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Coherent backscattering effect on wave dynamics
in a random medium
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PACS. 42.25.Dd — Wave propagation in random media.
PACS. 42.25.Hz — Interference.
PACS. 72.15.Rn — Localization effects (Anderson or weak localization).

Abstract. — A dynamical effect of coherent backscattering is predicted theoretically and
supported by computer simulations: The distribution of single-mode delay times of waves
reflected by a disordered waveguide depends on whether the incident and detected modes are
the same or not. The change amounts to a rescaling of the distribution by a factor close to v/2.
This effect appears only if the length of the waveguide exceeds the localization length; there is
no effect of coherent backscattering on the delay times in the diffusive regime.

Coherent backscattering refers to the systematic constructive interference of waves reflected
from a medium with randomly located scatterers. The constructive interference occurs in a
narrow cone around the angle of incidence, and is a fundamental consequence of time-reversal
symmetry [1]. The resulting peak in the angular dependence of the reflected intensity is a
generic wave effect: It has been observed using light waves [2] and acoustic waves [3], for
classical and quantum scatterers [4], in passive and active media [5].

These studies mainly addressed static properties. Dynamic aspects of wave propagation
in random media are now entering the focus of attention [6-9], and the work on acoustic
waves [3] has started to study the connection with the coherent backscattering effect. The
key observable in the dynamic experiments [6] is the derivative ¢’ = d¢/dw of the phase ¢ of
the wave amplitude with respect to the frequency w. The quantity ¢’ has the dimension of a
time and is interpreted as a delay time. Van Tiggelen et al. [7] have developed a statistical
theory for the distribution of the delay time ¢’ and the intensity I in a waveguide geometry
(where angles of incidence are discretized as modes). Although the theory was worked out
mainly for the case of transmission, the implications for reflection are that the distribution
P(¢’) does not depend on whether the detected mode n is the same as the incident mode m
or not. This is in contrast with P(I), which is rescaled by a factor of 1/2 when n becomes
equal to m —so that the mean I becomes twice as large. Hence it appears that no coherent
backscattering effect exists for P(¢’).

What we will demonstrate here is that this is true only if wave localization may be disre-
garded. Previous studies [6,7] dealt with the diffusive regime of waveguide lengths L below
the localization length £. Here we consider the localized regime L > £ (assuming that also the
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absorption length &, > £). The distribution of reflected intensity is insensitive to the presence
or absence of localization, being given in both regimes by Rayleigh’s law:

Ne NI, if n#m,

P(1) = { o &
sNe 2 i n=m,

(for unit incident intensity). In contrast, we find that the delay-time distribution changes
markedly as one enters the localized regime, decaying more slowly for large |¢'|. Moreover, a
coherent backscattering effect appears: For L > £ the peak of P(¢') is higher for n = m than
for n # m by a factor which is close to v/2. We present a complete analytical theory, compare
it with numerical simulations, and offer a qualitative argument for this unexpected dynamical
effect of coherent backscattering.

Let us begin with a more precise formulation of the problem. We consider a disordered
medium (mean free path [) in a quasi-one-dimensional waveguide geometry (length L much
greater than the width W, with N > 1 propagating modes at frequency w) and study the
correlator py,, of the reflected wave amplitudes at two nearby frequencies w + %(M,

Prm = Tnm (W + $0w)rp,, (W — $0w) . (2)

The indices n and m specify the detected and incident mode, respectively. (We assume single-
mode excitation and detection.) The amplitudes 7, form the N x N reflection matrix r.
In the localized regime (localization length & ~ NI smaller than both L and the absorption
length &,), the matrix r is approximately unitary because transmission is negligibly small.
We assume time-reversal symmetry (no magneto-optical effects), so that r is also symmetric.
Following Genack et al. [6,7], we define the single-mode (or single-channel) delay time ¢ as

, . Imppm

Onm = Jim 6w Lym ®)

where I, = |rpm(w)|? is the intensity of the reflected wave in the detected mode for unit

incident intensity. In the following we will drop the indices n and m, so as not to overburden

the notation. We seek the joint distribution function P(I,¢’) in an ensemble of different
realizations of disorder.

The single-mode delay time ¢’ is a linear combination of the Wigner-Smith [10] delay times

7; (i=1,2,...,N), which are the eigenvalues of the matrix
d
firfé = U' diag (11, ..., 75)U . (4)

(The matrix of eigenvectors U is unitary for a unitary reflection matrix.) For small dw we can
expand

r(w=+ 10w) =UU + tiswUT diag (11,...,78) U, (5)
hence the relations
A
¢' =Re A—; , I =142, Ay = Z:Tfuivi . (6)

We have abbreviated u; = U, v; = Uy,

The distribution of the Wigner-Smith delay times for this problem was determined re-
cently [11]. In terms of the rates p; = 1/7; it has the form of the Laguerre ensemble of
random-matrix theory,

P({ps}) o [T I — pgl TT ©Cuiye N0 (7)

i<j k
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where ©(z) = 1 for x > 0 and 0 for x < 0. The parameter v = «l/c (with wave velocity
¢) equals the scattering time, multiplied by a numerical coefficient o = 72 /4, 8/3 for two-,
three-dimensional scattering. (The dimensionality of the scattering inside the quasi—one-
dimensional waveguide is three in the experiments [6]; two-dimensional scattering applies to
the computer simulations presented later, which are performed on a quasi—one-dimensional
waveguide constructed from a two-dimensional lattice.) Equation (7) extends the single-mode
(N = 1) result of refs. [12-14] to any N. The matrix U is uniformly distributed in the unitary
group. We consider first the typical case n # m of different incident and detected modes. (The
special case n = m is addressed later.) For n # m the vectors u and v become uncorrelated
in the large-N limit, and their elements become independent Gaussian random numbers with
vanishing mean and variance (Ju?|) = ([v?|) = N1

It is convenient to work momentarily with the weighted delay time W = ¢'I and to recover
P(I,¢') from P(I,W) at the end. The characteristic function x(p,q) = (== is the
Fourier transform of P(I, W). The average (---) is over the vectors u and v and over the set
of eigenvalues {7;}. The average over one of the vectors, say v, is easily carried out, because
it is a Gaussian integration. The result is a determinant,

X(p,q) = (det(1 +iH/N)™") ®)
H =pu*u” + tg(a*u” +u ). (9)

The Hermitian matrix H is a sum of dyadic products of the vectors w and u, with u; = u;7;,
and hence has only two non-vanishing eigenvalues A; and A_. Some straightforward linear
algebra gives

1
Ao =5 (aBi+p£/204B1 + @B+ 1) | (10)

where we have defined the spectral moments
Bp =Y |ul*7} . (11)
i
The resulting determinant is det(1 + H/N)~' = (1 + Ay /N)"Y(1 +X_/N)~!, hence
ip i 2 !
x(p.q) = <[1+§+Nq31+fw<32—3%>} > (12)
An inverse Fourier transform, followed by a change of variables from I, W to I, ¢', gives

P(I,¢') = O(I)(N*I/m)/2e~N! <(B2 — B}) M exp {—Nli((gz_%% ]> . (13)

The average is over the spectral moments B; and By, which depend on the u;’s and 7;’s via

eq. (11).
This result in the localized regime is to be compared with the result of diffusion theory [6,7],

Paia(I,¢') = O()(N*I/m)"/2eN1(Q¢r*) /2 exp [_NI%] ' (14)

The constants are given by Q ~ L/l and ¢/ ~ L/c up to numerical coefficients of order
unity [15]. Comparison of eqs. (13) and (14) shows that the two distributions would be
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identical if statistical fluctuations in the spectral moments By, Bs could be ignored. However,
as we shall see shortly, the distribution P(Bj, Bs) is very broad, so that fluctuations cannot
be ignored. The large fluctuations are a consequence of the high density of anomalously large
Wigner-Smith delay times 7; in the Laguerre ensemble (7), and are related to the penetration
of the wave deep into the localized regions. The large 7;’s are eliminated in the diffusive
regime L < &, because then the finiteness of the system is felt. In that case B; and By can be
replaced by their ensemble averages, and the Gaussian theory [6,7] is recovered. (The same
applies if the absorption length &, < &.)

To determine how the statistical fluctuations in the spectral moments alter P(I,¢’), we
need the joint distribution P(Bj, Bs). This can be calculated by applying the random-matrix
technique of refs. [16,17] to the Laguerre ensemble. The result is

NB?
P(B1, B2) = ©(B1)O(Bz) exp {— 21} X
B{yN? YN PN? 2 2 s (20N
Bs++vN?B — = 2B5 — 4By BoN+B7N<)Ei | — 15
(BN e |2 - Toc en) - st pivm (<25Y)] L 05)

where Ei(z) is the exponential-integral function. The most probable values are By ~ yN,
By ~ 42N3, while the mean values (B1), (Bs) diverge —demonstrating the presence of large
fluctuations. The distribution P(I,¢’) follows from eq. (13) by integrating over By and Bs
with weight given by eq. (15). This is an exact result in the large-N limit.

For the discussion we concentrate on the distribution P(¢') = fo dI P(I,¢) of the single-
mode delay time by itself, which takes the form

rT Bl,Bszz —~ BY)
_ / / ABy B, 5o (16)
0 0

We compare this distribution in the localized regime with the result of diffusion theory [6,7],

Paigr(¢)) = (Q/28)[Q + (¢ /¢ — 1)4] /2. (17)

In the localized regime the value ¢, ~ vV at the centre of the peak of P(¢’) is much smaller
than the width of the peak A¢/ ~ yN3/2 ~ ;eak(f/l)l/Q. This holds also in the diffusive
regime, where ¢/, = ¢ and A¢' ~ peak(L/l)l/2 However, the mean (¢') = (Bj) diverges
for P, but is finite (equal to ¢) for Pyig. In the tails P decays o |¢/| 72, while Pyg o< |¢| 5.

These features in the localized regime emerge in the limit L — oo of our analytic calcula-
tions. For finite L the far tail of the distribution P(¢’) is suppressed, beyond an exponentially
large cut-off at ¢/ > ~vel/¢ [8]. As a consequence, the mean delay time is finite for finite L
also in the localized regime, and diverges eventually in the limit L — oo.

The transition from the diffusive to the localized regime with increasing L is illustrated in
fig. 1. The data points are obtained from the numerical simulation of scattering of a scalar
wave by a two-dimensional random medium, in a quasi-one-dimensional waveguide geometry.
The reflection matrices r(w + %&u) are computed by applying the method of recursive Green
functions [18] to the Helmholtz equation on a square lattice (lattice constant a). The width
W =100 a and the frequency w = 1.4 ¢/a are chosen such that there are N = 50 propagating
modes. The mean free path | = 14.0a is found from the formula 7" = (1 + s)~! for the
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Fig. 1 — Distribution of the single-mode delay time ¢’ in the diffusive regime (a), intermediate regime
(b), and localized regime (c). The results of numerical simulations (data points) are compared to
the prediction (17) of diffusion theory [6,7] (dashed curve) and the prediction (16) for the localized
regime (solid curve). Panel (d) shows a logarithmic plot of the tails of the distributions in the diffusive
and localized regime. The inset depicts a quasi-one-dimensional waveguide with randomly located
scatterers. These are all results for different incident and detected modes n # m.

transmission probability in the diffusive regime s < N, where s = 2L/xl for the present case
of two-dimensional scattering. The corresponding localization length £ = NL/s = 1100a.
The parameter v = 46.3a/c is found from ¢ in the diffusive regime [19]. The relationship
between the parameters 7, ¢’, and ) appearing in P and Py is given by [15]

_ s(3+2s) 853+ 2852 + 305 + 15 X
=0t 97 5(2s + 3)2 ' (18)

In fig. 1, the same set of parameters is used for all lengths to plot the distributions P (solid

curve) and Py (dashed). The numerical data agrees very well with the analytical predictions
in their respective regimes of validity.

We now turn to the case n = m of equal-mode excitation and detection. The vectors u
and v in eq. (6) are then identical, and we can write

gb’:ReC—O, I=1Col?, Ch :Zi:Tiku? ) (19)

The joint distribution function of the complex numbers Cy and C; can be calculated in the
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Fig. 2 — Same as fig. 1, but now comparing the case n # m of different incident and detected modes
(solid circles) with the equal-mode case n = m (open circles). The curve for n = m in the right panel
is calculated from egs. (19) and (20).

same way as P(By, By). We find

2,.2 —5/2
|C1 P2 2z ) ' (20)

P(Cy,C1) x exp[—N|Co|2/2]/0 dz 2?e™" (1 + ENT TN Re CyCy

The maximal value P(¢._..) = v/2/7N3~2 for n = m is larger than the maximum of P(¢')

peak
for n # m by a factor /2 x 1%0791(; = 1.35 in the large-N limit. This is in contrast to the
diffusive regime, where there is no difference in the distributions of single-mode delay times
for n = m and n # m. Our analytical expectations are again in excellent agreement with the
numerical simulations, presented in fig. 2.

In order to explain the coherent backscattering enhancement of the peak of P(¢') in
qualitative terms, we compare eq. (19) for n = m with the corresponding relation (6) for
n # m. The quantities Ag and A;, as well as the quantities Cy and C, become mutually
independent in the large-N limit. (The cross-term (yN)~!ReCoCy in eq. (20) is of order
N~1/2 because Cy ~ N~%/2 and C; ~ yN.) The main contribution to the enhancement of
the peak height, namely the factor of v/2, has the same origin as the factor-of-two enhancement
of the mean intensity I. More precisely, the relation P(Ag) = v/2 P(v/2 Cp) leads to a rescaling
of P(I) for n = m by a factor of 1/2 (see eq. (1)) and to a rescaling of P(¢') by a factor of v/2.
The remaining factor of 1?79& = 0.95 comes from the difference in the distributions P(4;) and
P(C1). These distributions turn out to be very similar, hence the factor is close to unity. The
asymptotic independence of Ay and A; (as well as of Cy and C) is another consequence of
the strong fluctuations originating from the high density of anomalously large Wigner-Smith
delay times 7;. In the diffusive regime the corresponding quantities are strongly correlated,
and the coherent backscattering enhancement of the intensity affects both in the same way.
Because only their ratio features in ¢’, this effect cancels and no difference is observed in
Paig(¢') for n =m and n # m.

In conclusion, we have discovered a dynamical effect of coherent backscattering that re-
quires localization for its existence. Computer simulations confirm our prediction, which now
awaits experimental observation.
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