantum Hall liquids,16 corresponds to
logarithmically diverging sub-Ohmic behavior,g(v→0)
}2 ln(v/ṽ).

In conclusion, we have shown that there exists a general
duality transformation between a quantum Brownian particle
in a continuous washboard potential and a dissipative tight-
binding model. Because the tight-binding approximation ig-
nores excited states at each lattice site, one might think that a
general mapping between the two models is impossible. We
have shown, however, that the tight-binding model is fully
sensitive to all aspects of both the quantum and the thermal
hopping dynamics of the continuous model. In fact, the tight-
binding model is reconciled with the continuous model by
properly taking into account the change in the spectral den-
sity.
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