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Abstract. We discuss semiclassical approximations of the
spectrum of the periodically kicked top, both by diagonaliz-
ing the semiclassically approximated Floquet matrixF and
by employing periodic-orbit theory. In the regular case when
F accounts only for a linear rotation periodic-orbit theory
yields the exact spectrum. In the chaotic case the first method
yields the quasienergies with an accuracy of better than 3%
of the mean spacing. By working in the representation where
the torsional part of the Floquet matrix is diagonal our semi-
classical work is mostly an application of the asymptotics of
the rotation matrix, i. e. of Wigner’s so-calledd-functions.

1. Introduction

We present a semiclassical study of periodically kicked tops.
Our aim are approximations for the quasienergy spectrum
valid irrespective of whether the classical limit yields regu-
lar, chaotic, or mixed dynamics.

Kicked tops [1–4] are worthy of ambitious endeavors
for various reasons: (i) The finite dimension of their Hilbert
space precludes the appearance of infinities in periodic-orbit
expansions̀a la Gutzwiller. (ii) The Hilbert space dimen-
sion is a measure of (the inverse of) Planck’s constant and
therefore yields a convenient handle for implementing the
semiclassical limit. (iii) The accuracy of semiclassical ap-
proximations is easily checked since, again due to the fi-
nite dimension of the Hilbert space, the exact quasienergy
spectrum is readily obtained numerically. (iv) Under condi-
tions of chaos the fluctuations in the quasienergy spectrum
are particularly faithful to the predictions of random-matrix
theory; such tops may thus said to display generic quan-
tum chaos. (v) A good semiclassical understanding of the
top might eventually give clues to a semiclassical theory of
localization inasmuch as the prototypical system with quan-
tum localization, the kicked rotator, is but a special case of
the top. (vi) Another special case is linear rotation and here
the unitary Floquet operator has Wigner’s well-knownd-
functions as matrix representatives. Interestingly, semiclas-
sical theory gives approximate eigenfunctions but the exact
Floquet spectrum in this regular case, reminding one of what

happens to the harmonic oscillator or the hydrogen atom in
semiclassical treaments.

The dynamical variables of our tops are the components
of an angular momentumJ which obey the commutation
relations [Jx, Jy] = iJz etc. The squared angular momentum
is thus a conserved quantity,J2 = j(j + 1) with j integer
or half integer. The quantum numberj also determines the
dimension of the Hilbert space as 2j + 1. The particular
top to be studied here has its stroboscopic period-to-period
dynamics described by the Floquet operator [2]

F = e−i
k

2j+1J
2
ze−iβJy . (1.1)

One confronts a rotation by the angleβ about they-axis
followed by a torsion of strengthk about thez-axis; the
torsion may obviously be interpreted as a rotation by an an-
gle proportional toJz. Since for vanishing torsion strength,
k = 0, we deal with the classically regular case of pure rota-
tion it is the element of nonlinearity present in the generator
J2
z of the torsion which, together with the factorization ofF

into a rotational and a torsional term, makes possible chaotic
behavior of the classical version of the top. We would like
to emphasize that with respect to earlier papers we have
here changed the torsion generator by replacing the quan-
tum numberj with the semiclassical magnitudej + 1/2 of
the angular momentum, writingk/(2j + 1) instead ofk/2j.
This slight change yields an important simplification of the
semiclassical matrix elements and trace ofF .

Two semiclassical paths towards the Floquet spectrum
have been explored. The traditional one proceeds through
semiclassical approximations for the traces of powers of the
Floquet operator, trFn, with the integer exponent ranging
from n = 1 ton = j for integerj and ton = j+ 1

2 for halfinte-
gerj. This is the variant of Gutzwiller’s periodic-orbit theory
pertinent to periodically driven systems since then-th such
trace can be expressed semiclassically in terms of properties
of period-n orbits of the classical stroboscopic dynamics.
Since large values ofj are required for the semiclassical ap-
proximation to become reliable one runs into the problem,
in the case of classical chaos, of the exponential prolifera-
tion of periodic orbits with increasing length. Leaving the
chaotic case for a future investigation we shall here employ
the periodic-orbit strategy to the regular case of pure rota-
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tion. As we shall see, for generic values of the rotation angle
β there is only a pair of trivial fixed points of the classical
stroboscopic map which also makes up, uponn-fold repeti-
tion, the only period-n orbits and the ensuing semiclassical
traces trFn yield the exact spectrum of the rotation matrix.

A second scheme of securing semiclassical spectra has
been suggested recently [5]. It consists of approximating, in
a suitable representation, all elements of the Floquet matrix
which latter is then diagonalized numerically. Employing a
basis formed of angular-momentum coherent states we had
previously found the quasienergies for values ofj ranging
from about unity up to 200 in this way. The accuracy reached
was surprisingly good, the typical error not exceeding 3%
of the mean spacing under conditions of global chaos and
even slightly better for torsion strengths sufficiently small to
secure dominantly regular classical behavior.

We here take up the method of diagonalizing the semi-
classically approximated Floquet matrix but work, instead of
with coherent states, in the (J2, Jz)-basis. Some interesting
thoughts are tied with that change of basis. Coherent states
have the intuitive appeal that their “support” in the classical
phase space shrinks to a point in the classical limitj →∞.
Incidentally, the phase space is the sphere limj→∞ J2/j2 = 1
and a coherent state roughly covers an area 4π/(2j + 1) on
that sphere. The (2j + 1) dimensional Hilbert space of the
top is of course vastly overpopulated by the coherent states:
Their set is as dense as the set of points on the sphere. As a
consequence, the coherent states are non-orthogonal among
one another. To form a complete set one must choose some
grid of 2j + 1 points on the sphere and the states located on
them. A matrix element between two coherent states cannot
be associated, in the classical limit, with a real solution of
the classical stroboscopic map unless the location of the fi-
nal state happens to be the classical image of the location of
the initial state; indeed, specification of both the initial and
final phase space point in general amounts to an overdeter-
mination of the classical motion. Still, the semiclassical ap-
proximation for each matrix element ofF leads to a certain
stationary-phase condition which is identical in appearance
with the classical stroboscopic map; inasmuch as a solution
of that map determines the value of the matrix element and
inasmuch as that solution is overdetermined from a classical
point of view, one confronts so-called ghost orbits which run
through a complexified version of the classical phase space
[6, 7]. Unfortunately, the number of ghost solutions of the
boundary-value problem is in general infinite and, even more
deplorably, at least for not too large values ofj several or
even many such ghosts may make sizable contributions to
a given matrix element. The coherent-state based semiclas-
sical determination of the quasienergy spectrum of the top
was therefore somewhat of a tour de force and certainly
more demanding of numerical means and even mathemat-
ical finesse than the straightforward diagonalization of the
unapproximated Floquet matrix. Nevertheless, the success
eventually reached was enjoyable since it showed that clas-
sical chaos does not preclude validity of some semiclassical
approximation; a bit of consolation for the immense amount
of work could be seen in the fact that for values ofj as large
as, say, 100 one can hardly imagine an implementation of a
periodic-orbit expansion under conditions of global chaos.

We shall here rejoice in a considerable gain of efficiency
brought about by employing the familiar (2j + 1) eigenstates
|j,m〉 of Jz for fixed eigenvaluej(j +1) of J2 as a basis set.
The eigenvaluem of Jz is related to a convenient classical
phase space variable, the polar angleθ defined with respect
to thez-axis asm =

√
j(j + 1) cosθ; we shall take cosθ as

the classical momentum and the azimuthφ as the canoni-
cally conjugate coordinate. The basis state|j,m〉 can thus be
visualized as the circular section of the spherical phase space
with the plane of constant cosθ which leaves the azimuth
φ free to range in 0≤ φ ≤ 2π. Clearly then, the matrix
element of the Floquet operator can be associated with a
solution of the classical stroboscopic map with fixed initial
and final values of the momentum, the coordinateφ remain-
ing unspecified; no overdetermination of the classical orbit
is incurred. Upon inspection of the boundary-value problem
in question we find that roughly the fraction (π sinβ)/4 of
all matrix elements is related to a pair of real classical orbits
while the remainder do not correspond to classically allowed
pairs of initial and final momenta and can therefore at best
be associated with complex ghost orbits; in both cases the
semiclassical matrix element takes the familiar WKB form
corresponding to classically allowed or classically forbid-
den boundary data. Since even in the latter case we did not
encounter cases where more than one ghost matters we en-
counter closed-form expressions for all semiclassical matrix
elements which are as easy to evaluate as their exact quan-
tum partners. Upon diagonalizing the semiclassical matrix
we again encounter the fine accuracy previously met with
when working with coherent states, i. e. a mean error of less
than 3% of the mean spacing 2π/(2j + 1) of quasienergies.

Incidentally, since the torsion part of the Floquet oper-
ator (1.1) is diagonal in the (J2, Jz)-representation all the
work in determining the semiclassical Floquet matrix goes
into the matrix elements of the rotation operator, often called
Wigner’s d-functionsdjmf ,mi

=
〈
j,mf

∣∣e−iβJy ∣∣ j,mi

〉
. For-

tunately, the semiclassicald-functions are well known [8, 9].

2. Quantum rotation matrix and classical map

Let us consider an initial quantum state|j,mi〉 and imagine
a rotation by the angleβ about they-axis which turns our
initial state intoe−iβJy |j,mi〉. The probability amplitude to
find some “final” valuemf of Jz in the rotated state is given
by the matrix element

djmf ,mi
(β) = 〈j,mf | e−iβJy |j,mi〉 . (2.1)

A semiclassical image of the final state|j,mf 〉 is the
cone of possible directions of the angular-momentum vector
of length√
j(j + 1)≈ j + 1/2≡ J (2.2)

and projectionmf on the z-axis (see Fig. 1). This cone
has thez-axis as its symmetry axis; its semiangle at the
top is θf = arccos(mf/J). On the other hand, the rotated
statee−iβJy |j,mi〉 is depicted by a cone whose axisz′ lies
in the x-z-plane and includes the angleβ with the z-axis;
its semiangle at the top isθi = arccos(mi/J). The event
whose probability amplitude equals Wigner’sd-function cor-
responds semiclassically to the crossings of these two cones.
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Fig. 1. Cones of the angular-momentum vector for the rotated initial state exp(−iβJy)|mi〉 and reference state|mf 〉, for β = π/2. Their lines of intersection
are the semiclassical image of the event characterized by Wigner’sd-function; they also indicate the two final directions of the angular momentum possible
for the given initial and final polar anglesθi, θf . The three images belong to three different matrix elements:a within the classically allowed region,b on
the elliptic borderJ2 sin2 β −m2

i −m2
f + 2mimf cosβ = 0 which actually is a circle in the caseβ = π/2 (see Sect. 3), andc in the classically forbidden

region with no intersection between the cones. The symbolic equation depicts the location of the matrix elements pertaining to the conesa, b, c

There are two, one, or no lines of crossing if the sum of the
polar anglesθf +θi is larger than, equal to, or smaller thanβ.
If there is no crossing, thed-function becomes exponentially
small.

We now proceed to the classical map describing the ro-
tation of the vectorJ by the angleβ about they-axis. The
spherical anglesθi, φi of the initial vector are mapped into
θf , φf as

cosθf = cosθi cosβ − sinθi cosφi sinβ

sinθf cosφf = cosθi sinβ + sinθi cosφi cosβ

sinθf sinφf = sinθi sinφi. (2.3)

We can speak of a trajectory drawn out between the ini-
tial pair θi, φi and the final pairθf , φf as the rotation angle
grows from zero toβ. Suppose now that we do not fix the
initial angles but instead the polar angles (θi, θf ) of both
the initial and final angular momentum. To identify the tra-
jectories connecting these boundary data we must seek the
azimuthal anglesφi, φf . To that end we may again resort
to Fig. 1; the intersection(s) of the two cones specify the
final direction(s) of the angular momentum compatible with
classically specified initial and final polar angles,θi, θf . The

corresponding final azimuths are zero, one, or two in number
and read, in the latter two cases,

φ±f = ± arccos
mi −mf cosβ

sinβ
√
J2 −m2

f

, (2.4)

with mi,f = J cosθi,f . The initial directions of the angu-
lar momentum can be obtained from the final ones by the
inverse rotation (by the angle−β about they-axis, after
interchangingmi andmf ). Their azimuths are thus

φ±i = ± arccos
mi cosβ −mf

sinβ
√
J2 −m2

i

. (2.5)

Here and throughout the paper we assume that the inverse
trigonometric functions are given by their principal values
and that the azimuths are limited to the interval [−π, π].
Obviously, the two final points as well as the two initial
points are reflections of one another in thex-z-plane.

It is worth emphasizing the important difference between
the initial-value problem (θi, φi given) and the boundary-
value problem (θi, θf given): while the former has a unique
solution (θf , φf ), the boundary-value problem has, in gen-
eral, two different solutions (φ+

i , φ
+
f ) and (φ−i , φ

−
f ). Of course,
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the continuous trajectories leading from the initial points to
the final ones as the rotation angle is increased from zero to
β are also two in number and run symmetrically with respect
to thex-z-plane.

The classical rotation (2.3) can be looked upon as a
canonical transformation for the pair of variablesm =
J cosθ, φ with the generating function

S0(mf ,mi) =
mi

J
arccos

mi cosβ −mf

sinβ
√
J2 −m2

i

− mf

J
arccos

mi −mf cosβ

sinβ
√
J2 −m2

f

+ arccos
mfmi − J2 cosβ√
(J2 −m2

f )(J2 −m2
i )
. (2.6)

That function also has the meaning of the action of the trajec-
tory connecting the initial and final points. The derivatives of
S0 with respect tomi,mf yield, as the “coordinates” canon-
ically conjugate to the “momenta”mf ,mi, the azimuthsφ+

i
and−φ+

f ,

J∂S0/∂mi = arccos
mi cosβ −mf

sinβ
√
J2 −m2

i

= φ+
i

J∂S0/∂mf = − arccos
mi −mf cosβ

sinβ
√
J2 −m2

f

= −φ+
f . (2.7)

ReplacingS0 by−S0 we obtain the other trajectory connect-
ing the initial and final momenta, the azimuths of which are
φ−i = −φ+

i , φ−f = −φ+
f . We shall in the following account

for the two trajectories by introducing a factorσ = ±1 and
writing σS0 for the action.

3. WKB approximation for rotation matrix elements

In the limit of large total angular momentum,j � 1,
Wigner’s d-functions can be approximated semiclassically.
Deferring a sketch of the derivation of the well-known WKB
form [8, 10, 11] to Appendix A we here simply quote the
result obtained for rotation anglesβ in the interval [0, π],

djmf ,mi
(β) = (−1)j

√
2J
π

∣∣∣∣ ∂2S0

∂mi∂mf

∣∣∣∣ cos(JS0 − π/4) , (3.1)

whereS0 is the classical action given in (2.6) and, again,
J = j + 1

2. Curiously, the connection of this well-known
asymptotic form of thed-function with the classical rotation
map (i. e. the appearance of the generating function of the
classical map in the semiclassical phase ofdjmf ,mi

) seems
not to have been paid much attention before (see, however,
Ref. [12]).

The prefactor of the cosine in the semiclassicald-function
(3.1) involves the second mixed derivative

∂2S0

∂mi∂mf
=

1
J

∂φi
∂mf

=
1

J
√
J2 sin2 β −m2

i −m2
f + 2mimf cosβ

. (3.2)

0

0

mf

mi

Fig. 2. Elliptic boundary of classically allowed transitions in themi-mf -
plane. The gray shade indicates, forj = 50 andβ = 1, the squared modulus
of the matrix element: One sees rapid oscillations inside the classically
allowed region and exponential decay outside

The semiclassical approximation (3.1) is valid when the tran-
sition mi → mf is classically allowed, i. e. when the cones
in Fig. 1 intersect. According to the geometrical interpre-
tation given above the classically accessible range of the
quantum numbersmf , mi can be characterized by the in-
equalityθf + θi ≥ β which implies

R(mf ,mi)

≡ J2 sin2 β −m2
i −m2

f + 2mimf cosβ > 0. (3.3)

This inequality determines the area inside an ellipse in the
mi-mf -plane inscribed into the square−J ≤ mi,mf ≤ J .
It is easy to see that the axes of the ellipse coincide
with the diagonals of the square and that its semiaxes
are

√
2J cos(β/2) and

√
2J sin(β/2). The ellipse touches

the boundary of the square in the four points (mi,mf ) =
(±J,±J cosβ), (±J cosβ,±J). In the special case of a ro-
tation byβ = π/2 the ellipse turns into a circle. Each integer
point (mi,mf ) within the elliptic region (3.3) corresponds to
a pair of classical trajectories. The points outside of the re-
gion (3.3) determine trajectories with complex initial and fi-
nal azimuths and are consequently of the “ghost” type [6, 7].
Forbidden pairs have complex actionsS0 and thus exponen-
tially small values of thed-function.

At the boundary of the classically allowed domain,
R(mf ,mi) = 0, the second mixed derivative of the actionS0
(3.2) and thus the naive WKB approximation (3.1) diverge.
This well-known breakdown is overcome by the so-called
uniform WKB approximation [13] the derivation of which
we also briefly comment on in Appendix A. It suffices to
write down the uniformly approximatedd-function under the
restriction

0< β < π/2, mi > 0, |mf | < mi, (3.4)

since the symmetry properties

djmf ,mi
(β) = (−1)mf−midjmi,mf

(β)

= dj−mi,−mf
(β) = (−1)mf−midjmf ,mi

(−β)

= (−1)j−midj−mf ,mi
(π − β) (3.5)
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yield thed-functions outside these limitations. The uniformly
approximated matrix element then takes two slightly differ-
ent forms depending on the sign ofmf − mi cosβ. First
consider

mf < mi cosβ. (3.6)

Then the Airy function Ai (λ) appears as

djmfmi
(β) =

[ −4λ
R(mf ,mi)

]1/4

Ai (λ). (3.7)

For classically allowed index pairs (R(mf ,mi) > 0) the
argumentλ of the Airy function is expressed in terms of the
classical action as

λ = −
{

3
2
J
[
π − S0(mf ,mi)

]}2/3

, (3.8)

while in the classically forbidden regionπ−S0 is imaginary
and we have

λ =

{
3
2
J Im

[−S0(mf ,mi)
]}2/3

(3.9)

with

Im
[−S0(mf ,mi)

]
= −mf

J
arcosh

mi −mf cosβ

sinβ
√
J2 −m2

f

+
mi

J
arcosh

|mi cosβ −mf |
sinβ

√
J2 −m2

i

−arcosh
|mfmi − J2 cosβ|√
(J2 −m2

f )(J2 −m2
i )
. (3.10)

Recalling that we have just specified the uniform WKB
approximation assumingmf < mi cosβ, we now turn to
the opposite case,mf ≥ mi cosβ. The following modifica-
tions must be made in the expressions given: (i) The factor
(−1)j−mi should be introduced in the r. h. s. of (3.7); (ii)
in (3.8) π − S0 should be replaced byS0 − (mi/J)π; (iii)
the sign of the first term in the r. h. s. of (3.10) should be
changed.

It is worth noting that, formf ,mi considered continuous,
the two definitions (3.8,3.9) of the argumentλ of the Airy
function join smoothly at the elliptic borderR(mf ,mi) = 0
of the classically allowed and forbidden regions in themf -
mi-plane. In fact,λ vanishes identically on that line; this
is most easily seen when approaching the border from the
classically forbidden region; according toR(mf ,mi) = 0,
the arguments of all three inverse hyperbolic functions in
(3.10) are equal to unity such that indeed ImS0 = 0 and thus
λ = 0 on the elliptic border line. Reasoning similarly when
approaching the ellipse from within its classically allowed
inside, one findsS0 = π and thus againλ = 0.

It is well known that the WKB approximation loses its
accuracy for the wave function of the ground state of an
autonomous quantum system, due to the close approach of
two turning points of the classical motion. For the same rea-
son, semiclassical approximations for Wigner’sd-functions
(including the uniform approximation (3.7)) become inaccu-
rate when a pair (mf ,mi) approaches any one of the four
points of tangency between the ellipse limiting the classi-
cally allowed region and the linesmf ,mi = ±J . Near these

points improved asymptotics can be obtained through the
so-called harmonic-oscillator approximation [9]. As we in-
dicate in Appendix A, thed-function with mi fixed then
obeys a second-order differential equation with the indepen-
dent variablemf . That differential equation turns out as the
Schr̈odinger equation for the harmonic oscillator with~ = 1,
massm = (J sin2 β)−1, and frequencyω = 1. Denoting its
eigenfunctions byψn(x) we obtain, near the tangency point
mi = J ≈ j, mf = J cosβ,

djmf ,mi
(β) ≈ ψj−mi

(J cosβ −mf ). (3.11)

The behavior near the other three points of tangency can be
obtained through the symmetry relations (3.5).

4. Semiclassical trace of the Floquet operator

At this point we generalize our discussion to the kicked top
with the Floquet operator (1.1). Of course, the case of pure
linear rotation is recovered by setting the torsion strengthk
equal to zero. We are interested in the semiclassical limit
of the spectrum of the Floquet operatorF which can be
obtained if we know the characteristic polynomial ofF .
Coefficients of the latter are simply connected with the traces
of the powers of the operatorF , i. e. trF , trF 2, . . . , trF j

[14]. We shall show that trFn can be expressed through the
actions of the period-n solutions of the map corresponding
to the operatorF in the classical limit. This map describes
a rotation about they-axis by β (see (2.5)) followed by a
nonlinear torsion about thez-axis. The latter leads to an
increment of the azimuthφf proportional tomf so that the
composite transformation reads

θi = arccos(mi/J), φ±i = ± arccos
mi cosβ −mf

sinβ
√
J2 −m2

i

θf = arccos(mf/J),

φ±f = ± arccos
mi −mf cosβ

sinβ
√
J2 −m2

f

+ (k/J)mf . (4.1)

The angleφf in the equations (2.3) should likewise be in-
creased by (k/J)mf .

Let us begin by calculating the semiclassical value of the
trace of the first power ofF . With the help of the|jm〉-basis
we may write

trF =
∑
m

e−ikm
2/(2J)djm,m(β). (4.2)

We here replace the Wigner functions by their WKB asymp-
totics and thus obtain a sum of terms which may be con-
sidered as continuous functions of the quantum numberm.
We then invoke Poisson’s formula to replace the summation
overm by a sum of integrals overm,

j∑
m=−j

f (m) =
∞∑

n=−∞

∫ j+1/2

−j−1/2
dmf (m)e−i2πnm. (4.3)

We shall use the simple semiclassical asymptotics (3.1)
for thed-functions. Employing, instead ofm, the “classical”
integration variableξ = m/J , we introduce the total classi-
cal actionS(ξf , ξi, σ) which includes the rotational partS0

defined in the previous section and the torsional partkξ2
f/2,
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S(ξf , ξi, σ) = σS0(Jξf , Jξi)−
kξ2

f

2
=

= σ

ξi arccos
ξi cosβ − ξf

sinβ
√

1− ξ2
i

− ξf arccos
ξi − ξf cosβ

sinβ
√

1− ξ2
f

+ arccos
ξfξi − cosβ√

(1− ξ2
f )(1− ξ2

i )

− kξ2
f

2
. (4.4)

We recall that the discrete variableσ = ±1 serves to dis-
tinguish the two symmetric classical trajectories arising for
fixed initial and final polar angles. Obviously, the torsional
part of the action yields the correct shiftkmf/J = kξf of
the final azimuth throughφf = −∂S/∂ξf . Our trace (4.2)
now takes the semiclassical form

trF = (−1)j
∑
σ=±1

∑
n

∫
dξ

×
√

J

2π

∣∣∣∣ ∂2S

∂ξf∂ξi

∣∣∣∣
ξf=ξi=ξ

eiJ [S(ξ,ξ,σ)−2πnξ]−iσπ/4. (4.5)

Since the second mixed derivative of the torsional part
of S vanishes identically we could express the normalizing
factor of thed-function in terms ofS rather than the rota-
tional actionS0. Thus, the derivative in the radicand of (4.5)
has the explicit form

∂2S(ξf , ξi, σ)
∂ξf∂ξi

∣∣∣∣
ξf=ξi=ξ

=
σ√

sin2 β − 2ξ2(1− cosβ)
. (4.6)

To fully implement the semiclassical approximation we
treat each integral in the sum (4.5) by the stationary-phase
method. The points of stationary phase are determined by
(d/dξ) [S(ξ, ξ, σ)− 2πξn] = 0 or, more explicitly, by

kξ

2
+ πn = σ arcsin

ξ(1− cosβ)

sinβ
√

1− ξ2
. (4.7)

A solution of that equation (4.7) yields a fixed point of
the classical map (4.1). In fact, calculating the trace we set
mi = mf = m which means equality of the initial and final
polar angles. On the other hand, from

d

dξ
[S(ξ, ξ, σ)− 2πnξ]

= σ
[
φσi (m,m)− φσf (m,m)

]
m=Jξ

− 2πn

=
[
φσi (m,m)− φσf (m,m)

]
m=Jξ

− 2πn (4.8)

we see that the stationary-phase condition (4.7) implies
equality modulo 2π of the initial and final azimuths.

To determine a fixed pointθa, φa from (4.7) for given
values ofk, β, σ it is convenient to take the tangent of both
sides of that equation, thus eliminating the multiple ofπ.
Of course,σ = σa equals the sign ofφa. Once a fixed
point θa, φa is found one may return to the stationary-phase
equation in the original form (4.7) and determine the integer
n = na from our convention for the inverse trigonomet-
ric functions, i. e. such thatkξ/2 +πnα lies in the interval
[−π/2, π/2]. It is with that and only that valuena of n that
the fixed point in question makes a non-negligible contribu-
tion to the sum overn in the semiclassical trace (4.5).

We are now all set to employ the stationary-phase ap-
proximation for the integrals in the trace (4.5). For smooth
functionsf (ξ) and g(ξ) and with ξa denoting the roots of
f ′(ξa) = 0, a = 0, 1, 2, . . . , the asympotic approximation
in question yields, in the limit of largeJ ,∫
dξg(ξ)eiJf (ξ) ≈

∑
a

√
2π

J |f ′′(ξa)|g(ξa)eiJf (ξa)±iπ/4, (4.9)

where the sign beforeiπ/4 should be the same as that
of f ′′(ξa). Applying this to the trace (4.5) we obtain the
Gutzwiller type result

trF

= (−1)j
∑
a

×
√∣∣∣∣ 1

S′′a

∂2S

∂ξf∂ξi

∣∣∣∣
ξf=ξi=ξa

ei[J(Sa−2πnaξa)−αaπ/2] . (4.10)

Here we denote bySa the value of the actionS(ξ, ξ, σ) and
byS′′a the value of the second total derivatived2S(ξ, ξ, σ)/dξ2

at the pointξa, σa. The integer Maslov indexαa can take on
the values 0,±1 and readsαa = (σa − µa) /2 with µa = ±1
the sign ofS′′a [15]. The sum is taken over all fixed points
of the map.

The radicand in (4.10) can be expressed in terms of the
trace of the so-called monodromy matrix,

trM =

(
∂φf
∂φi

)
ξi

+

(
∂ξf
∂ξi

)
φi

. (4.11)

To that end we once more employ the action in its role as
a generating function,∂S/∂ξi = φi, ∂S/∂ξf = −φf , and
infer, with a bit of calculus, the desired identity

1
S′′a

∂2S(ξf , ξi, σ)
∂ξf∂ξi

∣∣∣∣
ξf=ξi=ξ

=

2 +

(
∂φi
∂ξi

)
ξf
−
(
∂φf
∂ξf

)
ξi(

∂φi
∂ξf

)
ξi


−1

= (2− trM )−1 . (4.12)

Substituting the expression forSa and again invoking the
stationary-phase condition (4.7), we arrive at the fully ex-
plicit form of our semiclassical trace,

trF = (−1)j

×
∑
a

∣∣∣∣2(1− cosβ)
1− ξ2

a

− σak

√
sin2 β − 2ξ2

a(1− cosβ)

∣∣∣∣−1/2

× exp

[
iJ

(
kξ2

a/2 +σ arccos
ξ2
a − cosβ
1− ξ2

a

)
+i(µa − σa)π/4

]
. (4.13)

According to (4.6), the indexµa = ±1 is equal toσa, times
the sign of 2− trM (the expression in the modulus brack-
ets). The reader should wonder about the disappearance of
the phase−2πnaξa on the way from (4.10) to (4.13) but
will check easily that when invoking the stationary-phase
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Fig. 3. Real part of the exact and the semiclassical trace and modulus of the error,|(trF )s. c.− trF |, versus the torsion constantk for β = π/2, j = 250.
The error is negligible except for the neighborhoods of the bifurcations atk = 2 andk = 12.73

equation (4.7) we had to stick to our convention that all in-
verse trigonometric functions are meant with their principal
values.

In general, fixed points of the map have to be found by
numerically solving (4.7). Exceptions are represented by the
two trivial points θ = π/2, φ = ±π/2, or ξ = 0, σ = ±1,
which exist regardless ofk. If k < 2 tanβ

2 , these are the only
fixed points, and the Gutzwiller development (4.13) acquires
a particularly simple form,

trF ≈ 1
i

[
eiJβ√

2(1− cosβ) + k sinβ

− e−iJβ√
2(1− cosβ)− k sinβ

]
. (4.14)

In the case of pure rotation (k = 0) this formula gives the
exact value of the trace of the rotation matrix. We shall come
back to that special case in a separate section below.

As an example we have evaluated trF for the caseβ =
π/2, j = 250 as a function of the torsion constantk. As Fig. 3
shows, the results provided by the Gutzwiller development
(4.13) and by the “exact” numerical calculation agree well,
except in the vicinity of the zeros of trM (k)− 2 where the
semiclassical expression diverges. Such zeros correspond to
classical bifurcations at which new fixed points are born.

It is interesting to follow, in Fig. 3, the behavior of the
trace trF (k) through the sequence of bifurcations. In the
range 0< k < 2 there exist only the two trivial periodic
points already mentioned; the trace, given by (4.14), then

varies withk only via the prefactor, i.e. slowly and mono-
tonically. In the subsequent range 2< k < 12.73, two new
fixed points (which differ only in the sign ofξ) contribute
a single oscillating summand in (4.13). With the advent of
further fixed points atk = 12.73 more oscillating terms arise
whereupon thek dependence of trF becomes more erratic.

5. Two-step propagator

In order to prepare for the semiclassical evaluation of traces
of arbitrary powers of the Floquet operatorF we here con-
sider the trace ofF 2 which is connected to the once iterated
classical map. The matrix element ofF 2 is given by

〈m3|F 2 |m1〉 =
∑
m2

djm3,m2
djm2,m1

e−ik(m2
3+m2

2)/2J . (5.1)

We now proceed in analogy to the foregoing treatment of
trF : First, we employ the semiclassical versions (3.1,2.6)
of the Wigner functionsdjm,m′ . With the help of Poisson’s
identity we then convert the sum overm2 into an integral
over a continuous variable and introduce the rescaled quan-
tities ξi = mi/J , thus obtaining

〈m3|F 2 |m1〉 =
∑
n2

∑
{σi=±1}

(2π)−1
∫
dξ2

×
√∣∣∣∣∂2S(ξ3, ξ2, σ2)

∂ξ3∂ξ2

∂2S(ξ2, ξ1, σ1)
∂ξ2∂ξ1

∣∣∣∣
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× exp
{
iJ
(
S(ξ3, ξ2;σ2)

+S(ξ2, ξ1;σ1)− 2πn2ξ2
)− i

π

4
(σ1 + σ2)

}
. (5.2)

We shall eventually evaluate theξ2 integral in the stationary-
phase approximation. As a preparation to this step and simi-
lar ones to be taken later we adopt the notationS2(ξ3, ξ2) ≡
S(ξ3, ξ2;σ2) andS1(ξ2, ξ1) ≡ S(ξ2, ξ1;σ1) and do not even
assume, momentarily, any special form ofS1 andS2. Station-
ary-phase values ofξ2 are determined by

∂S2(ξ3, ξ2)
∂ξ2

+
∂S1(ξ2, ξ1)

∂ξ2
− 2πn2 = 0 . (5.3)

This implies that the initial point of the transformation gener-
ated byS2 is the final point of the transformation generated
by S1; indeed, the two polar anglesθi, θf in question are
both equal to arccosξ2 while the foregoing stationary-phase
condition equates the two azimuthsφi, φf , up to an integer
multiple of 2π.

Through a reasoning similar to the one given in the
previous section the stationary-phase equation yieldsξ2 =
ξ2(ξ3, ξ1) and the integern2 as functions ofξ3 andξ1. (There
may be several solutionsξ2, n2.) With this in mind we can
bring the matrix element ofF 2 into a form analogous to the
one ofF itself. To proceed towards this goal, we differen-
tiate (5.3) with respect toξ3 and multiply by∂ξ2/∂ξ1, thus
obtaining

∂ξ2

∂ξ1

∂ξ2

∂ξ3

(
∂2S2(ξ3, ξ2)

∂ξ2
2

+
∂2S1(ξ2, ξ1)

∂ξ2
2

)
= −∂

2S2(ξ3, ξ2)
∂ξ2∂ξ3

∂ξ2

∂ξ1
≡ A . (5.4)

In the same manner, by taking the derivative with re-
spect to ξ1 and multiplying with ∂ξ2/∂ξ3 we get A =(−∂2S1(ξ2, ξ1)/∂ξ2∂ξ1

) (
∂ξ2/∂ξ3

)
. A third equation for the

auxiliary quantityA is obtained with the help of the action
of the composite map,

S(2)(ξ3, ξ1) = S2(ξ3, ξ2(ξ3, ξ1))

+ S1(ξ2(ξ3, ξ1), ξ1)− 2πn2ξ2(ξ3, ξ1) , (5.5)

by taking the mixed second derivative to yield
A = −(∂2S(2)(ξ3, ξ1)/∂ξ3∂ξ1

)
.

The stationary-phase approximation to theξ2 integral in
the matrix element (5.2) brings the second derivative with
respect toξ2 of the phaseS2(ξ3, ξ2) + S1(ξ2, ξ1) into the
square-root factor in front of the exponential; the sign of
this derivative will later be denoted byµ3,1. The resulting
combined radicand can be transformed using the three fore-
going identities for the auxiliary quantityA to yield

∂2S2(ξ3, ξ2)
∂ξ3∂ξ2

∂2S1(ξ2, ξ1)
∂ξ2∂ξ1

∂2S2(ξ3, ξ2)
∂ξ2

2

+
∂2S1(ξ2, ξ1)

∂ξ2
2

= −∂
2S(2)(ξ3, ξ1)
∂ξ3∂ξ1

. (5.6)

We thus arrive at the semiclassical matrix element ofF 2,

〈m3|F 2 |m1〉 =
∑
σ1,σ2

(2πJ)−1/2
∑
saddle
points

∣∣∣∣∂2S(2)(ξ3, ξ1)
∂ξ3∂ξ1

∣∣∣∣1/2

× exp
{
iJS(2)(ξ3, ξ1) + i

π

4
(−σ1 − σ2 + µ3,1)

}
. (5.7)

This semiclassical expression for the composite map resem-
bles the WKB formula (3.1) for the simple matrix element
〈m2|F |m1〉.

For the calculation of the trace
∑

m 〈m|F 2 |m〉 we once
more invoke Poisson’s identity and the stationary-phase ap-
proximation. In analogy to the first trace we encounter an
amplitude factor|2− trM (2)|−1/2 involving the trace

trM (2) =

(
∂φ3

∂φ1

)
m1

+

(
∂m3

∂m1

)
φ1

(5.8)

of the monodromy matrixM (2) of the once iterated map.
The final result takes the form of a sum over all periodic
points of period 2 of the classical map,

trF 2 =
∑
points

∣∣2− trM (2)
∣∣−1/2

exp
{
iJS(2) − iα

π

2

}
. (5.9)

Hereα denotes the integer Maslov index of the fixed point of
the iterated map,α =

(
σ1 + σ2 − µ1,3 − µ(2)

)
/2, andµ(2) =

±1 is the sign of the second total derivative of the action
S(2)(ξ1, ξ1) of the composite map with equal arguments. The
sum is to be taken over all periodic points of period 2, each
of which is an orbitθ1, φ1 → θ2, φ2 → θ1, φ1, with σ1, σ2
equal to the signs of the azimuthsφ1, φ2. Of course, fixed
points are to be included as special cases of period-2 points
as well.

With the help of the intervening stationary-phase equa-
tions we simplify the actionS(2) of the composite map as

S(2)(ξ3, ξ1; {σ1, σ2})
∣∣
ξ3=ξ1

= (σ1 + σ2) arccos
ξ1ξ2 − cosβ√

(1− ξ2
1)(1− ξ2

2)
+
k

2
(ξ2

1 + ξ2
2) . (5.10)

Just like for the matrix element, we meet with a semiclassi-
cal expression for trF 2 resembling the one obtained in the
previous section for trF . We are now prepared to estab-
lish semiclassical approximations of this type for the matrix
elements and the trace of the multiply iterated mapFn.

6. Traces of higher powers of the Floquet operator

Since in the discussion of the stationary-phase condition
(5.3) we did not specify the actionsS1 andS2, we can sim-
ply adapt these considerations to the traces of higher powers
of theF . We start from the matrix element

〈mn+1|Fn |m1〉 =
∑

{m2...mn}

n∏
j=1

djmj+1,mj
e−ikm

2
j+1/2J . (6.1)

In the same spirit as above we express the Wigner functions
by their WKB asymptotics for largeJ and use Poisson’s
identity to transform sums into integrals. After introducing
the scaled variablesξi = mi/J the integrations can be per-
formed step by step using the stationary-phase approxima-
tion. At the i-th integration we incur the actionS(i) of the
i−1 times iterated map which is related to the actionS(i−1)

by

S(i)(ξi+1, ξ1) = Si(ξi+1, ξi(ξi+1, ξ1))

+S(i−1)(ξi(ξi+1, ξ1), ξ1)− 2πniξi(ξi+1, ξ1). (6.2)
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Moreover, each semiclassical integration brings in a Maslov
index µi+1,1 = ±1, determined by the sign of the second
partial derivative with respect toξi of the sumSi(ξi+1, ξi) +
S(i−1)(ξi, ξ1).

Having performed all integrations in the matrix element
(6.1) we arrive at its semiclassical version

〈m1|Fn |mn+1〉

= (−1)jn
∑

{σi=±1}
exp

(
−iπ

4

n∑
i=1

σi

)(
J

2π

)1/2

×
√∣∣∣∣∂2S(n)(ξn+1, ξ1)

∂ξ1∂ξn+1

∣∣∣∣
× exp

{
iJS(n)(ξn+1, ξ1) + i

π

4

n∑
i=2

µi+1,1

}
. (6.3)

Here S(n) denotes the action of then − 1 times iterated
classical map,

S(n)(ξn+1, ξ1)

=
n∑
i=1

S(ξi+1(ξn+1, ξ1), ξi(ξn+1, ξ1);σi)

−2π
n∑
i=2

niξi(ξn+1, ξ1) , (6.4)

where all intermediateξi are determined as functions ofξ1
andξn+1 by successively using the stationary-phase equation.
Obviously, the matrix element maintains its WKB form pre-
viously established forn = 1, 2; the same must hold true for
the trace

∑
m 〈m|Fn |m〉, which thus takes the form

trFn = (−1)jn
∑
points

|2− trM (n)|−1/2

× exp
{
iJS(n) − i

π

2
α
}
. (6.5)

Here we have to sum over all periodic points of periodn
with ξ1 = ξn+1 as they are determined by the stationary-
phase equations. The points in question include those on
orbits with primitive periodn as well as those on sequences
of orbits whose periods add up ton. The actionS(n) is a
simple generalization ofS(2) given in (5.10),

S(n) =
n∑
i=1

σi arccos
ξiξi+1− cosβ√

(1− ξ2
i )(1− ξ2

i+1)
+
k

2

n∑
i=1

ξ2
i . (6.6)

The integer Maslov index of a period-n point readsα =
1
2

(∑n
i=1σi −

∑n
i=2µi+1,1 − µ(n)

)
where µ(n) = ±1 is the

sign of the second total derivative of the total actiond2S(n)

(ξ1, ξ1)/dξ2
1 calculated at the point in consideration. The in-

dexσi (i = 1, . . . , n) indicates the sign of the azimuth of the
i-th intermediate point whose polar angle isθi = arccosξi.
The prefactor now contains the trace

trM (n) =

(
∂φn+1

∂φ1

)
m1

+

(
∂mn+1

∂m1

)
φ1

(6.7)

of the monodromy matrixM (n) of the n − 1 times iterated
map. It can be shown that the trace formula (6.5) is repre-
sentation independent. In particular, following the strategy
of [14] it can also be derived in the coherent-state basis [16].

7. Semiclassical spectrum of pure rotation

We now return to the case of the pure rotation, i. e.k = 0,
for which both the exact form and the semiclassical approx-
imation of trFn can be evaluated analytically. The exact
quantum-mechanical result reads

trFn(β) =
j∑

m=−j
e−imnβ =

sinn(j + 1/2)β
sinnβ/2

= trF (nβ). (7.1)

Much to our surprise we found the semiclassical approxi-
mation (6.5) to completely recover this exact result. Loosely
speaking we may say that the semiclassical errors incurred
in the matrix elements and the trace operation cancel one
another in the traces. This also entails full agreement of the
semiclassical spectrum of the Floquet operator with the ex-
act one. To appreciate this somewhat peculiar situation it is
well to realize a close analogy to other classically regular
dynamics like the Hydrogen atom and the harmonic oscilla-
tor: There as well, the WKB approximation yields the right
spectrum but fails to give the correct wave functions.

For a generic rotation, i.e. for any value ofβ which is not
a rational multiple of 2π there are two classical fixed points,
each withξi = ξf = 0. These correspond to the intersection
of the sphere of constantJ2 and they-axis and thus haveσ =
±1. All longer periodic orbits are composed of these trivial
ones. As a first step towards establishing the equality of the
semiclassical and quantum traces we have checked that the
identity trFn(β) = trF (nβ) is not fouled up semiclassically.
We shall not bother to write out the corresponding technical
game which mostly amounts to struggling with the Maslov
indices. Suffice it to say that we must start from a slightly
generalized version of the semiclassical trace (4.13) which
no longer requires the rotation angle to lie in the interval
[0, π],(

trF (nβ)
)
s.c.= (−1)j

∑
points

|2− trM |−1/2

× exp
{
iJsgn (n sinβ)σ

× arccos
ξ2 − cosnβ

1− ξ2
+ i(µ− sgn (sinnβ)σ)

}
. (7.2)

Obviously, the factors sgn (sinnβ) are the prize to pay for
removing all restrictions onnβ. The prefactor involving the
monodromy matrix can be calculated from the classical map
as

|2− trM (1)(nβ)|−1/2

= (2− 2 cos(nβ))−1/2 =
1

2| sinnβ/2| . (7.3)

Finally, the Maslov index arises within the final stationary-
phase approximation as

µ = σsgn

(
d2S0(ξ, ξ)

dξ2

)
= σsgn (sinnβ). (7.4)

With these ingredients one easily checks the semiclassical
traces to equal the exact quantum-mechanical ones (7.1).

Lesser fortune is incurred whennβ is a multiple of 2π
which meansFn = 1 anddm,m′ = δm,m′ . In this case the
trace formula (7.1) has to be regularized to yield the value
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2J . Alas, the naive WKB approximation leads to a divergent
d-function since the border between the classical allowed
and forbidden region degenerates to the diagonal of the ma-
trix in this case. It is thus only for generic angles of rotation
that the naive WKB approximation gives the exact Floquet
spectrum.

8. Semiclassical spectrum of the kicked top

The Floquet spectrum of the periodically kicked top was
recently calculated by diagonalizing the semiclassically ap-
proximated Floquet matrix, in a matrix representation based
on coherent states [5]. The semiclassical limit for all matrix
elements was implemented as a stationary-phase approxima-
tion in a suitable integral representation for the torsional part
of F ; the linear-rotation part contributes a simple rigorously
calculable factor to the matrix element in the coherent-state
representation. (Note, incidentally, the interesting “comple-
mentarity” to the (J2, Jz)-representation employed in the
present paper: Here it is the torsional part that enjoys a sim-
ple rigorous form of its matrix element while the rotational
part requires a semiclassical approximation.) The accuracy
for the 2j + 1 eigenvalues ofF was found to be about 3%
of the mean spacing 2π/(2j + 1) of the eigenphases.

From a classical point of view the coherent states em-
ployed in Ref. [5] have the intuitive appeal that their span
in the phase space shrinks to a point in the classical limit.
However, this nice property actually makes for a drawback
for the semiclassical behavior of matrix elements between
two coherent states: No classical trajectory can in general be
associated with such a matrix element simply because speci-
fying both the initial and final phase-space points amounts to
an overdetermination of the classical trajectory. As a conse-
quence, the semiclassical Floquet matrix is built from contri-
butions of “ghost trajectories”, i. e. complex solutions of the
real equations of motion, which are entities rather removed
from classical reality [6, 7]. Nevertheless the excellent accu-
racy obtained for the spectrum in the limit of small 1/j ∝ ~

gives support to the expectation that chaotic as well as regu-
lar dynamical systems do allow for systematic semiclassical
approximations for their spectra.

We here employ the 2j+1 angular-momentum eigenstates
|j,m〉 with fixed j as a basis and semiclassically approxi-
mate the matrix elements〈j,m|F |j,m′〉. As was explained
in the foregoing sections the fraction (π/4) sinβ of the total
number (2j + 1)2 of these matrix elements corresponds to
classical trajectories. No overdetermination is incurred since
by fixing the initial and final quantum numbersmi,mf we
specify initial and final momenta for the classical trajectory.
Only for pairsmi,mf outside the ellipse of Fig. 2 there are
no classically permissible trajectories. Since these classically
forbidden pairs amount only to the fraction 1− (π/4) sinβ
of all pairs one might expect that by working with the ba-
sis formed by the angular momentum eigenstates|j,m〉 one
makes better use of classical reality than is possible with the
coherent-state basis. Indeed, for all matrix elements corre-
sponding to classically allowed trajectories these and only
these solutions of the stationary-phase equations are needed
to determine the semiclassical approximation; that approxi-
mation is then at least as easily implementable as the calcu-

lation of the quantum mechanically exact value of the matrix
element. On the other hand, a lot more and harder work was
necessary in the coherent-state basis, since the stationary-
phase equation arising there for every matrix element has an
infinity of ghost trajectories as solutions many of which may
make quantitatively important contributions to the matrix el-
ement, while others must be discarded since they cannot be
reached by allowable paths of integration. It is thus fair to
say that diagonalizing the Floquet matrix after semiclassi-
cally approximating its elements in the (J2, Jz) basis is an
efficient strategy to establish the semiclassical quasienergy
spectrum.

In order to ascertain the accuracy of the semiclassical
spectrum we must compare it with the exact one. To that
end we have also diagonalized the exact Floquet matrix
〈j,mf |F |j,mi〉 = e−ikm

2
f/2Jdmf ,mi

(β) after numerically
evaluating the matrix elementsdmf ,mi

(β). An efficient way
to do that for largej employs the well known recurrence
relation [17]

dm1±1,m2(β) =
1

f (∓m1)

×
(
m2 −m1 cosβ

sinβ
dm1,m2 − f (±m1)dm1∓1,m2

)
(8.1)

where f (m) = 1
2

√
(j +m)(j −m + 1). To minimize accu-

mulation of numerical errors we had to use both starting

points dj,j(β) =
(

cosβ2

)2j
, d−j,j(β) =

(
sin β

2

)2j
, and the

symmetry properties (3.5).
Let us finally turn to our numerical results. The exact

eigenvalues ofF all lie on the unit circle in the plane of
complex numbers, due to the unitarity ofF . The semiclas-
sical approximation slightly violates unitarity and thus gives
rise to radial as well as phase errors, both of the order 1/j
for large j. Errors of that order threaten, of course, to ren-
der useless calculations of lowest order in~ ∝ 1/j since the
mean spacing between neighboring eigenphases, 2π/(2j+1),
is of that very same order. It was in fact the principal result
of Ref. [5] that the error is such a small fraction of the mean
spacing that each approximate eigenvalue can be uniquely
associated with its exact partner. We here recover such fine
accuracy.

As quantitative measures of the errors incurred we em-
ploy the root mean squares of the deviations of (i) the moduli
rsc
i of the semiclassical eigenvalues from unity and (ii) the

semiclassical quasienergies alias eigenphasesφsc
i from their

exact counterpartsφi,

∆r =

√√√√ 1
2j + 1

2j+1∑
i=1

(rsc
i − 1)2,

∆φ =

√√√√ 1
2j + 1

2j+1∑
i=1

(φsc
i − φi)2, (8.2)

with the means taken over all 2j + 1 eigenvalues of a spec-
trum. We display these errors as functions of the quantum
numberj in Fig. 4. The first of them (Fig. 4a) pertains to
vanishing torsion strength,k = 0, i. e. the case of a pure rota-
tion by the angleβ = 1 about they-axis. Both the radial and
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Fig. 4. Relative error of eigenphases (right column) and radii (left column) of the semiclassical eigenvalues fora β = 1, k = 0, b β = π/2, k = 1, andc
β = π/2, k = 8

the phase error turn out as roughly 1% of the mean spacing.
Needless to say that in this fully integrable case the exact
eigenphases are known explicitly as the eigenvalues ofJy
taken modulo 2π. Next, Fig. 4b gives the errors for the case
β = π/2, k = 1 which is classically characterized by a mixed
phase space with small chaotic islands and regular motion
everywhere else. Again, the errors never exceed a few per-
cent of the mean spacing in the range ofj investigated; the
slight growth withj might be a purely numerical artefact.
Interestingly, the error incurred with the uniform WKB ap-
proximation for the linear rotation can be reduced by roughly
a factor 2 by resorting to the harmonic-oscillator approxima-
tion (3.11) for the matrix elements withmi ≈ ±j, mf ≈ 0
or mf ≈ ±j, mi ≈ 0. It is also interesting to see that for
this near integrable case the results previously obtained with
the coherent-state basis are slightly superior to the ones ad-
vocated here; this is quite intuitive since the semiclassical
treatment of linear rotation in the coherent-state basis is in
fact rigorous [14] and since a torsion of strengthk = 1 is

but a small perturbation of the linear rotation. As soon as
we crank up the torsion strengthk to secure predominance
of chaos in the classical phase space we obtain better accu-
racy with the (J2, Jz) basis, as is revealed in Fig. 4c for the
casek = 8, β = π/2: With the refinement provided by the
harmonic-oscillator approximation mentioned above we get
the quasienergies to within 1% of the mean spacing and the
moduli even slightly better.
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Appendix A: Derivation of WKB asymptotics

The asymptotics of Wigner’sd-functions in the limit of large
angular momenta was originally obtained by solving their
differential equation in the WKB approximation [10, 11].
We shall here sketch the less known but somewhat more
economical WKB treatment of the recursion relations (8.1).
For a more detailed presentation we refer to [8].

Momentarily simplifying the notation asdjmf ,mi
→ dmf

we write (8.1) in the form of a Hermitian three-step recur-
rence relation

pmdm−1 + (wm − E)dm + pm+1dm+1 = 0, (A1)

where the eigenvalueE plays the role of the second in-
dex mi; the coefficientspm, wm may be read off from
the original relation (8.1) aswm = m cosβ and pm =
1
2 sinβ[(j + m)(j − m + 1)]

1
2 . We again extend the inde-

pendent variablem from integer to continuous. To construct
the asymptotic solution we assume the coefficients to depend
but weakly onm and make the ansatz

dm = A(m) eiS(m) (A2)

with slowly varying amplitudeA and “action”S. In view
of pm = O(j), ∂pm/∂m = O(1) it is consistent to assume
that the derivatives of the action and the amplitude have the
weightsA(n) = O(j−n), S(n) = O(j1−n). By expanding these
functions asS(m ± 1) = S(m) ± S′(m) + 1

2S
′′(m) etc. we

easily find, to lowest order in 1/j and up to a normalization
factor,

dm ≈ dWKB
m ∝ 1[

2pm+ 1
2

sinφ
]1/2

cos

[∫ m

m0

φ(n)dn + θ0

]
(A3)

with the function

φ(m) = arccos
E − wm

2pm+ 1
2

(A4)

determinig both the action,S′ = φ, and the prefactor;θ0 is
a constant to be determined below. As long as the function
φ(m) is real, the solution (A3) oscillates. This is the case
when the argument of the arccosine lies between−1 and
1 and characterizes the “classically allowed region” of the
variablem; beyond that region one of the two fundamental
solutions of the recursion relation grows exponentially while
the other one decays. One can also speak about “turning
points” of m separating classically allowed and forbidden
regions. These are the values ofm (not necessarily integer)
which satisfy the equationsφ(m) = 0 andφ(m) = π and are
commonly called the “usual” and “unusual” turning points,
respectively.

Consider a usual turning pointmt and suppose thatφ(m)
is real to the right ofmt. It can be shown that within
the allowed region the physically acceptable solution which
matches to a decaying exponential form < mt is ob-
tained if we takem0 = mt in (A3) and choose the phase
as θ0 = −π/4. (For an unusual turning point the matching
phase would readθ0 = mtπ + π/4.)

Suppose now that the classically allowed region ofm is
bounded on both sides by two turning points. The asymptotic

solution which decays both to the left and to the right of the
allowed region exists only for discrete values ofE which
are the (asymptotic) eigenvalues of the recursion relation.
The corresponding eigenvector{dm} can be normalized as∑

m d2
m = 1.

There is a simple connection between the WKB solu-
tions of recurrence relations and differential equations [18].
Indeed, the functiong(m) = (S′(m))−

1
2 eiS(m) obeys the dif-

ferential equation

g′′(m) + (S′(m))2g(m) = 0, (A5)

provided one drops, with appeal to the slow variation in
m and in the spirit of the WKB approximation, correction
terms involving second and higher derivatives ofS(m). We
identify againS′(m) = φ(m). Then if mt is a usual turn-
ing point of the recursion relation (A1) with the function
φ(m) positive for m > mt and imaginary form < mt,
the differential equation (A5) has that same turning point,
with classically allowed and forbidden regions situated at
m > mt andm < mt, respectively. Within the classically
allowed region (A5) has the WKB solution matched with
the solution decreasing outside,

gWKB(m) ∝ 1
[φ(m)]1/2

cos

(∫ m

mt

φ(n′)dn′ − π/4

)
. (A6)

Comparing (A6) and (A3) we see that the semiclassical
asymptotics of the recurrence relation and the differential
equation are related by

dWKB
m =

√
φ(m)

sinφ(m)
gWKB(m). (A7)

The connection just established allows to construct an
improved WKB solution of the recurrence relation which
does not diverge at the turning point. We simply have to in-
voke the well known uniform WKB solution of the differen-
tial equation (A5) which remains valid in the vicinity of the
turning point and provides a smooth interpolation between
the semiclassical approximations in the classically allowed
and forbidden regions (cf. [19, 10.4.111-116]),

gunif(m) =

[
ξ(m)
φ2(m)

]1/4

Ai (λ(m)). (A8)

Here Ai (λ) is the Airy function. Its argument,

λ(m) = −
(

3
2

∫ m

mt

φdn

)2/3

, m > mt,

λ(m) =

(
3
2

∫ mt

m

|φ|dn
)2/3

, m < mt, (A9)

is a smooth monotonically growing function ofm pass-
ing through zero in the turning point. By replacing in
the r. h. s. of (A7) the primitive WKB solutiongWKB of
the differential equation (A5) by its more sophisticated
version gunif, we obtain the desired improvement of the
semiclassical solution of the recurrence relation. Actually,
this is true only ifmt is a usual turning point since for
φ(mt) = π the transformation (A7) becomes singular. The
case of an unusual turning point is treated by substituting
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dm → (−1)mdm in the recurrence relation (A1) whereupon
mt becomes a usual turning point.

Up to here our reasoning has not made use of the spe-
cial form of the coefficientspm, wm pertaining to Wigner’s
d-function. Invoking these forms we recover the result exten-
sively used in the main body of the paper, i. e. (3.1,3.2) for
thed-function and the turning points in accord with the pre-
viously encountered classically allowed elliptic region (3.3).
In a similar way, the above connection (A7) withgWKB

taken as the uniform asymptotic solution of the differential
equation (A5) leads to the uniform asymptotics (3.7) of the
d-function.

The foregoing asymptotic analysis rests on the formal
assignment of orders in~ ∝ 1/j aspm = O(j), p′m = O(1)
and therefore breaks down whenm approaches the values
±j; in that range the coefficientpm ceases to vary slowly
with m and the WKB approximation looses its validity. A
similar failure is observed if it ismi which tends to its ex-
tremal values±j whereupon the turning points move close
to one another. This is analogous to the well-known inappli-
cability of the WKB method to the ground states of quantum
systems.

We must worry about the inadaequacy of the WKB ap-
proximation just mentioned when the point in themf -mi-
plane defined by the subscriptsmf ,mi of the d-function
is close to one of the tangency points between the el-
lipse bounding the classically allowed region and the square
|mf | = J, |mi| = J (Fig. 2). There are four such points;
however due to the symmetry conditions (3.5) it is sufficient
to consider, say, the one corresponding tomf = J cosβ,
mi = J . In its vicinity the d-functions change slowly with
each step of the recursion relation (8.1). This can be inferred
from the fact that the functionφ(mf ) determining the incre-
ment of the phase of the WKB solution (A3) is almost zero
in this area. Therefore we can replace the finite differences
in (8.1) by Taylor expansions as

djmf±1,mi
≈
(

1± ∂

∂mf
+

1
2
∂2

∂m2
f

)
djmf ,mi

. (A10)

We similarly expand the off-diagonal coefficients in (8.1) in
powers ofmf − J cosβ and employ

sinβ
√
J2 −m2

f ≈ J sin2 β − cosβ

×(mf − J cosβ)− (mf − J cosβ)2

2J sin2 β
(A11)

for the coefficient ofdjmf ,mi
while leaving only the zeroth-

order term in the coefficient of the derivatives of thed-
function (An estimate of errors introduced by this type of
approximation and the higher-order corrections can be found
in [9]). By finally changing notations as

n = j −mi, x =
mf − J cosβ√

J sin2 β
,

ψn(x) =
4

√
J sin2 β djmf ,j−n (A12)

we turn the recursion relation fordjmf ,mi
into Schr̈odinger’s

equation for the harmonic oscillator,

−1
2
d2ψn
dx2

+
x2

2
ψn(x) =

(
n +

1
2

)
ψn(x). (A13)

By normalizing that state to unity we recover the desired
harmonic-oscillator approximation for the properly normal-
ized d-functions withmi close toj.
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14. M. Kús, F. Haake, B. Eckhardt, Z. Phys. B92, 221 (1993)
15. G. Junker, H. Leschke, Physica D56, 135 (1992)
16. Actually, the trace formula of [14] contains a phase factor for which

no semiclassical explanation could be given. That phase factor does
not arise for the new definition of the Floquet operatorF given in
(1.1), due to the semiclassically more appropriate scaling of the torsion
generator.
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