Constraints on Models for the Higgs Boson with Exotic Spin and Parity

in $VH \rightarrow Vb\bar{b}$ Final States


(D0 Collaboration)
After the discovery of a Higgs boson \( H \) at the CERN Large Hadron Collider (LHC) [1,2] in bosonic final states, and evidence for its decay to a pair of \( b \) quarks at the Tevatron experiments [3], and to pairs of fermions at the CMS experiment [4], it is important to determine the new particle’s properties using all decay modes available. In particular, the spin and parity of the Higgs boson are important in determining the framework of the mass generation mechanism. The standard model (SM) predicts that the Higgs boson is a \( CP \)-even spin-0 particle (\( J^P = 0^+ \)). If the Higgs boson is indeed a single boson, the observation of its decay to two photons at the LHC precludes spin 1 according to the Landau-Yang theorem [5,6]. Other \( J^P \) possibilities are possible. An admixture of \( J^P = 0^+ \) and \( J^P = 0^- \) can arise in two-Higgs-doublet models [7,8] of type II such as found in supersymmetric models. A boson with tensor couplings (\( J^P = 2^+ \)) can arise in models with extra dimensions [9]. The ATLAS and CMS Collaborations have examined the possibility that the Higgs boson has \( J^P = 0^- \) or \( J^P = 2^+ \) using its decays to \( \gamma \gamma, ZZ, \) and \( WW \) states [10–14]. The \( J^P = 0^- \) hypothesis is excluded at the 97.8\% and 99.95\% CL by the ATLAS and CMS Collaborations, respectively, in the \( H \rightarrow ZZ \rightarrow 4\ell \) decay mode. Likewise, the \( J^P = 2^+ \) hypothesis is excluded at the \( \geq 99.9\% \) CL by the ATLAS Collaboration when combining all bosonic decay modes, and at the \( \geq 97.7\% \) CL by the CMS Collaboration in the \( H \rightarrow ZZ \rightarrow 4\ell \) decay mode (depending on the production processes and the quark-mediated fraction of the production processes). However, the \( J^P \) character of Higgs bosons decaying to pairs of fermions, and in particular to \( bb \), has not yet been studied. In this Letter, we present tests of non-SM models describing the production of bosons with a mass of 125 GeV, \( J^P = 0^- \) or \( J^P = 2^+ \), and decaying to \( bb \). We explore two scenarios for each of the hypotheses: (a) the new boson is a \( J^P = 0^- \) \( (J^P = 2^+) \) particle and (b) the observed resonance is either a combination of these non-SM \( J^P \) states and a \( J^P = 0^- \) state or distinct states with degenerate mass. In the latter case, we do not consider interference effects between states.

Unlike the LHC \( J^P \) measurements, our ability to distinguish different Higgs boson \( J^P \) assignments is not based primarily on the angular analysis of the Higgs boson decay products. It is instead based on the kinematic correlations between the vector boson \( V (V = W, Z) \) and the Higgs boson in \( VH \) associated production. Searches for associated \( VH \) production are sensitive to the different kinematics of the various \( J^P \) combinations in several observables.
especially the invariant mass of the $VH$ system, due to the dominant $p$ and $d$ wave contributions to the $J^P = 0^-$ and $J^P = 2^+$ production processes [15–17]. The $p$ and $d$ wave contributions to the production cross sections near threshold vary as $\beta^3$ and $\beta^5$, respectively, whereas the $s$ wave contribution for the SM Higgs boson varies as $\beta$, where $\beta$ is the ratio of the Higgs boson momentum and energy.

To test compatibility of non-SM $J^P$ models with data, we use the D0 studies of $ZH \rightarrow ℓℓbb$ [18], $WH \rightarrow ℓℓbb$ [19], and $ZH \rightarrow ννbb$ [20] with no modifications to the event selections. Lepton flavors considered in the $WH \rightarrow ℓℓbb$ and $ZH \rightarrow ℓℓbb$ analyses include electrons and muons. Events with taus that decay to these leptons are considered as well, although their contribution is small. The D0 detector is described in Refs. [21–23].

We use 9.5–9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector satisfying relevant data-quality requirements in each of the three analyses. The SM background processes are either estimated from dedicated data samples (multijet backgrounds), or from Monte Carlo simulation. The $V+\text{jets}$ and $t\bar{t}$ processes are generated using ALPGEN [24], single top processes are generated using SINGLETOP [25], and diboson ($VV$) processes are generated using PYTHIA [26]. The SM Higgs boson processes are also generated using PYTHIA. The signal samples for the $J^P = 0^-$ and $J^P = 2^+$ hypotheses are generated using MADGRAPH 5 [27]. We have verified that $J^P = 0^+$ samples produced with MADGRAPH agree well with the SM PYTHIA prediction.

In the following, we denote a non-SM Higgs boson as $X$, reserving the label $H$ for the SM $J^P = 0^+$ Higgs boson. MADGRAPH can simulate several non-SM models, as well as user-defined models. These new states are introduced via dimension-five Lagrangian operators [16]. The $J^P = 0^-$ samples are created using a model from the authors of Ref. [15]. The non-SM Lagrangian can be expressed as [16]

$$L_{0^-} = (c_5^L/Λ) AF_{μν} T_μν,$$

where $F_{μν}$ is the field-strength tensor for the vector boson, $Λ$ is the new boson field, $c_5^L$ is a coupling term, and $Λ$ is the scale at which new physics effects arise. The $J^P = 2^+$ signal samples are created using a Randall-Sundrum model, an extra-dimension model with a massive $J^P = 2^+$ particle that has gravitonlike couplings [28–31]. This model’s Lagrangian can be expressed as

$$L_{2^+} = (c_5^G/Λ) G_{μν} T_μν,$$

where $G_{μν}$ represents the $J^P = 2^+$ particle, $c_5^G$ is a coupling term, $T_μν$ is the stress-energy tensor of the vector boson, and $Λ$ is the effective Planck mass [9]. The mass of the non-SM Higgs-like particle $X$ is set to 125 GeV, a value close to the mass measured by the LHC Collaborations [1,2] and also consistent with measurements at the Tevatron [3]. We study the decay of $X$ to $b\bar{b}$ only. For our initial sample normalization we assume that the ratio $μ$ of the product of the cross section and the branching fraction, $σ(VX) × B(X \rightarrow b\bar{b})$, to the SM prediction is $μ = 1.0$ [32,33], and subsequently define exclusion regions as functions of $μ$. We generate samples using the CTETQ6L1 parton distribution functions and use PYTHIA for parton showering and hadronization. The Monte Carlo samples are processed by the full D0 detector simulation. To reproduce the effect of multiple $p\bar{p}$ interactions in the same beam crossing, each simulated event is overlaid with an event from a sample of random beam crossings with the same instantaneous luminosity profile as the data. The events are then reconstructed with the same programs as the data.

All three analyses employ a $b$-tagging algorithm based on track impact parameters, secondary vertices, and event topology to select jets that are consistent with originating from a $b$ quark [34,35].

The $ZH \rightarrow ℓℓbb$ analysis [18] selects events with two isolated charged leptons and at least two jets. A kinematic fit corrects the measured jet energies to their best fit values based on the constraints that the dilepton invariant mass should be consistent with the Z boson mass [36] and that the total transverse momentum of the leptons and jets should be consistent with zero. The event sample is further divided into orthogonal “single-tag” (ST) and “double-tag” (DT) channels according to the number of $b$-tagged jets. The SM Higgs boson search uses random forest [37] discriminants to provide distributions for the final statistical analysis. The first random forest is designed to discriminate against $t\bar{t}$ events and divides events into $t\bar{t}$-enriched and $t\bar{t}$-depleted ST and DT regions. In this study, only events in the $t\bar{t}$-depleted ST and DT regions are considered. These regions contain $≈94\%$ of the SM Higgs signal.

The $WH \rightarrow ℓνbb$ analysis [19] selects events with one charged lepton, significant imbalance in the transverse energy ($E_T$), and two or three jets. This search is also sensitive to the $ZH \rightarrow ℓℓbb$ process when one of the charged leptons is not identified. Using the outputs of the $b$-tagging algorithm for all selected jets, events are divided into four orthogonal $b$-tagging categories, “one-tight-tag,” “two-loose-tag,” “two-medium-tag,” and “two-tight-tag” (2TT). Looser $b$-tagging categories correspond to higher efficiencies for true $b$ quarks and higher false rates. Outputs from boosted decision trees (BDTs) [37], trained separately for each jet multiplicity and tagging category, serve as the final discriminants in the SM Higgs boson search.

The $ZH \rightarrow ννbb$ analysis [20] selects events with large $E_T$ and exactly two jets. This search is also sensitive to the $WH$ process when the charged lepton from the $W \rightarrow ℓν$ decay is not identified. A dedicated BDT is used to provide rejection of the large multijet background. Two orthogonal $b$-tagging channels, medium, and tight (TT), use the sum of the $b$-tagging discriminants of the two selected jets. BDT classifiers, trained separately for the different $b$-tagging categories, provide the final discriminants in the SM Higgs boson search.

These three analyses are among the inputs to the D0 SM Higgs boson search [38], yielding an excess above the SM background expectation that is consistent both in shape and in magnitude with a SM Higgs boson signal. The best fit to
data for the $H \rightarrow b\bar{b}$ decay channel for the product of the signal cross section and branching fraction is $\mu = 1.23^{+0.17}_{-0.17}$ for a mass of 125 GeV. When including data from both Tevatron experiments, the best fit to data yields $\mu = 1.59^{+0.69}_{-0.72}$ [39].

Discrimination between the $J^P$ values of non-SM and SM hypotheses is achieved by using mass information of the $VX$ system. For the $\ell\ell b\bar{b}$ final state we use the invariant mass of the two leptons and either the two highest $b$-tagged jets (DT) or the $b$-tagged jet and the highest $p_T$ nontagged jet (ST) as the final discriminating variable. For the final states that have neutrinos, the discriminating variable is the transverse mass of the $VX$ system which is defined as $M^* = (E_T^V + E_T^X)^2 - (\vec{p}_T^V + \vec{p}_T^X)^2$ where the transverse momenta of the Z and W bosons are $\vec{p}_T^X = \vec{E}_T$ and $\vec{p}_T^W = \vec{E}_T + \vec{p}_T^\nu$. For the $\ell\nu b\bar{b}$ final state, the two jets can either be one $b$-tagged jet (one-tight-tag) and the highest $p_T$ nontagged jet, or the two $b$-tagged jets from any of the other three $b$-tagging categories: two-loose-tag, two-medium-tag, or 2TT.

To improve the discrimination between the non-SM signals and backgrounds in the $\ell\ell b\bar{b}$ and $\nu\nu b\bar{b}$ final states, we use the invariant mass of the dijet system $M_{jj}$ to select two regions with different signal purities. Events with dijet masses in the range $100 \leq M_{jj} \leq 150$ GeV ($70 \leq M_{jj} < 150$ GeV) for $\ell\ell b\bar{b}$ ($\nu\nu b\bar{b}$) final states comprise the “high-purity” region (HP), while the remaining events are in the “low-purity” region (LP). As a result of the kinematic fit, the HP region for the $\ell\ell b\bar{b}$ final state is narrower than that for the $\nu\nu b\bar{b}$ final state, given the correspondingly narrower dijet mass peak. For the $\ell\nu b\bar{b}$ final state we use the final BDT output ($\mathcal{D}$) of the SM Higgs boson search [19]. Since events with $\mathcal{D} \leq 0$ provide negligible sensitivity to SM or non-SM signals, we do not consider them further. We separate the remaining events into two categories with different signal purities. The LP category consists of events with $0 \leq \mathcal{D} \leq 0.5$, and the HP category of events with $\mathcal{D} > 0.5$.

Figure 1 illustrates the discriminating variables for the three analysis channels in the high-purity categories for the most sensitive $b$-tagging selections. Distributions for additional subchannels can be found in the Supplemental Material [40].

We perform the statistical analysis using a modified frequentist approach [38,41,42]. We use a negative log-likelihood ratio (LLR) as the test statistic for two hypotheses: the null hypothesis $H_0$ and the test hypothesis, $H_1$. This LLR is given by $LLR = -2 \ln (L_{H_1}/L_{H_0})$, where $L_{H(x)}$ is the joint likelihood for hypothesis $x$ evaluated over the number of bins in the final discriminating variable distribution in each channel. To decrease the effect of systematic uncertainties on the sensitivity, we fit the signals and backgrounds by maximizing the likelihood functions by allowing the systematic effects to vary within Gaussian constraints. This fit is performed separately for both the $H_0$ and $H_1$ hypotheses for the data and each pseudoexperiment.

We define $\text{CL}_s$ as $\text{CL}_{H_1}/\text{CL}_{H_0}$, where $\text{CL}_{H_1}$ for a given hypothesis $H_s$ is $\text{CL}_{H_s} = P_{H_s} (\text{LLR} \geq \text{LLR}^{\text{obs}})$, and $\text{LLR}^{\text{obs}}$ is the LLR value observed in the data. $P_{H_s}$ is defined as the probability that the LLR falls beyond $\text{LLR}^{\text{obs}}$ for the distribution of LLR populated by the $H_s$ model. For example, if $\text{CL}_s \leq 0.05$ we exclude the $H_1$ hypothesis in favor of the $H_0$ hypothesis at $\geq 95\%$ CL.

Systematic uncertainties affecting both shape and rate are considered. The systematic uncertainties for each individual analysis are described in Refs. [18–20]. A summary of the major contributions follows. The largest contribution for all analyses is from the uncertainties on the

![Figure 1](image-url)
cross sections of the simulated $V+\text{heavy-flavor}$ jets backgrounds which are 20%–30%. All other cross section uncertainties for simulated backgrounds are less than 10%. Since the multijet background is estimated from data, its uncertainty depends on the size of the data sample from which it is estimated, and ranges from 10% to 30%. All simulated samples for the $WH \rightarrow \ell\nu b\bar{b}$ and $ZH \rightarrow \nu\nu b\bar{b}$ analyses have an uncertainty of 6.1% from the integrated luminosity [43], whereas the simulated samples from the $ZH \rightarrow \ell\ell b\bar{b}$ analysis have uncertainties ranging from 0.7%–7% arising from the fitted normalization to the data [18]. All analyses take into account uncertainties on the jet energy scale, resolution, and jet identification efficiency for a combined uncertainty of $\approx 7\%$. The uncertainty on the $b$-tagging rate varies from 1%–10% depending on the number and quality of the tagged jets. The correlations between the three analyses are described in Ref. [38].

In this Letter, the $H_0$ hypothesis always contains SM background processes and the SM Higgs boson normalized to $\mu \times \sigma_0^{SM}$. To test the non-SM cross section we assign the $H_1$ hypothesis as the sum of the $JP = 0^-$ or $JP = 2^+$ signal plus SM background processes, with no contribution from the SM Higgs boson. We calculate the CL$_s$ values using signal cross sections expressed as $\mu \times \sigma_0^{SM}$ and evaluate the expected values for each of these quantities by replacing LLR$_{\text{obs}}$ with LLR$_{\text{exp}}$, the median expectation for the $JP = 0^+$ hypothesis only. Figure 2 illustrates the LLR distributions for the $H_0$ and $JP = 2^+$ $H_1$ hypotheses, and the observed LLR value assuming $\mu = 1.0$, a production rate compatible with both Tevatron and LHC Higgs boson measurements. The similar plot for $JP = 0^-$ is shown in the Supplemental Material [40]. We interpret $1 - \text{CL}_s$ as the confidence level at which we exclude the non-SM hypothesis for the models considered in favor of

![FIG. 2 (color online). LLR distributions comparing the $JP = 0^+$ and the $JP = 2^+$ hypotheses for the combination. The $JP = 0^+$ and $JP = 2^+$ samples are normalized to the product of the SM cross section and branching fraction. The vertical solid line represents the observed LLR value assuming $\mu = 1.0$, while the dark and light shaded areas represent the 1 and 2 standard deviations (s.d.) on the expectation from the null hypothesis $H_0$, respectively.](image)

### Table I. Expected and observed $1 - \text{CL}_s$ values (converted to s.d. in parentheses) and signal fractions for $\mu = 1.0$ and $\mu = 1.23$ excluded at the 95% CL.

<table>
<thead>
<tr>
<th>$JP$</th>
<th>$1 - \text{CL}_s$ (s.d.)</th>
<th>$f_s$</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^-$</td>
<td>0.9986 (3.00) 0.976 (1.98)</td>
<td>&gt; 0.54</td>
<td>&gt; 0.80</td>
<td></td>
</tr>
<tr>
<td>$2^+$</td>
<td>0.9994 (3.22) 0.990 (2.34)</td>
<td>&gt; 0.47</td>
<td>&gt; 0.67</td>
<td></td>
</tr>
<tr>
<td>$\mu = 1.23$</td>
<td>0.9998 (3.60) 0.995 (2.56)</td>
<td>&gt; 0.45</td>
<td>&gt; 0.67</td>
<td></td>
</tr>
<tr>
<td>$2^+$</td>
<td>0.9999 (3.86) 0.998 (2.91)</td>
<td>&gt; 0.40</td>
<td>&gt; 0.56</td>
<td></td>
</tr>
</tbody>
</table>

In this Letter, the $H_1$ hypothesis always contains SM background processes and the SM Higgs boson normalized to $\mu \times \sigma_0^{SM}$. To test the non-SM cross section we assign the $H_1$ hypothesis as the sum of the $JP = 0^-$ or $JP = 2^+$ signal plus SM background processes, with no contribution from the SM Higgs boson. We calculate the CL$_s$ values using signal cross sections expressed as $\mu \times \sigma_0^{SM}$ and evaluate the expected values for each of these quantities by replacing LLR$_{\text{obs}}$ with LLR$_{\text{exp}}$, the median expectation for the $JP = 0^+$ hypothesis only. Figure 2 illustrates the LLR distributions for the $H_0$ and $JP = 2^+$ $H_1$ hypotheses, and the observed LLR value assuming $\mu = 1.0$, a production rate compatible with both Tevatron and LHC Higgs boson measurements. The similar plot for $JP = 0^-$ is shown in the Supplemental Material [40]. We interpret $1 - \text{CL}_s$ as the confidence level at which we exclude the non-SM hypothesis for the models considered in favor of

![FIG. 3 (color online). The expected exclusion region (shaded area) and observed exclusion (solid line) as functions of the $JP = 0^-$ and $JP = 0^+$ signal strengths. The expected exclusion region (hatched area) and observed exclusion (dashed line) as functions of the $JP = 2^+$ and $JP = 0^+$ signal strengths.](image)
CL$_s$ values as above as a function of $f_{0^+}$ or $f_{2^+}$. To study $f_{0^+}$, we now modify $H_0$ to be the sum of the background, the $J^P = 0^-$ signal normalized to $\mu \times \sigma_{SM}$, and the $J^P = 0^+$ signal normalized to $\mu \times (1 - \sigma_{0^-})$. $H_0$ remains as previously defined. We follow an identical prescription for $J^P = 2^+$. Figure 4 presents the value 1-CL$_s$ as a function of the $J^P = 0^-$ signal fraction $f_{0^-}$ for the case of $\mu = 1.0$, and the corresponding figure for the $J^P = 2^+$ hypothesis is available in the Supplemental Material [40]. For $\mu = 1.0$ we exclude a $J^P = 0^-$ ($J^P = 2^+$) signal fraction $f_{0^-} > 0.80$ ($f_{2^+} > 0.67$) at the 95% CL. The expected exclusions are $f_{0^-} > 0.54$ ($f_{2^+} > 0.47$). Limits on admixture fractions for other choices of $\mu$ are shown in the Supplemental Material [40].

In summary, we have performed tests of models with non-SM spin and parity assignments in Higgs boson production with a $W$ or $Z$ boson and decaying into $b\bar{b}$ pairs. We use the published analyses of the $WH \rightarrow t\bar{t}b\bar{b}$, $ZH \rightarrow \ell\ell b\bar{b}$, and $ZH \rightarrow \nu\bar{\nu}b\bar{b}$ final states with no modifications to the event selections. Sensitivity to non-SM $J^P$ assignments in the two models considered here is enhanced via the separation of samples into high- and low-purity categories wherein the total mass or total transverse mass of the $VX$ system provides powerful discrimination. Assuming a production rate compatible with both Tevatron and LHC Higgs boson measurements, our data strongly reject non-SM $J^P$ predictions and agree with the SM $J^P = 0^-$ prediction. Under the assumption of two nearly degenerate bosons with different $J^P$ values, we set upper limits on the fraction of non-SM signal in our data. This is the first exclusion of non-SM $J^P$ parameter space in a fermionic decay channel of the Higgs boson.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (U.S.); Commissariat à l’énér.gie atomique et aux énergies alternatives (CEA) and Centre National de la Recherche Scientifique/Institut National de Physique Nucléaire et de Physique du Particules (CNRS/IN2P3) (France); MON, National Research Center Kurchatov Institute of Russian Federation (NRC KI), and RFBR (Russia); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); Stichting voor Fundamenteel Onderzoek der Materie (FOM) (The Netherlands); STFC and the Royal Society (U.K.); Ministry of Education, Youth and Sports (MSMT) and GACR (Czech Republic); Bundesministerium für Bildung und Forschung (BMBF) and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and National Natural Science Foundation of China (CNSF) (China).