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We report experimental data and theoretical analysis of Coulomb drag between two closely positioned

graphene monolayers in a weak magnetic field. Close enough to the neutrality point, the coexistence of

electrons and holes in each layer leads to a dramatic increase of the drag resistivity. Away from charge

neutrality, we observe nonzero Hall drag. The observed phenomena are explained by decoupling of

electric and quasiparticle currents which are orthogonal at charge neutrality. The sign of magnetodrag

depends on the energy relaxation rate and geometry of the sample.
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Recent measurements [1] of frictional drag in graphene-
based double-layer devices revealed the unexpected phe-
nomenon of giant magnetodrag at charge neutrality.
Applying external magnetic fields as weak as 0.1–0.3 T
results in a reversal of the sign and a dramatic enhancement
of the amplitude of the drag resistance. If the device is
doped away from charge neutrality, the impact of such a
weak field on the drag resistance is very modest. The
observed effect weakens at low temperatures, hinting at
the classical origin of the phenomenon.

In this Letter, we report experimental data on longitudi-
nal and Hall drag resistivity in isolated graphene layers
separated by a 1 nm thick boron-nitride (hBN) spacer. The
observed effects are explained in terms of coexisting elec-
tron and hole liquids in each layer [2,3]. This theory is
based on the hydrodynamic description of transport in
graphene derived in Refs. [4–6] using the quantum kinetic
equation (QKE) framework [7,8]. It provides a simplified
description of magnetodrag while capturing the essentially
classical physics of the phenomenon [9]. The effect can be
traced back to the fact that the Lorentz force in the electron
and hole bands has the opposite sign, which is also the
reason for the anomalously large Nernst effect [10,11] and
vanishing Hall effect at charge neutrality.

The classical mechanism behind giant magnetodrag is
illustrated in Fig. 1. The upper panel shows two infinite
graphene layers at charge neutrality. The driving electric
current j1 in the active layer corresponds to the counter-
propagating flow of electrons and holes with zero total
momentum due to exact electron-hole symmetry (hence,
in the absence of additional correlations there is no drag at

the Dirac point [5,12–15]). In a weak magnetic field,
electrons and holes are deflected by the Lorentz force
and drift in the same direction. The resulting quasiparticle
flow P1 carries nonzero momentum in the direction

FIG. 1 (color online). Mechanism of magnetodrag at charge
neutrality. Upper panel: In an infinite system quasiparticle currents
Pi in the two layers flow in the same direction, leading to positive
drag �D

xx ¼ V2=j1 > 0. Lower panel: In a thermally isolated sys-
tem no net quasiparticle flow is possible (leading to inhomogene-
ities in the quasiparticle density); quasiparticle currents in the two
layers have opposite directions yielding negative drag.
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perpendicular to j1. Momentum transfer by the interlayer
Coulomb interaction induces the quasiparticle current P2

in the same direction as P1. Lorentz forces acting on both
types of carriers in the passive layer drive the charge flow
in the direction opposite to j1. In an open circuit, this
current is compensated by a finite voltage V2, yielding a
positive drag resistivity �D

xx ¼ V2=j1 > 0.
This mechanism of magnetodrag is closely related to

the anomalous Nernst effect in single-layer graphene
[4,10,11]. At charge neutrality, the quasiparticle current
is proportional to the heat current. A similar mechanism,
where the role of Pi is played by spin currents, has been
proposed in Ref. [16] as a possible explanation for a giant
nonlocal magnetoresistance.

The above argument describes the steady state in infinite
systems where all physical quantities are homogeneous in
real space. This is not the case in relatively small, meso-
scopic samples. Whether a particular sample should be
considered ‘‘small’’ or ‘‘large’’ is determined by compar-
ing the sample size to the typical length scale of the leading
relaxation process. At high enough temperatures, energy is
most efficiently relaxed by electron-phonon scattering,
which we describe in this Letter by the length ‘ph [17,18].

In a finite system, quasiparticle currents must vanish at
the boundaries. ForW � ‘ph, the quasiparticle current and

density is homogeneous in the bulk and the system remains
effectively infinite.
For W � ‘ph, the currents Pi become y dependent. In

this case, energy conservation dictates P2ðyÞ ¼ �P1ðyÞ.
As a result, electric charge in the passive layer tends to flow
in the same direction as j1 (see Fig. 1), yielding negative
drag (similarly to Coulomb drag in single-band systems).
In order to test the above ideas, we perform new mea-

surements of the drag effect in a magnetic field, illustrated
in Fig. 2. The experiments [19] are carried out on a gra-
phene double-layer structure with a 1 nm hBN spacer
and two electrostatic gates. Despite the small thickness
of the spacer, the tunneling resistance between the layers
>300 k� gives only a negligible leakage contribution to
the drag <0:5 � [19,20]. The schematics of the experi-
ment are shown in the inset of Fig. 2(e). The same device
was used in Ref. [1] for drag measurements in zero mag-
netic field.
The map for the drag resistivity, �D

xxðVT; VBÞ, is shown in
Fig. 2(a) at T ¼ 240 K. The main difference compared
to the zero field experiment reported earlier [1] is large

(a) (b) (c)

(d) (e) (f)

FIG. 2 (color online). (a) Longitudinal drag resistivity in magnetic field as a function of the top (VT) and bottom (VB) gate voltages.
Lines track positions of maxima in single-layer resistivity in top (open symbols) and bottom (solid symbols) layers. (b) Magnetodrag
for n1 ¼ n2 ¼ n at T ¼ 160 K. Solid symbols represent the experimental data. The error bars for the data are within the symbol size.
The theoretical lines show solutions to Eqs. (6). (c) Magnetodrag for n1 ¼ n2 ¼ n at T ¼ 240 K. Solid symbols: experimental data;
lines: theory (6). (d) Map of Hall drag resistivity as a function of VT and VB. The white diagonal area corresponds to vanishing Hall
drag for n1 ¼ �n2. The lines are the same as in (a). (e) Experimental data (blue squares, left axis) and theory (red solid line, right axis)
for the Hall drag resistivity for n1 ¼ n2 ¼ n. The theoretical curve is calculated on the basis of the microscopic theory of Ref. [5]. Note
the sign change at n � �2� 1011 cm�2. Inset: schematics of Hall drag measurements in double-layer system. (f) Hall drag resistivity
for n1 ¼ n2 ¼ n. The data (blue squares) are identical to those in (e); the red solid line represents solutions to Eq. (6).
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negative drag at the double neutrality point. A dramatic
change in drag resistivity with the applied magnetic field is
shown in more detail in Figs. 2(b) and 2(c) (at 160 and
240 K, respectively). To ensure the same charge densities
n1 and n2 in the top and bottom layers, we sweep both gates
simultaneously along the line connecting the bottom left
and top right corners of the map. The experiment shows a
large negative drag resistivity close to the double neutrality
point, n1 ¼ n2 ¼ 0, as expected for a small sample
(see above); in our device both layers have the width
W � 2 �m and sufficiently resistive contacts.

In addition to the longitudinal drag resistivity we
also measure the Hall drag resistivity, �D

xyðVT; VBÞ, shown
in Fig. 2(d) at T ¼ 240 K as a function of the top and
bottom gate voltages. Because of the low density of
states in graphene and the small separation between layers
(d � 1 nm, interlayer capacitance �2:2 �F=cm2), the
relationship between gate voltages and charge densities is
rather nontrivial (see the Supplemental Material [19]). To
identify signs of charge carriers at each point in Fig. 2(d),
we also measured resistivity maps for both layers. Since
the resistance of graphene is peaked at charge neutrality,
tracking the position of the resistivity maximum gives the
lines which divide the map into the electron- and hole-
doped parts. Such lines are shown in both maps; see
Figs. 2(a) and 2(d). The observed Hall drag resistance is
large when one of the layers is close to the neutrality point
and vanishes if two layers have the same charge densities
with opposite signs (a white line running from the top left
to bottom right corner).

We now turn to the theoretical description of the drag
effect. Consider first the Drude model for electrons and
holes in two layers,

eEi þ e½vie �B� ¼ Fie þ evie=Mi; (1a)

�eEi � e½vih �B� ¼ Fih þ evih=Mi; (1b)

where i ¼ 1, 2, a ¼ e, h, via stand for the mean velocities
of electrons and holes in the layer i, Ei and B are electric
and magnetic fields, andMi are the carrier mobilities due to
impurity scattering. The electric ji and quasiparticle Pi

currents are related to via by [2]

ji ¼ eðnievie � nihvihÞ; Pi ¼ nievie þ nihvih; (2)

with nieðhÞ ¼
R1
0 d"�ð"Þ½eð"	�iÞ=T þ 1��1 standing for the

electron and hole densities, �ð"Þ ¼ 2j"j=�ð@vÞ2 being
the density of states in graphene at B ¼ 0, and �i are the
chemical potentials measured from the Dirac point. The
total charge and quasiparticle densities are defined as
ni ¼ nie � nih and �i ¼ nie þ nih.

The frictional force acting on each type of carrier can be
represented as

Fia ¼ @

X
jb

½�ab
ij njbðvia � vjbÞ þ ~�ab

ij njbðvia þ vjbÞ�; (3)

where the coefficients ~� appear in monolayer graphene due
to the absence of Galilean invariance. The expression (3)
can be obtained by solving the QKE in the hydrodynamic
approximation [4–7,21].
For ni ¼ 0, the first term in Eq. (3) simplifies to

F1a ¼ �F2a ¼ F ¼ @�ðP1 � P2Þ; (4)

where � ¼ @=ðT�PÞ, with ��1
P being the momentum re-

laxation rate. The second term in Eq. (3) renormalizes the
mobilities [5,7,8]. The Drude model (1) with the force (4)
also describes the case �i � T, where � ¼ @=ð��PÞ. In
both limits, the model (1) is equivalent to the hydrody-
namic transport equations derived from the QKE [5,21].
For strongly doped graphene, �i � T, the quasiparticle

current and density are obsolete: Pi ¼ ji=e and �i ¼ ni.
Equations (1) are then reduced to the standard Drude
model yielding conventional drag �D

xx ¼ E2x=j1x ¼
�@�=e2 with negligible dependence on the magnetic field
[22] and vanishing Hall drag �D

xy ¼ E2y=j1x ¼ 0.

In contrast, at charge neutrality the quasiparticle and
charge degrees of freedom are inequivalent. The quasipar-
ticle density for ni ¼ 0 is determined by the temperature,
�i ¼ �0 ¼ �T2=3ð@vÞ2, while the currents j1 and Pi

become orthogonal; see Fig. 1.
Rewriting Eqs. (1) and (4) in terms of currents, we

obtain the resistivity tensor. For ni ¼ 0, the longitudinal
drag resistivity is given by

�D
xxðni ¼ 0Þ ¼ @�

e2
B2M1M2

1þ @��0ðM1 þM2Þ=e ; (5)

which describes positive drag in an infinite system in
agreement with the qualitative picture; see Fig. 1, upper
panel. In the limit of weak interaction, �MT2 � @ev2, the
result (5) can be obtained from the standard perturbative
approach [13] modified for graphene in the classical mag-
netic field.
The large negative peak in �D

xx at the double neutrality
point [Fig. 2(b)] suggests that the sample width W �
2 �m is relatively small as compared to ‘ph (Fig. 1, lower

panel). To account for the finite sample width, we rewrite
the equations (1) in terms of the currents ji and Pi and
allow for the spatially varying quasiparticle density, �iðyÞ.
The resulting model for the first layer reads

�K1r�1 þ en1E1 þ ½j1 �B� ¼ �1F1 þ eP1=M1; (6a)

e�1E1 þ e½P1 �B� ¼ n1F1 þ j1=M1; (6b)

r 
 P1 ¼ �ð�1 � �0Þ=�ph � ð�1 � �2Þ=ð2�QÞ: (6c)
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Here Ki ¼ ð�@2v2=2Þð@ni=@�iÞ ¼ 2T lnð2 cosh�i=2TÞ is
the mean quasiparticle kinetic energy. In the second layer
the force F enters with the opposite sign. The continuity
equation for the quasiparticle current [Eq. (6c)] includes
relaxation by the electron-hole recombination [2], with ��1

ph

describing the energy loss from the system, which is domi-
nated by phonon scattering (see the Supplemental Material
[19]); ��1

Q characterizes quasiparticle imbalance relaxation
due to interlayer Coulomb interaction. For ��1

ph ¼ 0, the
hard-wall boundary conditions in y directions require P1 þ
P2 ¼ 0. Near the Dirac point, energy and momentum
relaxation rates coincide (�Q � �P). In doped graphene,
recombination rates are exponentially suppressed [19].

The continuity equation for the electric current simply
reads r 
 ji ¼ 0; hence, ji ¼ ðjiðyÞ; 0Þ. Within linear
response, the equilibrium density �0 has to be substituted
into products �iF and �iE. This way we obtain the
linear system of differential equations for PiyðyÞ, j1xðyÞ,
and �iðyÞ. Since the charge current acquires the depen-
dence y coordinate, we define �D

xx ¼ E2x=hj1xi, where
hj1xi ¼ W�1

R
W
0 j1xdy.

The model (6) with the frictional force (4) admits a full
analytic solution (see the Supplemental Material [19]) in
terms of ��1

Q , ��1
ph , and �

�1
P . The resulting behavior crucially

depends on these rates: in particular, in the absence of
phonons (�ph ! 1, i.e., in a thermally isolated system)

drag at the Dirac point is always negative; see Fig. 1. For
vanishing sample width (W ! 0), we find �D

xx �
�B2W2=ð24�0K�QÞ. In general, these rates depend on ni
and have to be determined by the microscopic theory [5].
Relegating furthermathematical details to the Supplemental
Material [19], we present the results of our calculations in
Fig. 2 alongside experimental data.

The drag resistivity �D
xx is plotted in Figs. 2(b) and 2(c)

for T ¼ 160 K and T ¼ 240 K, respectively. The expo-
nential collapse of theoretical curves at high carrier density
is an artifact of our phenomenological model [17,19]. At
higher temperature [Fig. 2(c)], the drag resistivity exhibits
qualitatively new features near charge neutrality which can
be physically attributed to higher efficiency of relaxation
processes. The sign of �D

xx at the Dirac point is then
determined by the relation between the typical relaxation

length ‘ph ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�phM=e

q
and the sample width. This is

illustrated in Fig. 3, where we plot �D
xx as a function of

magnetic field for different values of W choosing realistic
values for T ¼ 240 K, M ¼ 4 m2=Vs, and ‘ph ¼ 1:2 �m.

Based on the above results, we predict that in wider
samples giant magnetodrag at the Dirac point should
become positive. We also speculate that magnetodrag at
charge neutrality may become positive in stronger fields
due to the magnetic-field dependence of the scattering
times �Q, �P, and �ph.

The model (6) allows us to calculate the Hall drag
resistivity �D

xy. The result is shown in Fig. 2(f). The theory

also predicts vanishing Hall drag for the case of oppositely
doped layers, n1 ¼ �n2. Interestingly enough, the data
show a sign change of �D

xy at n � �2� 1011 cm�2. At

that point the effect is rather weak and requires a more
accurate consideration. Using the microscopic theory of
Ref. [5], we have evaluated the Hall drag resistivity for an
infinite sample with an energy-independent impurity scat-
tering time �. The value of � was determined from the
measured single-layer resistivity and we have used the
most plausible estimate for the effective electron-electron
interaction parameter in graphene on hBN, � � 0:2. The
result is shown in Fig. 2(e) along with the corresponding
experimental data without any fitting.
In conclusion, we have measured the longitudinal and

Hall drag resistivity in double-layer graphene and pro-
vided a theoretical description of the observed effects.
Giant magnetodrag at the neutrality point appears due to
the presence of two types of carriers (electrons and
holes), which in weak magnetic fields experience a uni-
directional drift orthogonal to the driving current. This
effect is specific to the neutrality point, where nonzero
drag appears despite the exact electron-hole symmetry.
Our theory does not rely on the Dirac spectrum in gra-
phene, but is equivalent to the microscopic theory [5,9]
at and far away from charge neutrality, capturing the
essential physics of magnetodrag. For a more accurate
description of the effect at intermediate densities, the
microscopic theory should be formulated on the basis of
the QKE [21].
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Note added.—Recently, we became aware of a related
work by Song and Levitov [23].
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[5] M. Schütt, P.M. Ostrovsky, M. Titov, I. V. Gornyi, B. N.
Narozhny, and A.D. Mirlin, Phys. Rev. Lett. 110, 026601
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