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Abstract
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risk-free bond, and an option on the stock. We present two differ-
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skewness defined by Van Zwet (1964).
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1 Introduction

Given a Von Neuman-Morgenstern utility of wealth function u(w), an agent

is downside risk averse if u′′′(w) > 0. The intensity of downside risk aversion

P (w) = −u′′′(w)/u′′(w) or prudence, was introduced by Kimball (1990) and

shown to determine the demand for precautionary saving. Chiu (2000) shows

that P (w) also determines the demand for self protection. Keenan and Snow

(2010) discuss sufficient conditions for greater prudence to indicate greater

downside risk aversion. An alternative measure for the intensity of down-

side risk aversion is studied by Modica and Scarsini (2005) and Crainich

and Eekhoudt (2008). When risk is small, Modica and Scarsini show that

D(w) = u′′′(w)/u′(w) measures premium for skewness, and Crainich and

Eekhoudt show that it measures the pain associated with an increase in down-

side risk in monetary terms. Keenan and Snow (2002, 2009, 2012) suggest a

further measure, the Schwarzian derivative S(w) = D(w) − 3
2
u′′2(w)/u′2(w),

and characterize downside risk aversion by considering changes in risk that

induce third-order mean-and-variance-preserving spreads in the utility dis-

tribution. Recently, Chiu (2010) points out that the current literature on

skewness preference treats skewness largely as synonymous with the (un-

standardized) third central moment, which may have caused the difficulty in

getting comparative statics of downside risk aversion in the cases where risk

is large, and raises the issue of skewness comparability. A strong notion of

an increase in skewness (hereafter a strong increase in skewness), which has

so-called strong skewness comparability, is given by Van Zwet (1964).1 Van

Zwet defines that a cumulative distribution function F (x) is more skewed to

1See Chiu (2005) for an explanation of strong skewness comparability.
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the right than G(X) if R(x) = F−1(G(x)) is convex, which results in a subset

of increases in skewness. In this paper our characterizations of downside risk

aversion use this notion of a strong increase in skewness.

We define the degree of downside risk aversion as C(w) = (1/R(w))′,

where R(w) = −u′′(w)/u′(w) is the Pratt-Arrow measure of risk aversion.

This measure of downside risk aversion was first introduced by Wilson (1968)

who termed it cautiousness. In this paper we show that cautiousness char-

acterizes preferences for a strong increase in skewness under Van Zwet’s def-

inition.

We consider the simplest possible scenario, where decision makers can

buy or sell a single stock, a risk-free bond, and an option on the stock. We

show that cautiousness determines the optimal position in the option in this

simple portfolio problem. An option’s payoff is a convex function of the

underlying stock price; thus increasing positions in the option increases the

convexity of a portfolio and results in a strong increase in skewness under

Van Zwet’s definition.2 Using this simple portfolio problem, we present two

different ways to characterize cautiousness as a measure of downside risk

aversion by answering the following two questions respectively: who buys

the option? who buys more options per share of the stock?

Our results here are related to the previous work of Leland (1980), Bren-

nan and Solanki (1981), and Hara, Huang and Kuzmics (hereafter HHK)

(2007). Leland shows that an agent with higher cautiousness is more likely

to have a convex optimal payoff function which he regards as a proxy of port-

2 For an explanation of an increase in skewness caused by a convex transformation of

a random variable, see, for example, Van Zwet (1964) or Chiu (2010).

3



folio insurance. Brennan and Solanki obtain a similar result in a lognormal

model where a risk-neutral valuation relationship holds for the valuation of

options. In both studies results are obtained by comparing an agent’s cau-

tiousness with that of a representative agent whose characteristics are exoge-

nously and arbitrarily defined. This undermines the rigor of their approach.

HHK (2007) try to remedy this problem by endogenizing the representative

agent; however, they find that in general this approach does not work.3

In a related paper on the effect of background risk, Franke, Stapleton

and Subrahmanyam (hereafter FSS) (1998) also show that a convex payoff is

optimal in a model where background risk increases the cautiousness of an

investor with a HARA class utility function. HHK (2011) extend the above

discussion about the effect of background risk on cautiousness to a more

general class of utility functions.

Cautiousness has also been used in analyzing other problems. For exam-

ple, Gollier (2001) discusses how an investor’s cautiousness is related to the

local convexity of her consumption rule.4 In an earlier related study, Car-

roll and Kimball (1996) investigate the effect of uncertainty on the curvature

of investors’ consumption rules by examining its effect on their cautious-

ness. They show that if investors have HARA class utility functions then

uncertainty will increase their cautiousness, which leads to concave optimal

consumption rules. HHK (2007) show how heterogeneity in cautiousness af-

3They conclude that the results of Leland (1980) and Brennan and Solanki (1981) “are

valid in a two-consumer economy, but do not generalize to an economy with a large number

of consumers with diverse levels of relative risk aversion”. For more explanations about

this, see the discussions of Theorem 18 in HHK (2007).
4See Gollier (2001) page 207, Proposition 52.
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fects consumers’ portfolio strategies and the representative consumer’s risk

preferences. Gollier (2007) finds that cautiousness helps to explain the aggre-

gation of heterogeneous beliefs. Gollier (2008) further shows that cautious-

ness plays an important role in understanding saving and portfolio choices

with predictable changes in asset returns.

The structure of the remaining paper is as follows. In Section 2, we intro-

duce the concept of being more cautious and the simple portfolio problem

which underlies our analysis. In Section 3, we analyze the simple case where

only small strong increases (decreases) in skewness are considered. In sec-

tions 4 and 5, we characterize cautiousness in the general case by answering

the following two different questions respectively: (i) who buys the option?

(ii) who buys more options per share of the stock? In Section 6, we give

some numerical examples to illustrate the main results. The final section

concludes the paper.

2 The Model

Assume there is a risk-free bond and a stock traded in the market. The

risk-free interest rate is denoted by r, and the stock prices at time 0 and 1

are denoted by S0 and S respectively. We assume that the distribution of

the stock price S is continuous and its support, denoted by I = [s, s̄], is a

bounded subinterval of [0,+∞).5 Although we assume that the stock price

follows a continuous distribution, the results obtained in this paper can easily

5The boundedness of the support I is not required for Statement 1 in Theorem 1 to

imply Statement 2, which can clearly be seen from the proof of the theorem.
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be extended to the discrete case.

Assume there is an option written on the stock available in the market,

which matures at time 1.6 To avoid the trivial case where the option degen-

erates to a portfolio of the stock and the riskless bond, we assume that its

strike price K is an interior point of the support, i.e., K ∈ (s, s̄). Denote the

time 0 price and the time 1 payoff of the option by a0 and a(S) respectively.7

Consider an investor i who is a rational utility-maximizer and a price-

taker.8 Investor i’s risk preferences are represented by a utility function

ui(x). At time 0 she has initial wealth w0i. Assume that at time 0 she buys

xi shares of the stock and yi units of the option, and invests the rest of her

wealth (w0i − xiS0 − yia0) in the money market. Denote investor i’s wealth

at time 1 by wi(S;xi, yi). We have

wi(S;xi, yi) = (w0i − xiS0 − yia0)(1 + r) + xiS + yia(S). (1)

For brevity we will often write wi(S;xi, yi) simply as wi(S). Note that,

as a(S) is continuous and piecewise infinitely differentiable, wi(S) is also

continuous and piecewise infinitely differentiable.

Investor i maximizes the expected utility of her time 1 wealth wi(S), that

6In case there are more than one option traded in the market, it is understood that

only one of them is considered in the portfolio problem. This is in line with the approach

used by Pratt (1964) and Arrow (1965) who consider only one risky asset in the portfolio

characterization of risk aversion.
7The interest rate and the current prices of the stock and the option are all exogenous.
8We do not assume all investors are rational utility-maximizers or price takers.
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is, she chooses xi, yi to solve the following problem:9

max
xi,yi

Eui(wi(S)). (2)

We obtain the first order conditions:

E[u′
i(wi(S))(S − (1 + r)S0)] = 0, and E[u′

i(wi(S))(a(S)− (1 + r)a0)] = 0,

which can be written as

E[u′
i(wi(S))S]

Eu′
i(wi(S))

= (1 + r)S0, and
E[u′

i(wi(S))a(S)]

Eu′
i(wi(S))

= (1 + r)a0. (3)

We assume that all utility functions are strictly increasing, strictly concave,

and three times continuously differentiable. The strict concavity of the utility

functions guarantees that a solution to (3) is a unique global maximum.10

Before we proceed to analyze the optimal solution, we first introduce some

notation. Let φi(S) = u′
i(wi(S))/Eu′

i(wi(S)). Then (3) can be written as

E[φi(S)S] = (1 + r)S0, and E[φi(S)a(S)] = (1 + r)a0. (4)

Thus φi(S) can be regarded as investor i’s individual pricing kernel, which

she uses to price the stock and the option. As the investor has to take the

market prices as given, her individual pricing kernel must price the stock and

the option correctly; that is, an individual pricing kernel must be admissible

with respect to the stock and the option.

To understand the characteristics of admissible pricing kernels, we may

note that, as wi(S) is continuous and piecewise infinitely differentiable and

9We do not assume that all investors have homogeneous beliefs. Although her beliefs

are not specified, investor i may not have the same beliefs as the market.
10See, for example, Cox and Huang (1991).
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ui(w) is three times differentiable, φi(S) = u′
i(wi(S))/Eu′

i(wi(S)) is also con-

tinuous and piecewise three times differentiable. In each of the two differen-

tiable intervals separated by the option’s strike price K, let δi(S) denote the

negative derivative of the logarithm of investor i’s individual pricing kernel,

i.e., δi(S) = −φ′
i(S)/φi(S). From the definitions of φi(S) we have

δi(S) = Ri(wi(S))w′
i(S), (5)

where Ri(w) is investor i’s absolute risk aversion. In each interval, as wi(S)

is infinitely differentiable and Ri(w) is twice differentiable, δi(S) is also twice

differentiable; thus it is bounded in any bounded subinterval. Define δi(K) =

limS→K+ δ(S); then δi(S) is right continuous at S = K. As is well known, a

bounded and almost everywhere continuous function is Riemann integrable;

hence δi(S) is Riemann integrable. It follows that for any S, a ∈ (s, s̄), we

have

ln
φi(S)

φi(a)
= −

∫ S

a
δi(x)dx. (6)

We now finish this section with a lemma which shows a characteristic of

admissible pricing kernels. This lemma will be used repeatedly later in the

proofs of our main results in this paper.

Lemma 1 Assume φi(S) and φj(S) are continuous. If they both price the

stock correctly then they must cross at least twice unless for all S, φi(S) =

φj(S).

Proof: See Appendix A.
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3 Cautiousness in the Small

Cautiousness was first defined by Wilson (1968) based on another risk prefer-

ence measure, the well-known Pratt-Arrow risk aversion. Given a utility func-

tion u(w), Pratt (1964) and Arrow (1965) define the risk aversion measure

R(w) = −u′′(w)/u′(w). Cautiousness C(w) is defined as the rate of change

of the inverse of this function, i.e., C(w) = (1/R(w))′.11 Cautiousness is also

closely related to another well-known risk preference measure, the measure of

prudence. Prudence is defined by Kimball (1990) as P (w) = −u′′′(w)/u′′(w).

We have

(
1

R(w)
)′ = −(lnR(w))′

R(w)
= −(ln (−u′′(w)))′ − (lnu′(w))′

R(w)
=

P (w)

R(w)
− 1.

Thus cautiousness is equivalent to the ratio of prudence to risk aversion minus

one. Now we define a key concept in this paper.

Definition 1 Investor i is said to be more cautious than investor j if for

all w and v, Ci(w) ≥ Cj(v), where Ci(w) and Cj(v) are the cautiousness

measures of investors i and j respectively.12

The above concept gives an ordering of utility functions in terms of their

cautiousness. Since HARA class utility functions have constant cautiousness,

they can be ordered perfectly in this way.

We will charaterize cautiousness using the simple portfolio problem in

the last section. We first consider the special case where positions in the

11Throughout the paper, we use R and C to denote risk aversion and cautiousness

respectively.
12Throughout the paper, when we say for all w and v, Ci(w) ≥ Cj(v), we mean for all

w and v in the natural domains of ui(w) and uj(v) respectively.
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option are small, i.e., only small strong increases (decreases) in skewness are

considered. Assume that there is an investor i whose optimal position in the

option is zero, i.e., yi = 0 and wi(S) = (w0i − xiS0)(1 + r) + xiS. From (4),

this implies that her optimal strategy is obtained when

E[φi(S)S] = (1 + r)S0, and E[φi(S)a(S)] = (1 + r)a0,

where φi(S) =
u′

i(wi(S))

Eu′
i(wi(S))

. Consider another investor j who is strictly less

cautious than her, i.e., for all w and v, Ci(w) > Cj(v). Suppose that she does

not consider investment in the option, that is, she only considers investment

in the riskless bond and the stock. This implies that her optimal strategy is

obtained when

E[φj(S)S] = (1 + r)S0,

where φj(S) =
u′

j(wj(S))

Eu′
j(wj(S))

and wj(S) = (w0j − xjS0)(1 + r) + xjS. Note that

investor j’s pricing kernel φj(S) may not price the option correctly, as she

did not consider the option in her optimal portfolio construction. We ask

the following question: if she adds a small positive position in the option to

his optimal portfolio, will this increase her expected utility? According to

basic calculus, the answer depends on the sign of d
dyj

Euj(wj(S;xj, yj))|yj=0,

where wj(S;xj, yj) = (w0j − xjS0 − yja0)(1 + r) + xjS + yja(S): if the sign

is strictly positive (negative) then the answer is positive (negative). Some

simple calculations show that this sign is equal to the sign of E[φj(S)a(S)]−

(1 + r)a0. Hence if investor j’s individual pricing kernel prices the option

strictly higher (lower) than the market then, a small positive position in the

option additional to the stock will strictly increase (decrease) her expected

utility.
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Note we have for t = i, j, δt(S) = −(lnφt(S))′ = Rt(wt(S))w′
t(S) and

( 1
δi(S)

− 1
δj(S)

)′ = Ci(wi(S)) − Cj(wj(S)) > 0; thus δj(S) can cross δi(S) at

most once from below. This, together with (6), implies that φj(S) can cross

φi(S) at most twice. But according to Lemma 1, as they both price the

stock correctly, they must cross at least twice; thus they cross exactly twice,

and as ( 1
δi(S)

)′ − ( 1
δj(S)

)′ > 0, φj(S) − φi(S) is negative at both ends of the

support, i.e., there exist two points s1 and s2, where s < s1 < s2 < s̄, such

that for S ∈ (s, s1), φj(S) − φi(S) < 0; for S ∈ (s1, s2), φj(S) − φi(S) > 0;

for S ∈ (s2, s̄), φj(S)−φi(S) < 0. Let L(S) = aS+b such that L(s1) = a(s1)

and L(s2) = a(s2).
13 Then as a(S) is convex, we have for S ∈ (s, s1),

a(S)−L(S) ≥ 0; for S ∈ (s1, s2), a(S)−L(S) ≤ 0; S ∈ (s2, s̄), a(S)−L(S) ≥

0, and at least one of the three inequalities is strict.

Then we have

E[φj(S)a(S)]− (1 + r)a0 = E[(φj(S) − φi(S))a(S)] (7)

= E[(φj(S) − φi(S))(a(S) − L(S))] < 0. (8)

This implies that a small positive (negative) position in the option additional

to the stock will decrease (increase) her expected utility.

As an option’s payoff is a convex function of the underlying stock price,

adding a positive position in the option transforms the original linear ter-

minal wealth function into a convex function. A convex transformation of a

random variable results in a strong increase in skewness under Van Zwet’s

(1964) definition.14 In the above example, the prices of the stock and the

13L(S) is obtained by connecting the two points (s1, a(s1)) and (s2, a(s2)) in the space

of stock price and payoff.
14See Footnote 2.
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option given in the market strike such a balance that, according to investor

i’s measure of cautiousness, she feels neither the need to buy the option to

pursue a strong increase in skewness nor the need to sell the option to pursue

a strong decrease in skewness. However, raising (lowering) the measure of

cautiousness will upset the balance. An investor with a higher (lower) mea-

sure of cautiousness feels that adding a positive position in the option which

leads to a strong increase in skewness will increase (decrease) her expected

utility.

The above analysis explains the simple case where we only consider small

strong increases (decreases) in skewness; however, when large strong increases

(decreases) in skewness are considered, the situation is more complicated. In

the rest of the paper, we carry out analyses of the general situation and

characterize cautiousness.

4 Who Buys the Option?

To characterize the concept of cautiousness, we ask the question how in-

creased cautiousness affects an agent’s optimal portfolio strategy. Alterna-

tively, consider the situation where two investors i and j have the same

beliefs and face the same portfolio problem; we ask the following question:

if investor i is more cautious than investor j, how is her optimal portfolio

strategy compared with that of investor j?15 Comparisons of optimal port-

folio strategies can be done in different ways, which will lead to different

15It is obvious that an answer to the second question is also an answer to the first. Thus

we need only present our results as answers to the second question.
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characterizations of cautiousness. In this section we focus on the sign of the

position in the option in an optimal portfolio strategy. We now present our

first main result.

Theorem 1 The following two statements are equivalent.

1. Investor i is more cautious than investor j.

2. Given any initial wealth, stock price, and option price such that there is

a solution to problem (3) for both investors i and j, investor j holds a

(strictly) positive position in the option only if investor i does so, i.e.,

yj ≥ (>)0 implies yi ≥ (>)0.

Remark 1. Statement 2 of the theorem states that investor j has a

(strictly) positive position in the option only if investor i does so. As has

been already explained in the last section, adding a positive position in the

option to a portfolio of a riskless bond and the underlying stock results in

a strong increase in skewness. Thus the theorem implies that a more cau-

tious investor is more likely to buy the option to pursue strong increases in

skewness.

Remark 2. From the above proof, it is clear that if for all S, Ci(wi(S)) ≥

Cj(wj(S)), then yj ≥ 0 implies yi ≥ 0. Moreover, if for all S, Ci(wi(S)) ≥

Cj(wj(S)), and for at least some S the inequality is strict, then yj ≥ 0 implies

yi > 0.16

Remark 3. As was mentioned in the introduction, there are some stud-

ies in the literature which use cautiousness to explain investors’ investment

16We need only note that the given condition implies that there is some S, δi(S) 6= δj(S).
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decision making. Among those studies Leland (1980) uses cautiousness to

explain the convexity of an investor’s optimal payoff function in a complete

market. Theorem 1 is obviously different from Leland’s results as it is about

positions in an option while his results are about the convexity of an agent’s

optimal payoff function. Nevertheless, the two results are related: in the

above theorem, positions in the option also determine the convexity of the

optimal portfolio. However, even if we pursue this relationship, we must be

aware that (i) as was mentioned in the introduction, Leland’s results depend

on the characteristics of the representative agent, which are exogenously and

arbitrarily defined; (ii) Leland’s results rely on the condition that investors’

optimal payoff functions are monotonically increasing while Theorem 1 is

valid whether the two investors’ terminal wealth functions are increasing

with the stock price or not.17

Remark 4. The above theorem gives an ordering of utility functions in

terms of the motive to buy options. This ordering is perfect for HARA class

utility functions as they all have constant cautiousness. Thus, if investor

i and j have constant cautiousness Ci and Cj, i.e., they have HARA class

utility functions, and Ci > Cj, then investor i will have a stronger motive

to buy options. Moreover, for an exponential utility function, cautiousness

is zero, while any utility function which displays decreasing absolute risk

17For example, in the case of homogeneous beliefs, Leland’s results are derived from

the equation f ′′
i (x)

f ′
i(x) = R(x)(Ci(fi(x)) − C(x)), where x is the aggregate wealth, R(x)

and C(x) are the representative agent’s risk aversion and cautiousness respectively, fi(x)

and Ci(fi(x)) are agent i’s optimal payoff function and cautiousness along this function

respectively. Thus sign(f ′′
i (x)) depends not only on sign(Ci(fi(x)) − C(x)) but also on

sign(f ′
i (x)). See also page 657 in HHK (2007).
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aversion has positive cautiousness and any utility function which displays

increasing absolute risk aversion has negative cautiousness. Thus, according

to the above theorem, any investor who has decreasing (increasing) absolute

risk aversion always has a stronger (weaker) motive to buy options than an

investor with an exponential utility function.

Remark 5. Furthermore, the theorem also implies the role of prudence in

explaining the demand for options. According to Leland (1968) and Kimball

(1990), an investor is prudent (imprudent) if her utility function has a pos-

itive (negative) third derivative. Consider the situation when one investor

is prudent while another is imprudent. In this case, as cautiousness can be

written as C(w) = u′′′(w)u′(w)/u′′2(w)−1, the first investor’s cautiousness is

larger than negative unity while the second investor’s cautiousness is smaller

than negative unity. According to Theorem 1, this implies that the first in-

vestor has a stronger motive to buy the option. Thus a prudent investor has

a stronger motive to buy options than an imprudent investor.

The proof that Statement 2 of Theorem 1 implies Statement 1 can be

found in Appendix B, and here we only show the proof that Statement 1

implies Statement 2. To prove this, we need the following two lemmas which

are proved in Appendix A.

Lemma 2 Assume φi(S) and φj(S) both price the stock correctly, and for all

S, Ci(wi(S)) ≥ Cj(wj(S)). If yi ≤ 0 and yj ≥ 0 then in the entire support,

δi(S) crosses δj(S) once, and φi(S) crosses φj(S) twice, unless for all S,

φi(S) = φj(S).

Lemma 3 Assume that φi(S) and φj(S) both price the stock correctly and

that δi(S) and δj(S) cross once. If for some S, δi(S) 6= δj(S), then the two
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pricing kernels cannot both price the option correctly.

With the help of the above two lemmas, we are now ready to prove that

Statement 1 of Theorem 1 implies Statement 2.

Proof: By contradiction, suppose either yi ≤ 0 and yj > 0 or yi < 0 and

yj ≥ 0. It is straightforward that there are some S, δi(S) 6= δj(S).18 In the

meantime as yi ≤ 0, yj ≥ 0, investor i is more cautious than investor j, and

both φi(S) and φj(S) price the stock correctly, from Lemma 2, δi(S) and

δj(S) cross once, and φi(S) and φj(S) cross twice. Now applying Lemma 3,

we conclude that the two pricing kernels φi(S) and φj(S) cannot both price

the option correctly, which causes a contradiction. Q.E.D.

5 Who Buys More Options Per Share?

In the last section we focused on sign(yi), i.e., the sign of the position in the

option in an investor’s optimal portfolio strategy. In this section we focus

on the ratio yi/xi, where xi is the number of shares of the stock, which is

the amount of options per share in an investor’s optimal portfolio strategy.

We show how an investor’s level of cautiousness determines this ratio. We

present the following result.

Theorem 2 The following two conditions are equivalent.

1. Investor i is more cautious than investor j.

18We need only note that under the given condition if for all S ∈ (s, K), δi(S) = δj(S),

then δi(K+) 6= δj(K+).
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2. Given any initial wealth, stock price, and option price such that there

is a solution to problem (3) for both investors i and j and xixj 6= 0, if

xiS+yia(S) is strictly monotone then xj > (<)0 implies yi

xi
≥ (≤)

yj

xj
; if

xjS + yja(S) is strictly monotone then xi > (<)0 implies yi

xi
≥ (≤)

yj

xj
.

Proof: See Appendix C.

Remark 1. In the case where xixj > 0, the theorem tells us that a

more cautious investor buys more options per share or sells fewer options per

share. From Lemma 5 in Appendix C, increasing positive positions (reducing

negative positions) in the option per share equates a convex transformation of

the terminal wealth function, and according to Van Zwet (1964), this results

in a strong increase in the skewness of the portfolio.19 Thus the theorem

implies that a more cautious investor pursue strong increases in skewness by

trading the option.20

Remark 2. Similar to Remark 2 on Theorem 1, from the proof, it is clear

that if for all S, Ci(wi(S)) ≥ Cj(wj(S)), then Statement 2 is true. Moreover,

if for all S, Ci(wi(S)) ≥ Cj(wj(S)), and for at least some S the inequality

is strict, then using the same proof and applying Remark 2 on Theorem 1,

we can show that Statement 2 is true with strict inequalities, i.e., investor i

buys strictly more options per share or sells strictly fewer options per share.

19See also Footnote 2.
20This becomes even clearer if we go through the proof of the theorem. As is shown

in the proof, in the transformed problem, investor j’s optimal portfolio has a negative

position in the option â(Ŝ) while investor i’s optimal portfolio has zero position in the

option. This implies that investor j’s terminal wealth is a concave function of investor i’s

terminal wealth, i.e., the difference between investor j’s terminal wealth and investor i’s

terminal wealth is a strong decrease in skewness.
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Remark 3. The condition that xiS+yia(S) or xjS+yja(S) is monotone is

necessary for the conclusion in the theorem; this is shown in Section 6 using

some numerical examples.21 Also, note that this condition is equivalent to

investor i’s terminal wealth being a monotone function of the underlying

stock price S. To understand this condition, consider the case where you

have bought some units of a stock index. If you set up a normal portfolio

insurance strategy using an option on the index, your terminal wealth will

be a monotone increasing function of the index unless you over-insure your

stock index. Thus, if you do not over-insure your stock index, the condition

in the theorem will be satisfied. Consider another case where you have sold

short some shares of a stock. If you buy some call options on the stock to

cover this short position, your terminal wealth will be a monotone decreasing

function of the stock price unless you over-cover your short position. Thus, if

you do not over-cover your short position, the condition in the theorem will

be satisfied.

6 Numerical Examples of Option Demand

In this section we present some numerical examples. These are designed to

illustrate the conclusions of the theorems established above. Table 1 shows

optimal stock and option demands given three different sets of (S0, a0) prices.

In part a), S0 = 84 and a0 = 3.00. Marginal utility is of the HARA class with

u′(w) = (w + α)−γ . For this utility function cautiousness is a constant with

C(w) = 1/γ and absolute risk aversion R(w) = γ/(α + w). Cautiousness is

21See the discussion at the end of Section 6.
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shown for four different levels of γ in column 3 of the Table. Risk aversion

is shown in column 4 (for α = 20) and column 8 (for α = 70). The first four

rows of the table assume current wealth w0 = 100 and the next four rows

assume current wealth w0 = 200. For all the examples we assume a 1-year

horizon and an interest rate of 5%. The stock has a payoff with four states

(120, 100, 80, 70) with equal probability. The option is a call option with a

strike price of 100.

Given these data, we solve equations (3) for the optimal stock and option

demands. For α = 20, these are shown in columns 5 and 6 respectively. For

α = 70, these are shown in columns 9 and 10 respectively. In part b) of the

table the results are shown for a different set of prices, S0 = 85 and a0 = 3.70.

Then, in part c) they are shown for S0 = 86 and a0 = 4.50.

Observing the results, first note that the relative option demand, y/x,

is unaffected either by wealth w0 or by the subsistence parameter α. For

example, given C = 2.00 in part b), y/x = 0.23 for all combinations of

w0 and α. This illustrates a result of Rubinstein (1974) which shows that

investors with the same constant cautiousness measure have an identical

optimal risky portfolio. Looking at the column headed y, we observe that

the option demand given C = 0.25 is never positive unless the demand given

C = 2.00 is positive. Also, the option demand given C = 2.00 is only negative

if the demand given C = 0.25 is negative. These results are consistent with

Theorem 1.

Looking at the results in part a) or part b) it is tempting to conclude

that the relative option demand y/x increases with C. However, the results

in part c) of the Table show that this is not always the case. Given the prices
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S0 = 86 and a0 = 4.50, the short position in the option increases with C.

However, the relative position y/x decreases (from -1.65 to -1.75). Note that

here the payoff xS + ya(S) is not monotone. This case illustrates the need

for the condition in Theorem 2.

7 Conclusions

In this paper we have characterized cautiousness, a downside risk aversion

measure, using the simple portfolio problem with a risk-free bond, a stock,

and an option on the stock. We establish that it is an investor’s cautiousness

that determines her demand for options. Unlike the current literature on

skewness preference which treats skewness largely as synonymous with the

(unstandardized) third central moment, our study uses the notion of a strong

increase in skewness defined by Van Zwet (1964). This enables us to obtain

monotone comparative statistics in the difficult cases where risk is large.

To some extent, our results provide a direct extension of Arrow (1965) and

Pratt’s (1964) portfolio characterization of risk aversion. They show that,

given the choice between investing in a positive excess return risky asset and

a risk-free asset, an agent has lower risk aversion than another agent if and

only if she always invests more in the risky asset. Thus investment in the

risky asset characterizes risk aversion. We show that, given the additional

choice of investing in an option, an agent has higher cautiousness or downside

risk aversion, (i) if and only if she is always more likely to buy the option, (ii)

if and only if she always demands more options per share. Hence investment

in the option characterizes cautiousness or downside risk aversion.
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Tables

Table 1: a) Stock and Option Demand (84, 3.00)

γ C R(w) x y y/x R(w) x y y/x

α=20 α=70

S0 84 4 0.25 4
20+w

0.22 0.54 2.51 4
70+w

0.30 0.76 2.52

a0 3.00 2 0.50 2
20+w

0.42 1.20 2.83 2
70+w

0.59 1.67 2.82

w0 100 1 1.00 1
20+w

0.80 2.85 3.55 1
70+w

1.12 3.99 3.56

0.5 2.00 0.5
20+w

1.36 7.48 5.50 0.5
70+w

1.91 10.48 5.50

S0 84 4 0.25 4
20+w

0.40 1.00 2.52 4
70+w

0.49 1.22 2.52

a0 3.00 2 0.50 2
20+w

0.78 2.20 2.83 2
70+w

0.95 2.69 2.84

w0 200 1 1.00 1
20+w

1.47 5.24 3.55 1
70+w

1.80 6.37 3.55

0.5 2.00 0.5
20+w

2.50 13.77 5.50 0.5
70+w

3.05 16.78 5.51

Table 1 a) shows the optimal stock and option demands given (S0, a0) = (84, 3.00).

Investors have HARA utility functions u(w) = (w+α)1−γ

1−γ with α = 20, 70.
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Table 1 b) Stock and Option Demand (85, 3.70)

γ C R(w) x y y/x R(w) x y y/x

α=20 α=70

S0 85 4 0.25 4
20+w

0.31 -0.06 -0.19 4
70+w

0.43 -0.08 -0.19

a0 3.70 2 0.50 2
20+w

0.61 -0.08 -0.14 2
70+w

0.85 -0.11 -0.13

w0 100 1 1.00 1
20+w

1.18 -0.03 -0.03 1
70+w

1.66 -0.05 -0.03

0.5 2.00 0.5
20+w

2.21 0.50 0.23 0.5
70+w

3.08 0.71 0.23

S0 85 4 0.25 4
20+w

0.56 -0.10 -0.19 4
70+w

0.69 -0.13 -0.19

a0 3.70 2 0.50 2
20+w

1.12 -0.15 -0.14 2
70+w

1.36 -0.19 -0.14

w0 200 1 1.00 1
20+w

2.18 -0.06 -0.03 1
70+w

2.65 -0.07 -0.03

0.5 2.00 0.5
20+w

4.05 0.93 0.23 0.5
70+w

4.93 1.15 0.23

Table 1 b) shows the optimal stock and option demands given (S0, a0) = (85, 3.70).

Investors have HARA utility functions u(w) = (w+α)1−γ

1−γ with α = 20, 70.
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Table 1c) Stock and Option Demand (86, 4.50)

γ C R(w) x y y/x R(w) x y y/x

α=20 α=70

S0 86 4 0.25 4
20+w

0.47 -0.78 -1.65 4
70+w

0.66 -1.09 -1.65

a0 4.50 2 0.50 2
20+w

0.95 -1.58 -1.67 2
70+w

1.33 -2.22 -1.67

w0 100 1 1.00 1
20+w

1.92 -3.25 -1.70 1
70+w

2.69 -4.56 -1.70

0.5 2.00 0.5
20+w

3.85 -6.74 -1.75 0.5
70+w

5.39 -9.44 -1.75

S0 86 4 0.25 4
20+w

0.87 -1.43 -1.65 4
70+w

1.05 -1.74 -1.65

a0 4.50 2 0.50 2
20+w

1.75 -2.91 -1.67 2
70+w

2.12 -3.54 -1.67

w0 200 1 1.00 1
20+w

3.53 -5.99 -1.70 1
70+w

4.30 -7.29 -1.70

0.5 2.00 0.5
20+w

7.08 -12.41 -1.75 0.5
70+w

8.62 -15.09 -1.75

Table 1 c) shows the optimal stock and option demands given (S0, a0) = (86, 4.50).

Investors have HARA utility functions u(w) = (w+α)1−γ

1−γ with α = 20, 70.
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Appendix A Proof of Lemmas 1, 2, and 3

A.1 Proof of Lemma 1

By contradiction, suppose φi(S) crosses φj(S) only once at a from above.22 We

have

E[(φi(S)− φj(S))S] = E[(φi(S)− φj(S))(S − a)].

Suppose φi(S) and φj(S) are not identical, i.e., there exists a point b ∈ (s, s̄)

such that φi(b) 6= φj(b). As both φi(S) and φj(S) are continuous at S = b, there

must exist a neighborhood of b with positive probability mass such that for all

S in this set, φi(S) 6= φj(S). This, together with the fact that φi(S) − φj(S) is

non-negative when S < a and non-positive when S > a, implies that E[(φi(S)−

φj(S))(S − a)] < 0. Thus we obtain E[(φi(S) − φj(S))S] < 0. This inequality

contradicts the assumption that both pricing kernels price the stock correctly.

This completes the proof. Q.E.D.

A.2 Proof of Lemma 2

Proof: We first prove that if for all S, Ci(wi(S)) ≥ Cj(wj(S)), then δi(S) can

cross δj(S) at most once from above in each of the two intervals (K, s̄) and (s, K).

Consider S < K. As δt(S) = Rt(wt(S))w′
t(S), t = i, j, if w′

i(S) = 0 or w′
j(S) = 0

then δi(S) cannot cross δj(S) in the interval (s, K). Moreover, if they have opposite

signs then, they cannot cross either. Now suppose they are both strictly positive

or negative. In this case, noting that for all S < K, w′′
i (S) = w′′

j (S) = 0, we have

for all S < K, ( 1
δt(S))

′ = Ct(wt(S)), t = i, j, where we have used the definition

of cautiousness, C(x) = ( 1
R(x))

′. As for all S, Ci(wi(S)) ≥ Cj(wj(S)), from the

22Note two pricing kernels must cross at least once because otherwise their expectations

cannot both be unity.
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above result we conclude that 1
δi(S) can cross 1

δj(S) at most once from below, which

implies that δi(S) can cross δj(S) at most once from above in the interval (s, K).

Similarly, we conclude that δi(S) can cross δj(S) at most once from above in the

interval (K, s̄). This proves the statement.

We now prove the lemma. Assume φi(S) and φj(S) are not identical. As

yi ≤ 0 and (yj ≥ 0), at S = K, w′
i(S) jumps down while w′

j(S) jumps up.

This implies that at S = K, δi(S) = Ri(wi(S))w′
i(S) jumps down while δj(S) =

Rj(wj(S))w′
j(S) jumps up. In the meantime, as investor i is more cautious than

investor j, from the statement we have just proved in the above paragraph, δi(S)

can cross δj(S) at most once from above in the interval (K, s̄) ((s, K)). Combining

the last two statements, we conclude that δi(S) can cross δj(S) at most once from

above in the entire support. But according to Lemma 1, the two pricing kernels

φi(S) and φj(S) must cross at least twice; from basic calculus and (6), this implies

that δi(S) must cross δj(S) at least once. Thus δi(S) crosses δj(S) exactly once in

the entire support. Now again from basic calculus and (6), this implies that φi(S)

can cross φj(S) at most twice. Applying Lemma 1, we conclude that φi(S) crosses

φj(S) exactly twice. Q.E.D.

A.3 Proof of Lemma 3

Proof: As is shown in the proof of Lemma 2, the given condition implies that φi(S)

and φj(S) cross twice. Without loss of generality, suppose φi(S) crosses φj(S) first

from above, then from below. First assume the two crossings both happen in one

of the two intervals (s, K] and [K, s̄). Without loss of generality, suppose they

both happen in the interval (s, K]. Note that if for all S < K, φi(S) = φj(S) then

as δi(S) and δj(S) cross once, from basic calculus and (6), φi(S) and φj(S) cross

once, which contradicts the given condition. Thus we must have for some S < K,
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φi(S) 6= φj(S). This implies that for all S ≤ K, φi(S) − φj(S) ≥ 0, and for some

S ∈ (s, K), φi(S) − φj(S) > 0. Because of the put-call parity, we can treat the

option as a put, and it follows that φi(S) prices the option strictly higher than

φj(S). Now assume the two crossings are not both contained in one of the two

intervals (s, K] and [K, s̄), i.e., there exist s1 ∈ (s, K) and s2 ∈ (K, s̄) such that

for all S < s1 or S > s2, φi(S) ≥ φj(S), for all s1 < S < s2, φi(S) ≤ φj(S), and

for some S in each of the three intervals (s, s1), (s1, s2), and (s2, s̄), φi(S) 6= φj(S).

Now as in Section 3, construct a portfolio of the money instrument and the

stock such that its payoff is equal to the payoff of the option at s1 and s2, and

denote the payoff of the portfolio by L(S). As s1 < K and s2 > K, we must have

a(S) − L(S) > 0, when S < s1 or S > s2; a(S) − L(S) < 0, when s1 < S < s2.

Thus similar to (8) in Section 3, we have E[(φi(S) − φj(S))a(S)] = E[(φi(S) −

φj(S))(a(S) − L(S))] > 0, i.e., the two pricing kernels φi(S) and φj(S) cannot

both price the option correctly. Q.E.D.

Appendix B Proof of Theorem 1 (Second Half)

B.1 Lemma 4

Before we start to prove that Statement 2 implies Statement 1, consider the fol-

lowing explanation. In the rare case where the current prices of the stock and

the option are equal to the risk neutral prices, a strictly risk averse investor will

optimally hold zero investment in both the stock and the option. Thus if we use

Sr and ar to denote the risk neutral prices of the stock and the option respectively,

when (S0, a0) = (Sr, ar), a solution to (3) is (xi, yi) = (0, 0). We now show that

for those (S0, a0) which are near (Sr, ar), solutions to (4) exist too. We have the

following lemma.
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Lemma 4 The following two statements are true.

1. There exists a neighborhood of (0, 0), B, such that for any (xi, yi) ∈ B, there

exists (S0, a0) such that (xi, yi) is the solution to (4).

2. There exists a neighborhood of (Sr, ar), A, such that for any (S0, a0) ∈ A, a

solution to (4) exists.

Proof:

We first prove Statement 1 of this lemma. As the support of the stock price

distribution is bounded the current prices of the stock and the option under the

first stochastic dominance rule must be bounded. Let S and S̄ be the lower and

upper bounds of the stock price at time zero; let a and ā be the lower and upper

bounds of the option price at time zero.23 Consider the problem in which given a

pair of (xi, yi), we want to solve (4) for (S0, a0). Define a function g : R2
+ → R2

+

as follows:

g(S0, a0) =
1

1 + r
(E[φi(S)S], E[φi(S)a(S)]),

where as is defined, φi(S) = u′
i(wi(S))/Eu′

i(wi(S)) and wi(S) is given by (1).

Given any pair of (xi, yi) which is close enough to (0, 0), this function is well

defined on [S, S̄] × [a, ā]. As utility functions are three times differentiable, g(.)

is obviously a continuous function from a non-empty, closed, bounded, convex

set [S, S̄] × [a, ā] to itself.24 According to the well-known Brouwer’s Fixed Point

Theorem, there is always a fixed point. Thus a solution of (S0, a0) to (4) always

exists. This proves the first statement of the lemma.

We now prove the second statement of the lemma. Define a function f : R2
+ →

R2
+ as follows. For a pair of stock price and option price (S0, a0), if there is a

23It is straightforward that S = s/(1 + r), S = s̄/(1 + r), a = minx∈[s,s̄] a(x)/(1 + r),

and a = maxx∈[s,s̄] a(x)/(1 + r).
24In a metric space sequential continuity and continuity are equivalent.
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solution (xi, yi) to (4), then f(S0, a0) = (xi, yi). Note as is well-known, because

of the strict concavity of the utility function ui(w), the solution (xi, yi) is unique;

thus the function is well defined. As utility functions are three times differentiable,

f(.) is obviously continuous.

From the first statement of the lemma we conclude that there is a neighborhood

of (0, 0), B, such that B is a set of images under function f(.). Since f(.) is con-

tinuous and B is open, the preimage of B is also open. Thus as f(Sr, ar) = (0, 0)

there must exist a neighborhood of (Sr, ar), A, such that for any (S0, a0) ∈ A, a

solution to (4) exists. Q.E.D.

B.2 Proof of Theorem 1 (Second Half)

With the help of the above lemmas we can now start to prove that Statement 2

implies Statement 1. Note that if it is not true that for all w and v, Ci(w) ≥ Cj(v),

then there must exist some w0 and v0 such that Ci(w0) < Cj(v0). As all utility

functions are assumed to be three times continuously differentiable, cautiousness

is continuous; Thus there must be a neighborhood of w0, A, a neighborhood of v0,

B, and a constant α, such that for all w ∈ A and all v ∈ B, Ci(w) < α < Cj(v).

If we can somehow make sure that investor i’s terminal wealth is contained in A

while investor j’s terminal wealth is contained in B, then applying Remark 2 on

the theorem in Section 4, we can show a situation where it happens that investor

j optimally holds a long position in the option while i does not. This is the idea

we use to prove that Statement 2 implies Statement 1.

We need only show that if it is not true that for all w and v, Ci(w) ≥ Cj(v)

then there is a set of wi0, wj0, S0, and a0 such that investor j optimally holds a

long position in the option while i does not.
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Applying the first statement of Lemma 4, we conclude that there is a series:

{(xn
i , 0)|n = 1, 2, ...}, where xn

i is strictly decreasing in n, limn→∞ xn
i = 0, and for

all n, (xn
i , 0) is the solution to (4) corresponding to (S0, a0) = (S0n, a0n). Obviously

we have limn→∞ S0n = Sr and limn→∞ a0n = ar.

According to the second statement of Lemma 4, there exists a neighborhood

of (Sr, ar), A, such that for any (S0, a0) ∈ A, the solution to problem (3) exists.

Without loss of generality assume for all n, (S0n, a0n) ∈ A. This implies that given

the series {(S0n, a0n)|n = 1, 2, ...}, there exist a series of solutions {(xjn, yjn)|n =

1, 2, ...} to problem (3) for investor j. Since limn→∞(S0n, a0n) = (Sr, ar) from the

continuity of the solutions we have limn→∞(xjn, yjn) = (0, 0).

As is pointed out at the beginning of this proof, if it is not true that for all

w and v, Ci(w) ≥ Cj(v), from the continuity of Ci(w) and Cj(v), there must be

w0, v0, A, which is a neighborhood of w0, and B, which is a neighborhood of v0,

such that for all w ∈ A and all v ∈ B, Ci(w) < Cj(v). Let wi0 = w0/(1 + r) and

wj0 = v0/(1+r).25 Use win(S) to denote investor i’s terminal wealth corresponding

to trading strategy (xi, yi) = (xin, yin), where yin = 0, which is defined in Equation

(1). Then, since the support of the stock price distribution, [a, b], is bounded, there

must exist N > 0 such that for all n > N , we have that for all S ∈ [a, b], win(S) ∈ A

and wjn(S) ∈ B.

This implies that for all S ∈ [a, b], Ci(win(S)) < α < Cj(wjn(S)). Now

applying Remark 2 on the theorem in Section 4, for n > N we must have yjn > 0.

Thus we have a situation where investor j holds a (strictly) positive position in

the option, but investor i does not do so. This completes the proof. Q.E.D.

25Negative initial wealth will be avoided if we require positive terminal wealth. This

does not have any effect on the proof.
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Appendix C Proof of Theorem 2

To prove the theorem, we need the following lemma.

Lemma 5 Assume for all S, 1 + ba′(S) > 0, where b is a constant. Let Ŝ =

S + ba(S) = h(S) and â(Ŝ) = a(h−1(Ŝ)). Then â(Ŝ) is a positive fraction of an

option on Ŝ with strike price K̂ = K + ba(K), which is the same type of option as

a(S).

Proof: Let K̂ = K + ba(K). As Ŝ = S + ba(S) = h(S) and â(Ŝ) = a(h−1(Ŝ)), in

either interval Ŝ < K̂ or interval Ŝ > K̂, we have dâ(Ŝ)

dŜ
= a′(h−1(Ŝ))

h′(h−1(Ŝ))
. Simplifying

it, we obtain
dâ(Ŝ)
dŜ

=
a′(S)

1 + ba′(S)
, (9)

where S = h−1(Ŝ). As a(S) is the payoff of an option with strike price K, we have

a′(S) = α for S < K and a′(S) = β for S > K, where α < β. For a call option,

α = 0 and β = 1. In this case, we have for Ŝ < K̂, dâ(Ŝ)

dŜ
= α

1+bα = 0; for Ŝ > K̂,
dâ(Ŝ)

dŜ
= β

1+bβ = 1
1+b . Thus â(Ŝ) is 1

1+b of the payoff of a call on Ŝ with strike price

K̂. For a put option, α = −1 and β = 0. For a put option, α = −1 and β = 0. In

this case, we have for Ŝ < K̂, dâ(Ŝ)

dŜ
= α

1+bα = − 1
1−b ; for Ŝ > K̂, dâ(Ŝ)

dŜ
= β

1+bβ = 0.

Thus â(Ŝ) is 1
1−b of the payoff of a put on Ŝ with strike price K̂. In both cases,

â(Ŝ) is a positive fraction of an option on Ŝ with strike price K̂, which is the same

type of option as a(S). Q.E.D.

With the help of the above lemma, we now prove the theorem. We first prove

that the first statement implies the second statement. Assume xi 6= 0 and xj 6= 0.

Let ỹi = yi/xi and ỹj = yj/xj . Suppose S + ỹia(S) is strictly monotone. Let

Ŝ = h(S) = S + ỹia(S). As h(S) is strictly monotone, it follows that S = h−1(Ŝ).

Let â(Ŝ) = a(h−1(Ŝ)).
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From Lemma 5, â(Ŝ) is a positive fraction of an option on Ŝ with strike price

K̂ = K + ba(K), which is the same type of option as a(S). Thus the original

investment problem with stock S and option a(S) is transformed into a new in-

vestment problem with stock Ŝ and a positive fraction of an option â(Ŝ). From

(1) in the original problem, investor i’s terminal wealth is

wi(S; xi, ỹi) = (w0i − xi(S0 + ỹia0))(1 + r) + xi(S + ỹia(S)),

and investor j’s terminal wealth is

wj(S; xj, ỹj) = (w0i − xj(S0 + ỹja0))(1 + r) + xj(S + ỹja(S)).

If we let Ŝ0 = S0 + ỹia0 and â0 = a0, then in the transformed problem investor i’s

terminal wealth is wi(Ŝ; xi, 0) = (w0i−xiŜ0)(1+r)+xiŜ, and investor j’s terminal

wealth is

wj(Ŝ; xj, ỹj − ỹi) = (w0i − xj(Ŝ0 + (ỹj − ỹi)â0))(1 + r) + xj(Ŝ + (ỹj − ỹi)â(Ŝ)).

From the above two equations, we can clearly see that in the transformed problem

investor i has xi shares of the stock Ŝ and zero position in the option on Ŝ with

strike price K̂ in her optimal portfolio while investor j’s optimal positions in the

stock Ŝ and the option on Ŝ are xj and xj(ỹj − ỹi) multiplied by a positive fraction

respectively. Now assume investor i is more cautious than investor j. Applying

Theorem 1 to the transformed problem, as investor i is more cautious than j, we

immediately conclude that we must have xj(ỹj − ỹi) ≤ 0. Thus if xj > (<)0,

ỹi ≥ (≤)ỹj .

The proof for the case where S + ỹja(S) is strictly monotone is similar. This

proves that the first statement implies the second statement.

The proof of the converse is similar to the proof of Theorem 1. Without loss

of generality, assume the option is a put. By contradiction, suppose that it is not
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true that for all w and v, Ci(w) ≥ Cj(v). As is shown in the second half of the

proof of Theorem 1, in the special case set up there, we have a situation where

yj > 0 while xi > 0 and yi = 0. As the option is a put, we must have xj > 0;

otherwise, if xj ≤ 0, then as yj > 0, wj(S) is decreasing. But as xi > 0 and

yi = 0, wi(S) is strictly increasing. This implies that φi(S) is strictly decreasing

while φj(S) is increasing, and they cannot both price the stock correctly. Now we

have a situation where xiS + yiai(S) is strictly monotone, xi > 0, xj > 0, and

0 = yi
xi

<
yj

xj
. This completes the proof. Q.E.D.
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