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Abstract. We derive a uniform approximation for semiclassical contributions of periodic orbits
to the spectral density which is valid for generic period-quadrupling bifurcations in systems with
a mixed phase space. These bifurcations involve three periodic orbits which coalesce at the
bifurcation. In the vicinity of the bifurcation the three orbits give a collective contribution to
the spectral density while the individual contributions of Gutzwiller’s type would diverge at the
bifurcation. The uniform approximation is obtained by mapping the action function onto the
normal form corresponding to the bifurcation. This article is a continuation of previous work
in which uniform approximations for generic period-m-tupling bifurcations withm 6= 4 were
derived.

1. Introduction

Semiclassical approximations for the density of states of a quantum system can be expressed
in terms of classical periodic orbits [1–5]. The form in which the periodic orbits contribute in
these approximations is not unique; it rather depends on the characteristics of the classical
motion. Up until now, complete approximations in terms of periodic orbits have been
derived only for the cases of either integrable or globally chaotic classical motion. In the
more general situation of a mixed phase space, difficulties arise due to bifurcations, i.e.
because of the coalescence of two or more periodic orbits as the energy or some external
parameter is varied. In this article we describe the treatment of a generic type of bifurcation.
We derive a uniform approximation for the joint contribution of orbits that participate in a
period-quadrupling bifurcation.

One way to derive semiclassical approximations is by starting from Feynman’s path
integral and evaluating all integrals semiclassically. The periodic-orbit contributions then
arise from the stationary points of oscillatory integrals. If the periodic orbits are isolated the
integrals can be evaluated by a stationary-phase approximation and one obtains Gutzwiller’s
trace formula. At bifurcations of periodic orbits, however, different stationary points
coalesce and the stationary-phase approximation breaks down. This is because the different
stationary points cannot be treated separately in the vicinity of the bifurcation. Instead one
has to treat them collectively. This is done in terms of certain canonical integrals with the
same structure of stationary points.

The characteristic arrangement of stationary points in the vicinity of a bifurcation is
described by its normal form. The generic normal forms for bifurcations in autonomous
systems with two degrees of freedom or, equivalently, two-dimensional area-preserving
maps have been classified by Meyer and Bruno [6–8]. They depend on the ratiom of the
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primitive periods of the periodic orbits which coalesce at the bifurcation. The corresponding
bifurcations are named period-m-tupling bifurcations. Ozorio de Almeida and Hannay [9]
derived transitional (or local) approximations for the contributions of periodic orbits near
generic bifurcations. These approximations are expressed in terms of canonical catastrophe
diffraction integrals. They are transitional approximations because they are valid in the
vicinity of the bifurcation. Further from the bifurcation, however, they do not yield the
correct amplitudes in Gutzwiller’s approximation for the contribution of isolated periodic
orbits.

In two previous articles we extended the results of Ozorio de Almeida and Hannay [9] by
deriving uniform approximations which interpolate between the transitional approximation
at the bifurcation and Gutzwiller’s approximation for isolated periodic orbits [10, 11]
(see also [12]). These uniform approximations were obtained by including higher-order
corrections to the normal form expansion and then simplifying the integrals by appropriate
coordinate transformations. The derivations were completed for the casesm > 4 andm < 4,
respectively. In this paper we treat the remaining casem = 4. This case is more complicated
than the others since it involves three periodic orbits whose action differences all increase
with the same power of the parameter that describes the distance to the bifurcation. We
use a different method for the derivation of the uniform approximation than was previously
used. We apply techniques of catastrophe theory for obtaining uniform approximations for
oscillatory integrals with almost coincident stationary points by performing a mapping onto
the normal form [13–15]. The motivation is to provide a more elegant derivation; the results
are, of course, the same for both approaches.

In the following section we present the uniform approximation that is derived in
appendix A and discuss several limiting cases. The result is given for autonomous systems
with two degrees of freedom and for two-dimensional area-preserving maps. We apply the
uniform approximation numerically to the kicked top and discuss the limits of its validity.

2. The uniform approximation

The semiclassical contributions of periodic orbits to the spectral density can be obtained by
expressing the density in terms of the trace of the (retarded) Green function,

d(E) =
∑
n

δ(E − En) = − 1

π
Im TrG(E) (1)

and evaluating the trace semiclassically in the vicinity of the orbits. If the Green function
is expressed in a mixed coordinate-momentum representation and the integrals over the
components of the coordinates along the periodic orbits are carried out one arrives at an
integral expression of the form

dξ (E) ≈ 1
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2
ν

]
. (2)

For a more detailed derivation of this integral see [10, 11]. In (2) the origin of the coordinate
system is located on a central periodic orbit with repetition numberr. Furthermore,p and
q ′ are coordinates in a Poincaré surface of section perpendicular to the orbit, andŜ(q ′, p,E)
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is the generating function for therth iterate of the Poincaré map. It obeys the conditions

∂Ŝ

∂q ′
= p′ ∂Ŝ

∂p
= q ∂Ŝ

∂E
= T (3)

where the primed quantities are the final coordinates, the unprimed quantities the initial
coordinates, andT is the time from initial to final point. The indexξ of the spectral density
denotes the contributions from a group of orbits in the vicinity of the central periodic orbit.
The periodic orbits are the solutions of

∂Ŝ

∂q ′
= p ∂Ŝ

∂p
= q ′ (4)

and correspond to stationary points of the integral (2).
If the integral in (2) is evaluated in stationary-phase approximation one obtains

Gutzwiller’s contributions of isolated periodic orbits. For a periodic orbit labelled byγ

this contribution is given by

dγ (E) = Aγ (E)

πh̄
cos

(
Sγ (E)

h̄
− π

2
νγ

)
(5)

where

Aγ (E) = Tγ (E)

rγ
√|TrMγ − 2| . (6)

HereSγ , Tγ , rγ , Mγ andνγ are, respectively, the action, period, repetition number, stability
matrix, and Maslov index of the orbit.

In the vicinity of a bifurcation a stationary-phase evaluation of the integrals in (2) is
not appropriate. Instead one has to integrate collectively over all stationary points which
are involved in the bifurcation. This is done by inserting the normal form of the generating
functionŜ(q ′, p,E) for the considered bifurcation into (2). For a generic period-quadrupling
bifurcation the repetition numberr is a multiple of 4; we denote in the followingl = r/4.
The normal form for this case is given by

Ŝ(q ′, p,E) = S0(E)+ q ′p − ε
2
(q ′2+ p2)− a

4
(q ′4+ 2p2q ′2+ p4)

−b
4
(q ′4− 6p2q ′2+ p4)

= S0(E)+ q ′p − εI − aI 2− bI 2 cos(48) (7)

wherep = √2I cos8 andq ′ = √2I sin8. The parameterε is zero at the bifurcation. The
normal form (7) is obtained from an expansion of the Hamiltonian in the vicinity of the
central periodic orbit, andS0 is the action of this orbit.

The generic period-quadrupling bifurcation that is described by the normal form (7)
involves three periodic orbits, a central orbit and two satellite orbits. The bifurcation occurs
in two different forms depending on the relative magnitude of the two coefficientsa andb
in (7). In the case|a| < |b| there are two real orbits and one complex orbit before and after
the bifurcation, the stable central orbit, an unstable satellite orbit and a complex satellite
orbit. At the bifurcation one of the satellites becomes complex and the other becomes real.
For |a| > |b| the two satellite orbits are both complex on one side of the bifurcation and
both real on the other, where one of them is stable and the other unstable. The central orbit
is real and stable on both sides of the bifurcation.

In the vicinity of the bifurcation, i.e. for sufficiently small values ofε, the contribution
of the orbits can be described by the transitional approximation of Ozorio de Almeida and
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Hannay [9]. It is obtained by approximating the pre-exponential factor in (2) by its value
at the origin and evaluating the integral with the normal form (7) for the action. This
yields the semiclassical contribution in terms of the diffraction catastrophe integral for the
catastropheX9. Further from the bifurcation the transitional approximation splits up into a
sum of separate contributions of Gutzwiller’s type. However, in this limit the semiclassical
amplitudes come out with fixed relationships which are, in general, not in accordance with
the periods and stabilities of the orbits. In more detail, the approximation is good as long
as the following relations between the monodromy matrices and the periods of the orbits
hold,

41S21 TrM0+1S20 TrM1 = 81S21+ 21S20

41S12 TrM0+1S10 TrM2 = 81S12+ 21S10

1S20 TrM1+1S10 TrM2 = 21S20+ 21S10

(8)

where1Sij = (Si − Sj )/2 and T0 = T1 = T2. The index 0 denotes the central orbit
and the indices 1 and 2 the two satellite orbits. Only two of the three equations in (8) are
independent. The relations (8) follow from the normal form (7) (cf equations (22) and (24) in
appendix A). For a general system they are only valid in the vicinity of the bifurcation. With
increasingε they lose their validity, and the transitional approximation gradually becomes
inaccurate. In order to obtain a formula which uniformly interpolates over the region from
the bifurcation up to regimes where Gutzwiller’s approximation is valid (without restrictions
on the semiclassical amplitudes) one has to consider two modifications. First, higher-order
corrections to the normal form (7) cannot be neglected any more. However, one can apply
a mapping which brings the exponent in (2) back to the normal form. Second, one has
to take into account the differences of the values of the exponential prefactor in (2) at the
different stationary points. These steps are carried out in appendix A. In the following we
discuss the uniform approximation which is obtained there.

The uniform approximation for the joint semiclassical contribution of orbits which are
involved in a generic period-quadrupling bifurcation is given by

dξ (E) ≈ 1

4lπh̄2 Re
∫ ∞

0
dI [T0+ α1I + α2I

2]J0

(
b̃I 2

h̄

)
exp

[
i

h̄
(S0− ε̃I − ãI 2)− iπ

2
ν

]
(9)

whereJ denotes the Bessel function of the first kind and

ε̃ = σε̃T0
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(10)

Equation (9) with definitions (10) is invariant under exchange of the indices 1 and 2.
The indexν and σε̃, the sign of ε̃, can be determined from the Maslov indices of the
periodic orbits. The Maslov index of an unstable real satellite orbit is alwaysν, that of
a stable real satellite orbit is alwaysν − σε̃ and that of the central orbit isν + σε̃. The
actions of the real orbits are ordered in the same way as their Maslov indices, i.e.Si > Sj
if and only if νi > νj . If both satellite orbits are complex the sign ofε̃ is given by
σε̃ = sign(S1− S0) = sign(S2− S0).
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The coefficients (10) depend only on quantities which also enter the individual
contribution (7). As an important consequence, the joint contribution (9) is still invariant
under canonical transformations. The transitional approximation is obtained if one keeps
only the first of the three pre-exponential terms in the integrand.

There are some special cases of values ofã and b̃ for which the integral (9) can be
evaluated analytically. They are discussed in appendix B. Numerically useful expressions
that can be applied for arbitrary values ofa andb are given in appendix C. In the following
we discuss different limits of the integral (9). If the action differences1Sij are large in
comparison with ¯h then a replacement of the Bessel function by its leading asymptotic term
and a stationary-phase evaluation of the integral yields a sum over Gutzwiller contributions
(5) for the real satellite orbits. Complex satellites do not contribute since they cannot be
reached by a steepest-descent deformation of the integration manifold. (A detailed study
of contributions of complex orbits near bifurcations can be found in [16].) This is sensible
since the complex satellites, though having complex coordinates, still have real actions and
semiclassical amplitudes (cf equations (22) and (24)), and their isolated contributions would
not be exponentially suppressed with ¯h→ 0. (In this respect, the role of the complex orbits
resembles that of the complex satellite in a period-doubling bifurcation [11].)

The contribution of the central orbit is given by the leading semiclassical contribution
from the boundary of the integral atI = 0.

In the opposite limitε̃ = 0, i.e. at the bifurcation, all action differences vanish. The
leading-order semiclassical contribution of equation (9) is then given by

dξ (E) ≈ T0

4l
√

2π3h̄3|b|
Re

{[
K

(√ |b| + a
2|b|

)
e−iπ/4+K

(√ |b| − a
2|b|

)
eiπ/4

]
× exp

(
i

h̄
S0− iπ

2
ν

)}
(11)

if |a| < |b|, and by

dξ (E) ≈ T0

4l
√
π3h̄3(|a| + |b|)

K

(√
2|b|
|a| + |b|

)
cos

(
S0

h̄
− π

2
ν − π

4
σa

)
(12)

if |a| > |b|. K(z) denotes the complete elliptic integral of the first kind.T0 and S0

are, respectively, the period and action of the orbits at the bifurcation,a and b are the
coefficients in the normal form (7) forε = 0, and l = r/4 is the repetition number of
the satellite orbits. The contributions (11) and (12) are by an order ¯h−1/2 larger than the
contribution of an isolated period orbit, i.e. the singularity index of the bifurcation is1

2.
Although it is not written explicitly, all quantities in (11) and (12) depend on the integerl.
In detail,T0,l = lT0,l=1, S0,l = lS0,l=1, νl = lνl=1 andal = lal=1 andbl = lbl=1. It follows
that the amplitude of the contribution at the bifurcation decreases asl−1/2 with increasing
l. However, it cannot be expected that this approximation is good for arbitrarily largel.
For longer periodic orbits bifurcations tend to occur more frequently. It is expected that for
larger l there are other bifurcations which interfere with the considered bifurcation.

The formulae of this section can also be applied, with minor modifications, to two-
dimensional area-preserving maps whose time-evolution is governed by the Floquet operator
F . These maps correspond to systems with one degree of freedom whose Hamiltonian
operator is periodic in time,H(t+T ) = H(t), andF = U(T ) is the unitary time-evolution
operator for one period. The Floquet operator has unimodular eigenvalues e−iφi with phases
φi that are called quasi-energies. The quasi-energies can be determined from a knowledge
of the traces of powers ofF .
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For maps the trace formula approximates TrFn semiclassically instead of the level
density. Furthermore, one has to pay attention to the following differences in comparison
with autonomous systems with two degrees of freedom: (i) the orbits which contribute are
those with a fixed periodn, not those with a given energyE; (ii) the primitive periods have
to be expressed in units ofT and thus are integer valued; (iii) the action is not the reduced
energy-dependent one, but depends on time (that is, on the numbern); (iv) instead of taking
twice the real part, the full complex contribution has to be taken; (v) the results differ by a
further factor of 2πh̄.

It follows that the contributionC(n)ξ of a period-quadrupling bifurcation to TrFn is given
by

C
(n)
ξ ≈

1

4lh̄

∫ ∞
0

dI [n+ α1I + α2I
2]J0

(
b̃I 2

h̄

)
exp

{
i

h̄
(S0− ε̃I − ãI 2)− iπ

2
ν

}
(13)

where the quantities̃a, b̃, ε̃, α1 and α2 are determined by (10) withT0 = n and
Ai = n/(ri

√|TrMi − 2|). Here ri and Mi are the repetition number and monodromy
matrix of the orbit, respectively.

3. Numerical results

We now test the uniform approximation numerically on the example of a periodically
kicked top [17–19] and compare the results with those for the transitional approximation
(valid close to the bifurcation) and the Gutzwiller approximation (which treats the orbits as
being isolated). The kicked top is a dynamical system that involves the angular-momentum
operatorsJx , Jy , Jz which satisfy the usual commutation relations [Jk, Jl ] = iεklmJm, where
h̄ is set to unity. The evolution of the system conserves the total angular momentum
J 2
x +J 2

y +J 2
z = j (j +1). This introduces the quantum numberj which fixes the dimension

2j +1 of the Hilbert space.j + 1
2 further plays the role of the inverse of Planck’s constant,

and the semiclassical limit is reached byj → ∞. After normalization of the angular-
momentum vector the phase space of the classical system is revealed as the unit sphere.

The specific top that is considered here is described by the Floquet operator

F = exp

[
−i

kz

2j + 1
J 2
z − ipzJz

]
exp[−ipyJy ] exp

[
−i

kx

2j + 1
J 2
x − ipxJx

]
. (14)

This describes rotations by anglespi and nonlinear rotations (torsions) of strengthki . For
the study of bifurcations we hold the values of thepi fixed (px = 0.3, py = 1.0, pz = 0.8)
and varyk = kz = 10kx as a control parameter. The classical counterpart of the system is
integrable fork = 0 and displays well developed chaos atk = 5.

At k = 0 the top describes a linear rotation. In this situation the system has only two
periodic orbits, both of period one and positioned at the intersection of the rotation axis with
the spherical phase space. They are called the trivial periodic orbits. Ask is increased, new
orbits show up in bifurcations. The first two period-quadrupling bifurcations are encountered
at k = k(1) = 1.0055. . . and k = k(2) = 1.1954. . .. Both have one of the trivial orbits in
their centre. The next period-quadrupling happens atk = k(3) = 3.0336. . .. The central
orbit of this bifurcation is born at a smaller value ofk = k(4) = 2.4497. . . in a tangent
bifurcation together with an unstable partner. The form of the three period-quadrupling
bifurcations is of type|a| > |b|, i.e. on one side of the bifurcation (k < k(1,2,3)) both
satellite orbits are complex and on the other side (k > k(1,2,3)) both satellites are real.

Contributions of periodic orbits engaged in period-quadrupling bifurcations first show
up in the trace TrF 4 since the repetition number of the central orbit has to be a multiple
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Figure 1. The trace TrF 4 of the fourth power of the Floquet operator (14) as a function of
the control parameterk for j = 4. The plots show the exact quantum result, the uniform
approximation, the transitional approximation, and the approximation which considers the orbits
as isolated. One observes that the isolated approximation diverges at the period-quadrupling
bifurcations while the transitional and the uniform approximation behave regularly there.
However, the transitional approximation starts to break down far to the right of the bifurcations.

of four. In the following we describe different semiclassical contributions to TrF 4. In
general, orbits of primitive period one, two, and four enter this trace. Complex orbits
with the same primitive periods can also contribute, however, they must be reachable by
a steepest-descent contour deformation. All these orbits can participate in bifurcations.
One has to deal with tangent bifurcations of orbits of primitive period one, two, and
four, period-doubling bifurcations with central orbits of primitive period one and two,
and period-quadrupling bifurcations with central orbits of primitive period one. For
0 6 k . 2.5, however, only a few orbits are relevant, namely, those which participate
in the period-quadrupling bifurcations atk(1) and k(2), and in the tangent bifurcation at
k(4).

In figure 1 the trace TrF 4 for j = 4 is plotted againstk. The exact result is
compared with three semiclassical approximations which, respectively, treat the two period-
quadrupling bifurcations by the uniform approximation, the transitional approximation, and
the approximation that considers the orbits as isolated. The tangent bifurcation is described
in all three cases by the uniform approximation of [11]. Observe that the isolated-orbit
approximation diverges at the period-quadrupling bifurcations whereas the transitional and
the uniform approximation behave regularly there. The transitional approximation, however,
loses accuracy for the largestk-values in the displayed range, which is most clearly seen in
the real part of the trace.

In figure 2 we investigate the behaviour of the semiclassical approximations as the
semiclassical limit is approached, i.e. we fix the parameterk at k = 1.5 and increase the
value of j . For low values ofj the isolated approximation shows large deviations while
the transitional and the uniform approximation are accurate. For larger values ofj the sum
of isolated contributions gains validity, since the effective Planck’s constant 1/(j + 1/2)
becomes small in comparison with the action differences of the orbits. The transitional
approximation on the other hand becomes slightly more inaccurate, since the error in the
semiclassical amplitudes shows up more strongly when the orbits can be considered as
isolated. Figure 2(d) shows the deviation|TrF 4

sc−TrF 4
qm| of the semiclassical traces TrF 4

sc

from the exact trace TrF 4
qm. This function reveals a crossover between the transitional and

the isolated approximation and displays the superiority of the uniform approximation over
the whole range ofj : the uniform approximation is up to an order of magnitude more
accurate than the other two approximations.
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Figure 2. The trace TrF 4 as a function ofj for k = 1.5. (a), (b) The real part of
the exact quantum result, the uniform approximation, the transitional approximation, and the
approximation which considers the orbits as isolated. (c) Illustration of the oscillations of the
exact trace. (d) The error of the semiclassical traces, measured by the absolute value of their
deviation from the exact one.

Figure 2(c) illustrates an oscillatory behaviour of TrF 4 which semiclassically originates
from the interference of the contributions from the two period-quadrupling bifurcations.
These contributions can be separated by considering the function

T (n)(S) = 1

jmax− jmin+ 1

jmax∑
j=jmin

e−ijS TrFn(j) (15)

which has peaks at the positions of the actions of the periodic orbits. In its essence this
function is a Fourier coefficient of TrFn with respect toj . It allows us to study the
contributions of periodic-orbit clusters individually in the case that the action differences
of orbits from different clusters are sufficiently large. A convenient testing tool is then a
study of the peak heightT (n)(S) at the value of the classical actionScl of a given orbit in
a cluster as a function ofk or for different values ofjmin andjmax in (15).

In figure 3 we show a quantum-mechanical evaluation of|T (4)(Scl)|2 for the three orbits
involved in the period-quadrupling atk(1) as the parameterk is steered across the bifurcation.
We usejmin = 1 and jmax = 64. The exact quantum-mechanical curves are compared
with results for the uniform, the transitional, and the isolated approximation. The uniform
approximation is excellent over the whole range ofk. It can hardly be distinguished from
the quantum result. The approximation in terms of isolated orbits on the other hand fails
completely. It diverges at the bifurcation and only gains validity again for values ofk where
the amplitudes of the contributions are already quite small. The transitional approximation is
good at the bifurcation; however, ask is increased a clear deviation from the quantum result
can be seen for the satellite orbits. This result again shows that there is a region where
the uniform approximation is essential, since both other approximations, the transitional
approximation and the approximation in terms of isolated orbits fail or are inaccurate.
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Figure 3. Peak heights|T (4)(Scl(k))|2 at the values of the actions of three periodic orbits as a
function of the control parameterk. As k goes throughk(1) = 1.0055. . . the three orbits coalesce
in a generic period-quadrupling bifurcation. The plots show the exact quantum result, the uniform
approximation, the transitional approximation and the approximation which considers the orbits
as isolated. They are evaluated withjmin = 1 andjmax= 64.

One can also investigate the peak heights for a givenk and increasingjmin andjmax. In
figure 4 the result is shown as a function ofjmin with jmax= jmin + 63. Again,k is set to
1.5. Deviations are visible for the transitional and the isolated approximation. Once more a
crossover in the accuracies of these approximations is observed. The uniform approximation
is by far superior over the whole range ofjmin and cannot be distinguished from the exact
result in the plots for the peak heights.

Our numerical studies reveal that the approximation with isolated contributions is valid
only far away from bifurcations or for sufficiently small values of Planck’s constant while
the transitional approximation does not gain validity in the semiclassical limit since it does
not involve the correct semiclassical amplitudes. The uniform approximation, however,
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Figure 4. Peak heights|T (4)(Scl)|2 at the values of the actions of three periodic orbits
as a function ofjmin with jmax = jmin + 63 and k = 1.5. The plots on the left show
the exact quantum result, the uniform approximation, the transitional approximation, and the
approximation which considers the orbits as isolated. The plots on the right show the deviation
between the semiclassical and the exact peak heights.

gives reliable predictions both close to a bifurcation as well as far away from it, and its
accuracy increases in the semiclassical limit.

4. Conclusions

In this paper we derived a uniform approximation for the joint contribution of periodic orbits
that are involved in a generic period-quadrupling bifurcation. Together with the results
of [10, 11] this completes the uniform treatment of generic bifurcations in autonomous
systems with two degrees of freedom and two-dimensional area-preserving maps. Generic
here means that these bifurcations are typically encountered in mixed systems without
symmetries as one parameter of the system is varied. They are also called bifurcations
of codimension one since only one parameter needs to be changed in order to bring the
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participating orbits into coalescence. In systems with symmetries there can be additional
kinds of bifurcations. Some of them can be described by small modifications of the formulae
for generic bifurcations [11].

In the following we discuss the limits of validity of the uniform approximations and
possible extensions. Although in a generic situation one does not encounter any other
form of coalescence of periodic orbits than those discussed above, there are still cases in
which the uniform approximations for generic bifurcations have to be modified. The reason
for this is that periodic orbits can undergo several subsequent bifurcations. One observes
for instance that the iteration of the map corresponding to a normal form describes more
periodic orbits of longer periods and allows for additional bifurcations. Another source of
additional periodic orbits and bifurcations are higher-order terms in extended normal forms.
If the bifurcations occur rapidly one after the other they cannot be considered separately,
and instead all participating orbits have to be treated collectively. The next step beyond the
isolated treatment of a bifurcation is the collective treatment of two subsequent bifurcations.
Often the two consecutive bifurcations can also be considered as being part of a bifurcation
of codimension two, since the two bifurcations can be brought into coalescence by varying
a second parameter. A collective treatment of two subsequent bifurcations is then necessary
if one is sufficiently close to a bifurcation of codimension two in parameter space. The
methods for obtaining uniform approximations for these cases are, in principle, the same
as for bifurcations of codimension one; however, the normal forms are more complicated.
Examples for these normal forms are given in [20, 21], and uniform approximations for
bifurcations of codimension two can be found in [22, 23]. It is even possible to completely
semiclassically quantize a kicked top with low-dimensional Hilbert space by including
uniform approximations for bifurcations of codimension two [24].

As longer and longer periodic orbits are considered, bifurcations tend to occur more
rapidly and it is expected that then bifurcations of even higher codimensions become
important. This makes the semiclassical treatment of mixed systems more and more
complicated. Applications of semiclassical and uniform approximations in mixed systems
are therefore most useful in cases where mainly the shortest periodic orbits of a system are
needed, for example if one is interested in long-range fluctuations in a spectrum or if the
contributions of long periodic orbits are suppressed. Applications of this kind are discussed,
for example in [25].
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Appendix A. Derivation of the uniform approximation

We follow in this section a method from catastrophe theory for obtaining a uniform
approximation for an oscillatory integral with nearly coincident stationary points. By this
method the exponent of an oscillating integrand is mapped onto a standard normal form
with the same structure of stationary points. A description of the method and references
to previous work can be found in [14, 15]. A rigorous treatment including higher-order
correction terms is given in [13].



176 M Sieber and H Schomerus

The contributions of the periodic orbits to the level density are contained in the integral
(2)

dξ (E) ≈ 1

2π2h̄2r
Re
∫ ∞
−∞

dq ′
∫ ∞
−∞

dp g(q ′, p)exp

[
i

h̄
f (q ′, p)− iπ

2
ν

]
(16)

where

f (q ′, p) = Ŝ(q ′, p,E)− q ′p (17)

and

g(q ′, p) = ∂Ŝ

∂E

√
∂2Ŝ

∂p∂q ′
. (18)

The absolute sign of the mixed derivative ofŜ inside the square root has been dropped
since it is positive near the bifurcation (as can be seen from the normal form (7)). It
changes its sign only at conjugate points where the indexν changes as well. By writing
it without absolute sign the indexν can be kept constant and the additional phase arises
instead from the square root when its argument becomes negative. The energy dependence
of the functionsf andg is not written explicitly.

We consider in the following the contributions of three periodic orbits to (16) that
undergo a generic period-quadrupling bifurcation as the energy or an external parameter of
the system is varied. We assume that any other stationary points of the exponent in (16)
which correspond to different periodic orbits are well separated from the stationary points
that correspond to the periodic orbits which participate in the bifurcation. This means, for
example, that the energy or other parameters of the system have to be limited to ranges
in which the orbits do not participate in any further bifurcation. Under these conditions a
uniform approximation is derived for the joint contribution of the three periodic orbits.

Near the bifurcation the generating functionŜ(q ′, p,E) in (17) is approximately given
by the normal form (7). From this normal form one can obtain properties of the periodic
orbits as is done in the following. First the stationary points of (17) have to be determined.
There is one stationary point at the origin which corresponds to the central periodic
orbit. The other stationary points are determined conveniently in terms of canonical polar
coordinatesI,8 with p = √2I cos8, q ′ = √2I sin8. In terms of these coordinates the
normal form is given by

f (q ′(I,8), p(I,8)) = S0− εI − aI 2− bI 2 cos(48) (19)

and the stationary points off are determined by the equations

0= sin(48) 0= −ε − 2[a + b cos(48)]I. (20)

There are altogether eight solutions for (20), four with cos(48) = 1 corresponding to
the satellite orbit which is labelled by 1 in the following, and four with cos(48) = −1
corresponding to the orbit labelled by 2. The values ofI at the stationary points follow as

I1,2 = − ε

2(a + σ1,2b)
(21)

whereσ1 = 1 andσ2 = −1. The satellite orbits are real ifIi is positive, i.e. forσε = −σci
where ci = a + σib with i ∈ {1, 2}, and we abbreviate the sign of a quantityx by σx .
For negativeIi the coordinatesp and q become complex. The evaluation of (19) at the
stationary points leads to the values of the actions of the two satellite periodic orbits

S1,2 = S0+ ε2

4(a + σ1,2b)
. (22)
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One can see from (22) that the action difference between any two of the periodic orbits
increases proportionally toε2 for small ε. The traces of the stability matrices can be
determined from

TrM =
(
∂2Ŝ

∂p∂q ′

)−1(
1+ ∂2Ŝ

∂p ∂q ′
∂2Ŝ

∂p ∂q ′
− ∂

2Ŝ

∂p2

∂2Ŝ

∂q ′2

)
(23)

which has to be evaluated at the stationary points. It yields

TrM0 = 2− ε2 TrM1 = 2+ 8b

a + bε
2 TrM2 = 2− 8b

a − bε
2. (24)

Both the actions (22) and the traces of the stability matrices (24) are real quantities even
for orbits with complex coordinates.

Finally the Maslov indices of the orbits are determined. They are given byν+(nn−np)/2
wherenn andnp are the number of negative and positive eigenvalues of the matrix of second
derivatives off , respectively. They follow as

ν0 = ν + σε ν1,2 = ν + 1
2(σc1,2 − σ1,2σb). (25)

From (24) it follows that for an unstable satellite orbitσ1,2σb = σc1,2, whereas for a stable
satellite orbitσ1,2σb = −σc1,2. Using further the condition for real orbitsσc1,2 = −σε one
obtains

ν0 = ν + σε νs = ν − σε νu = ν (26)

where the indicesu ands denote an unstable and stable real satellite orbit, respectively.
We continue now with the evaluation of the uniform approximation. The equations (22)

and (24) entail the conditions (8) which hold forε→ 0. If the distance to the bifurcation is
increased (by changing the energy or a parameter of the system) higher-order corrections to
the normal form can no longer be neglected, and the dependence ofŜ(q ′, p,E) on q ′ andp
becomes more complicated. The main step in the derivation of the uniform approximation
consists in the application of a coordinate transformation which then brings the exponent in
(16) again into the normal form (inside a region in which the stationary points are located)

f (q ′, p) = F(Q′, P ) (27)

with

F(Q′, P ) = S0− ε̃
2
(Q′2+ P 2)− ã

4
(Q′4+ 2P 2Q′2+ P 4)− b̃

4
(Q′4− 6P 2Q′2+ P 4). (28)

The parameters ofF(Q′, P ) are chosen in such a way that the mapping from(q ′, p) to
(Q′, P ) is one-to-one in a neighbourhood containing the stationary points. This can be
achieved by mapping the stationary points(q ′i , pi) of the left-hand side of (27) onto the
stationary points(Q′i , Pi) of the right-hand side of (27), which leads to the following
condition

f (q ′i , pi) = F(Q′i , Pi) (29)

from which the parameters̃a and b̃ can be determined.
Condition (29) is already fulfilled for the stationary point at the origin which corresponds

to the central orbit. For the other stationary points the evaluation of (29) leads back to (22)
where the parametersε, a and b now carry a tilde. Solving these equations forã and b̃
results in

ã = ε̃2(1S10+1S20)

161S101S20
b̃ = ε̃21S21

161S101S20
(30)
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where1Sij = (Si−Sj )/2. Note that the third parameterε̃ of the mapping is not fixed. The
reason for this is that the form (28) contains one more parameter than is actually needed.
By a simple scaling transformationQ′ → λQ′, P → λP one can change one of the three
parameters into±1. In analogy to (24) we definẽε by

ε̃2 = 2− TrM0 (31)

which measures the distance to the bifurcation. The sign ofε̃ is the same as the sign of
ε and can be determined from the Maslov indices (26) of the central orbit and one real
satellite orbit (if both satellite orbits are complex thenσε̃ = σã). The difference between
the quantities with and without tilde is that those without tilde are obtained from a Taylor
expansion around the central orbit whereas the quantities with tilde follow from the mapping.
For ε̃→ 0 the mapping (27) approaches the identity transformation(Q′, P ) = (q ′, p) and
the quantities with tilde approach those without.

The mapping (27) transforms the integral (16) into

dξ (E) ≈ 1

2π2h̄2r
Re
∫ ∞
−∞

dQ′
∫ ∞
−∞

dP G(Q′, P )exp

[
i

h̄
F (Q′, P )− iπ

2
ν

]
(32)

where

G(Q′, P ) = g(q ′, p)det

(
∂(q ′, p)
∂(Q′, P )

)
(33)

and the determinant in (33) is the Jacobian of the transformation which will be denoted by
J (Q′, P ) in the following.

The uniform approximation is obtained by writing the functionG(Q′, P ) in the
following form

G(Q′, P ) = α0− α1
∂F

∂ε̃
− α2

∂F

∂ã
− α3

∂F

∂b̃
+H1(Q

′, P )
∂F

∂Q′
+H2(Q

′, P )
∂F

∂P
. (34)

In order for this representation to be correct, the constantsα0, . . . , α3 have to be determined
such that the right-hand side of (34) has the correct values at the stationary points. The
last two terms in (34) vanish at the stationary points. They can be neglected since after
inserting (34) into (32) they lead to terms which are of order ¯h smaller than the other terms
as can be seen by an integration by parts. Furthermore, the constantα3 can be set equal
to zero, since after inserting (34) into (32) the integral proportional toα3 can be expressed
in terms of the integrals that are proportional to the otherαi , as can be shown by another
integration by parts.

The remaining parametersα0,1,2 in (34) are obtained by an evaluation of (33) at the
stationary points. For that purpose the value of the JacobianJ (Q′, P ) at the stationary
points has to be determined. This is done by differentiating (27) twice. With the notation
(z1, z2) := (q ′, p) and(Z1, Z2) := (Q′, P ) this results in

∂2F

∂Zk∂Zl

∣∣∣∣Q′=Q′i
P=Pi

=
2∑

m,n=1

∂zm

∂Zk

∂zn

∂Zl

∂2f

∂zm∂zn

∣∣∣∣ q ′=q ′i
p=pi

(35)

from which the JacobianJ (Q′, P ) follows as

J (Q′, P ) =

√√√√√det
[

∂2F
∂Zi∂Zj

]
det

[
∂2f

∂zk∂zl

] . (36)
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By using (23) this result can be expressed in the formJ (Q′, P )
√
∂2Ŝ

∂p∂q ′


q ′=q ′i
p=pi

=
√

Tr M̃i − 2

TrMi − 2
(37)

where we define

Tr M̃0 = 2− ε̃2 Tr M̃1 = 2+ 8b̃

ã + b̃ ε̃
2 Tr M̃2 = 2− 8b̃

ã − b̃ ε̃
2. (38)

As before the quantities with tilde approach those without asε̃ → 0. We continue now
with the determination of theαi . By evaluating (33) at the stationary points with (18), (34)
and (37) one obtains the following conditions

α0+ α1Ĩi + α2Ĩ
2
i = Ti

√
Tr M̃i − 2

TrMi − 2
(39)

whereĨ1 and Ĩ2 are given by (21) if the parameters on the right-hand side of (21) are given
a tilde, andĨ0 = 0. The constantsα0, α1 andα2 follow from (39) and the definition (31) as

α0 = T0

α1 = 4ã

ε̃
α0− (ã + b̃)

2 T1

b̃ε̃

√
8b̃ε̃2

(ã + b̃)(TrM1− 2)
+ (ã − b̃)

2T2

b̃ε̃

√
−8b̃ε̃2

(ã − b̃)(TrM2− 2)

α2 = 4(ã2− b̃2)

ε̃2

α0− (ã + b̃) T1

2b̃

√
8b̃ε̃2

(ã + b̃)(TrM1− 2)

+ (ã − b̃)T2

2b̃

√
−8b̃ε̃2

(ã − b̃)(TrM2− 2)

 .
(40)

This completely specifies the uniform approximation. The relations (10) for theαi follow
from (40) by using (30). The integral representation for the uniform approximation is
obtained by changing the integration variables in (32) to canonical polar coordinatesI,8

with P = √2I cos8, Q′ = √2I sin8 and performing the integration over8. With the
approximation forG(Q′, P ) that is discussed after (34) this results in the final expression
(9).

Appendix B. Special cases

B.1. The caseS0 = (S1+ S2)/2

In the case where the action of the central orbit is the mean of the actions of the satellite
orbits, the diffraction integral in (9) can be evaluated analytically sinceã = 0. It is a special
case of the form of the bifurcation with|ã| < |b̃|. The first satellite orbit is real ifσε̃ = −σb̃
and the second ifσε̃ = σb̃. We define in the following1S = (S1 − S0)/2. The integral in
(9) can be evaluated by the relation∫ ∞

0
dI J0(I

2) exp(−iηI) =
√−iπη

16
H
(1)
1/4

(
eiπ(ση+1) η

2

8

)
H
(1)
1/4

(
eiπση

η2

8

)
(41)
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and the first two derivatives of this equation with respect toη. As before,ση denotes the
sign of η. Altogether one obtains the following result for the uniform approximation

dξ (E) ≈ |1S|
2h̄2 Re

{[(
A0

2
+ A1

4
√

2
+ A2

4
√

2

)
B1− iσb̃

(
A1

4
√

2
− A2

4
√

2

)
B2

+
(
A0

2
− A1

4
√

2
− A2

4
√

2

)
B3

]
exp

(
i

h̄
S0− iπ

2
(ν + σε̃)

)}
(42)

where

B1 = H(+)
1/4 (z)H

(−)
1/4 (z)+ (1− iσε̃)H

(−σε̃)
1/4 (z)H

(−σε̃)
1/4 (z)

B2 = H(+)
1/4 (z)H

(−)
−3/4(z)+H(+)

−3/4(z)H
(−)
1/4 (z)+ 2(1− iσε̃)H

(−σε̃)
1/4 (z)H

(−σε̃)
−3/4 (z)

B3 = H(+)
−3/4(z)H

(−)
−3/4(z)+ (1− iσε̃)H

(−σε̃)
−3/4 (z)H

(−σε̃)
−3/4 (z)

(43)

and z = |1S|/h̄. We have chosen the following notation for the Hankel functions:
H(+)
ν (z) = H(1)

ν (z) andH(−)
ν (z) = H(2)

ν (z).
Near the bifurcation the actions of the two satellite orbits and the traces of the

monodromy matrices are given by

S1 = S0+ ε2

4b
S2 = S0− ε2

4b
TrM1,2 = 2+ 8ε2 (44)

and in the limitε̃→ 0 the contribution

dξ (E) ≈ T0

16lπ2h̄3/2|b|1/20
2

(
1

4

)
cos

(
S0

h̄
− π

2
ν

)
(45)

is obtained, which agrees with (11) fora = 0.

B.2. The caseS1 = (S0+ S2)/2

This is again a case where the integral in (9) can be evaluated analytically. This can
be seen by considering the previous expression for the uniform approximation (32) where
the integration is performed in terms of theP andQ′ variables. The constants̃a and b̃
now satisfy the relatioña = 3b̃, and the part of the double integral in (32) with constant
pre-exponential factor splits into a product of single integrals that can be evaluated. The
bifurcation is an example for the case|ã| > |b̃|. Both satellite orbits are real ifσε̃ = −σb̃,
and complex ifσε̃ = σb̃, and we define again1S = (S1 − S0)/2. The part of the integral
in (32) with constant pre-exponential factor is given by∫ ∞
−∞

dp
∫ ∞
−∞

dq ′ exp

(
− iε̃

2h̄
(p2+ q ′2)− ib̃

h̄
(p4+ q ′4)

)
= 2π2|1S|C2

1

|ε̃| exp

(
i

h̄
21S

)
(46)

where

C1 = J−1/4

(∣∣∣∣1Sh̄
∣∣∣∣) e−iσb̃π/8− σb̃σε̃J1/4

(∣∣∣∣1Sh̄
∣∣∣∣) eiσb̃π/8 (47)

andσb̃ = sign(b̃) = sign(1S). The terms withI or I 2 in the exponential prefactor can be
obtained from the first two derivatives of (46) with respect toε̃.

We further define

C2 = J3/4

(∣∣∣∣1Sh̄
∣∣∣∣) eiσb̃3π/8− σb̃σε̃J−3/4

(∣∣∣∣1Sh̄
∣∣∣∣) e−iσb̃3π/8 (48)
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and obtain for the uniform approximation (up to higher-order corrections in ¯h)

dξ (E) ≈ |1S|
h̄2 Re

{[(
A0

4
+ A1

4
√

2
+ A2

8

)
C2

1 −
(
A0

2
− A2

4

)
C1C2

+
(
A0

4
− A1

4
√

2
+ A2

8

)
C2

2

]
exp

(
i

h̄
S1− iπ

2
ν

)}
. (49)

In the vicinity of the bifurcation the actions of the two satellite orbits and the traces of
the monodromy matrices are given by

S1 = S0+ ε2

16b
S2 = S0+ ε2

8b
TrM1 = 2+ 2ε2 TrM2 = 2− 4ε2 (50)

and in the limitε→ 0 the following contribution is obtained,

dξ (E) ≈ T0

32lπ2h̄3/2|b|1/20
2

(
1

4

)
cos

(
S0

h̄
− π

2
ν − π

4
σb

)
. (51)

This agrees with (12) fora = 3b.

B.3. Further special cases

We briefly discuss two additional cases that occur ifb̃ = 0 or |b̃| = |ã|.
In the casẽb = 0 the actions of the two satellite orbitsS1 andS2 are identical. This can

occur in integrable systems where both orbits are part of a torus. During the bifurcation
this whole torus of orbits arises. After integrating by parts the formula (9) reduces in the
limit b̃ = 0 to

dξ (E) ≈ 1

4lπh̄2 Re
∫ ∞

0
dI [T0+ αI ] exp

{
i

h̄
(S0− ε̃I − ãI 2)− iπ

2
ν

}
(52)

and thus can be expressed by a Fresnel integral. The constantα is given by

α = lim
b̃→0

(
α1− ε̃

2ã
α2

)
. (53)

A discussion of semiclassical approximations for bifurcations in which a torus arises from
a stable orbit is given in [26].

The other case|b̃| = |ã| separates the two forms in which the generic period-quadrupling
bifurcation can occur. The set of stationary points in the normal form (28) corresponding
to one of the two satellite orbits goes to infinity asb̃ approaches±ã. This normal form is
not appropriate for a description of this case and correction terms have to be added to it.

Appendix C. Series expansion of the uniform approximation

The uniform approximation (9) consists of three integrals of type

Iν ≡
∫ ∞

0
xν exp[−iγ x − iαx2]J0(x

2) dx (54)

with ν = 0, 1, 2. We now present power series in the coefficientsα andγ that are useful
for a numerical evaluation of these integrals. In the case|α| > 1 (which corresponds to
|b/a| < 1 in the normal form) one expands the integrand aroundγ = 0 and uses the analytic
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continuation of the integral 6.621.1 in [27]. Expressing a hypergeometric function by its
defining series and applying the duplication formula of the gamma function one arrives at

Iν = 1

2

∞∑
m=0

∞∑
n=0

(γ /i)n

(iα)
n+ν+1

2

(
1

2α

)2m 0
(
n+ν+1

2 + 2m
)

n!(m!)2
. (55)

For |α| < 1, i.e. |b/a| > 1 in the normal form, one uses the integrals 6.699.1 and 6.699.2 in
[27]. Formally, a small imaginary part has to be added to the coefficients in order to assure
convergence. At the end this imaginary part is sent to zero. After some transformations
similar to those described above one arrives at

Iν =
√

2ν√
8π

∞∑
n,m=0

(
√

2γ /i)nα2m

m!n!

[
sin

(
1+ n+ ν

4
π

)
02
(

1+n+ν
4 +m)

0
(

1
2 +m

)
− iα cos

(
1+ n+ ν

4
π

)
02
(

3+n+ν
4 +m)

0
(

3
2 +m

) ]
. (56)
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