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Abstract

In this thesis we investigate the convergence of various quantum random walks
to quantum stochastic cocycles defined on a Bosonic Fock space. We prove a
quantum analogue of the Donsker invariance principle by invoking the so-called
semigroup representation of quantum stochastic cocycles. In contrast to similar
results by other authors our proof is relatively elementary. We also show con-
vergence of products of ampliated random walks with different system algebras;
in particular, we give a sufficient condition to obtain a cocycle via products of
cocycles. The CCR algebra, its quasifree representations and the corresponding
quasifree stochastic calculus are also described. In particular, we study in detail
gauge-invariant and squeezed quasifree states.

We describe repeated quantum interactions between a ‘small’ quantum system
and an environment consisting of an infinite chain of particles. We study different
cases of interaction, in particular those which occur in weak coupling limits and
low density limits. Under different choices of scaling of the interaction part we
show that random walks, which are generated by the associated unitary evolutions
of a repeated interaction system, strongly converge to unitary quantum stochastic
cocycles. We provide necessary and sufficient conditions for such convergence.
Furthermore, under repeated quantum interactions, we consider the situation of
an infinite chain of identical particles where each particle is in an arbitrary faithful
normal state. This includes the case of thermal Gibbs states. We show that
the corresponding random walks converge strongly to unitary cocycles for which
the driving noises depend on the state of the incoming particles. We also use
conditional expectations to obtain a simple condition, at the level of generators,
which suffices for the convergence of the associated random walks. Limit cocycles,
for which noises depend on the state of the incoming particles, are also obtained
by investigating what we refer to as ‘compressed’ random walks. Lastly, we show
that the cocycles obtained via the procedure of repeated quantum interactions
are quasifree, thus the driving noises form a representation of the relevant CCR

algebra. Both gauge-invariant and squeezed representations are shown to occur.
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Introduction

Historically, the term “random walk” appears for the first time in 1905, in Pear-
son’s letter [81] to Nature entitled “The problem of random walk”. In the same
year, due to Einstein [44], “random walks” were associated with Brownian move-
ments. A brief summary of Einstein’s idea is that a particle in a fluid without
friction after colliding with a molecule changes its velocity, and in particular the
change of velocity can be quickly dissipated if the fluid is very viscous. The over-
all result of this impact is the change of the position of the particle, which can be
interpreted as a random walk. Three years later Langevin [62] proposed the equa-
tion describing Brownian movements from Einstein’s idea; however at that time
the mathematical apparatus was too poor to solve this equation or even associate
it with known theory. Wiener’s [93]| axiomatisation of random processes and his
rigorous construction of Brownian motion which appeard in 1920s, indicated the
right direction for future understanding of the Langevin equation. Mathematical
tools allowing approximation of Brownian Motion (according to Wiener’s defi-
nition) by normalised increasing sums (also called the invariance principle) are
due to, inter alia, Donsker [39], Doob [40], Kac [60] and Kolmogorov [61]; the
following statement of the invariance principle is presently used: on the space of
all continuous functions defined on the unit interval with the supermum norm,
the scaled random walk (X,),en converges in distribution, as n — o0, to the

standard Brownian motion (B;);e[o,1], Where

1 1
X)) =—7=x1+ ...+ xm + (nt —m)xyyyq) forallmeN, t e [@’m—l- )
n

Jn non

and (x,) is a sequence of independent, identically distributed random variables,

with zero expectation and unit variance.
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In early 1950s, 1to [59] developed stochastic calculus, which finally allowed
one to deal with equations in which coefficients are random processes, and so the
solution of the Langevin equation was correctly interpreted. Since then, random
walks and more broadly stochastic calculus have found applications in various
scientific fields including: cancer research [23], computer science [43], finance
[75], physics [92], physical biology [78].

The rudiments of the quantum analogue of stochastic calculus were initiated
by Hudson and Parthasarathy [56] in 1970s. Early results such as the first for-
mulation of a noncommutative central limit theorem [34] concern the situation
when classical random variables are replaced by a canonical pair (p, g) of quan-
tum mechanical momentum and position observables (self-adjoint operators) on
L?(R) satisfying the Heisenberg commutation relations. One of the first quan-
tum versions of Brownian motion was introduced 6 years later in [32]|, where the
authors refer to it as a canonical Wiener process. Due to the commutation rela-
tions satisfied by this process and its representation on a symmetric Fock space
over L2(Ry), the relevance to the theory of algebras of canonical commutation
relations (CCR) [11, 12| was emphasised. Development of quantum stochastic
integrals [58] together with corresponding quantum stochastic differential equa-

tions (QSDEs) gave a natural extension of the It6 stochastic calculus.

Quantum random walks. The first analogues of the Donsker invariance princi-
ple are due to Lindsay and Parthasarathy [80, 69], where they showed that certain
solutions of QSDESs, which generalise classical diffusions, can be approximated by
so-called spin random walks. Further attempts in random walks approximation
bring more descriptions of physical systems. In [9] Attal and Pautrat consider
the situation when a small quantum system interacts with a stream of identical
particles (in a discrete time-setup) according to repeated quantum interactions,
that is, the first particle interacts with a system for a short period of time #,
then it stops, the next particle from an infinite chain repeats the procedure and
so on. The unitary evolutions of the repeated interaction system generate the
quantum random walk. When we embed it into Fock space and let 7 — 0%, the
limit objects are the solutions of QSDEs (quantum stochastic cocycles). In [9] it

was assumed that each particle from an infinite chain is in the pure state induced
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by a unit vector; physically it might correspond to the ground (or vacuum) state.
The situation when the particle state is taken to be an arbitrary faithful nor-
mal state (in particular thermal Gibbs state) was first considered by Attal and
Joye in [5], but we would also like to indicate Gough’s work [52|. Moreover,
Attal and Joye observed that the driving noises form a gauge-invariant quasifree
representation of the CCR algebra. These convergence results were generalised
independently by Sahu [86] and Belton [17] for quantum flows. However, only
Belton’s results [18, 19] consider the situation where the particle state is differ-
ent than a pure state. In contrast to 9], Belton’s approach was coordinate-free
and no assumption of Hilbert—-Schmidt type on the cocycle generator coefficients
was made. Furthermore, in [19] the result was established in the case when the
particle state is not even faithful. Recently, Das and Lindsay [35] have obtained
quantum random walks approximation results for Banach algebras. All previ-
ously discussed approximations concern cocycles with bounded generators. In
2008 Bouten and van Handel [25] have used semigroup methods and Trotter—
Kato theorem to obtain quantum random walk approximation results for unitary
cocycles with certain unbounded generators.

The theory of quantum random walks has been broadly applied, including to the
dilation theory of quantum dynamical semigroups (|17], [86]), approximation of
quantum Lévy processes ([48]), quantum feedback control and quantum filtering
([53], |26]) and repeated-interaction models for the atom-maser ([29, 28, 31]).

The quasifree picture. Quantum integrals are defined with respect to funda-
mental processes, which come from creation and annihilation operators associated
with the Fock representation of the CCR algebra. Quantum stochastic calculus
in which fundamental processes are obtained through different representations of
the CCR (e.g. Araki-Woods representations [12]), was investigated by Lindsay
in his dissertation entitled “A Quantum Stochastic Calculus” and in [57] together
with Hudson. Stochastic Integration for those quasifree representation of the
CCR was also investigated by Barnett Streater and Wildein in [13|. Recently,
Lindsay and Margetts have established a complete theory of quasifree stochastic
calculus in |67, 68].

Inspired by work of Attal and Joye and recent results of Lindsay and Margetts
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we provide random walk approximation to cocycles which are strictly quasifree.

Description of the contents

The contents of this thesis are presented in 5 chapters. In Chapter 1 we discuss
the rudiments of quantum stochastic calculus. We start by recalling the defi-
nition of the symmetric Fock space and its basic properties. Next, we review
the basic class of operators on the symmetric Fock space, including an abstract
gradient and divergence introduced by Lindsay in [64]. In Section 1.2 we start
with the definition of operator processes followed by the example of fundamental
ones. By exploiting the abstract gradient and divergence we adapt the Lindsay
definition of abstract Hitsuda—Skorohod and It6 integrals and thanks to them
we introduce quantum stochastic integrals. Further, the Fundamental Formulae
and Estimate are also discussed. After discussing quantum stochastic differential
equations (QSDEs) and quantum stochastic cocycles, we focus on the semigroup
representations of such cocycles. Those play an important role in our quantum
random walk approximation theorem. For the reader’s convenience and the com-
pleteness of the chapter we provide proofs of some theorems which are usually
omitted in the literature. We end the chapter by quoting the characterisation the-
orem |71, 50] of isometric quantum stochastic cocycles in terms of the cocycle’s
generator.

Chapter 2 presents the recent development of Lindsay and Margetts [67, 68]
on quasifree stochastic calculus. We start with introducing the partial (matrix)
transpose, which plays an important technical function in quasifree stochastic
analysis. The definition that we suggest is based on the one from [68], however
we restrict it to the case of bounded operators. Next, we explore the theory
of CCR algebras, focusing on the representations which are most relevant to
a quasifree stochastic calculus; these are representations which induce gauge-
invariant and squeezed states. Starting from different subalgebras of the CCR
and by employing duality theorems we obtain von Neumann algebras and their
commutants which will play the role of noise algebras. Next we discuss quasifree
integrals and Fundamental Formulea. The chapter ends with a brief summary of

the results on quasifree stochastic differential equations (Qf-SDEs) and associated
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cocycles obtained in [68].

After two preliminary chapters, quantum random walks, the central topic of
this thesis, is contained in Chapter 3 and 4. We start by recalling the definition of
toy Fock space, which is a discrete version of the symmetric Fock space. Next we
define quantum random walks and in Theorem 3.1.12 we show their convergence
to quantum stochastic cocycles, by employing the semigroup decomposition of
quantum stochastic cocycles and the notion of associated semigroups, introduced
by Lindsay and Wills (see [74]). Theorem 3.1.12 is a special case of the quantum
Donsker invariance principle proved in [17], however our proof is independent and
uses more elementary tools such as Euler’s exponential formula (Theorem A.0.9).
Next, we give an example of random walk generators which allow the associated
random walks to approximate every isometric quantum stochastic cocycle. The
construction of these generators is inspired by [80]. Afterwards, we investigate
the products of random walks; the corresponding approximation theorem, that
is, Theorem 3.1.16, is a consequence of Theorem 3.1.12 and a simple algebraic
trick. We also give a sufficient condition implying that the product of two quan-
tum stochastic cocycles forms a cocycle. Section 3.2 is devoted to the application
of the results obtained at the beginning of Chapter 3. We discuss the repeated
quantum interactions model, and show that our convergence results can be ap-
plied in this context. In Examples 3.2.5, 3.2.6 and 3.2.7 we generalise the results
obtained by Attal and Pautrat (see [9]) and moreover we give necessary and suffi-
cient conditions on the interaction Hamiltonian to obtain the desired convergence.
Example 3.2.9 shows that the recent result by Attal, Deschamps and Pellegrini
[10] that concerns the bipartite models in repeated quantum interactions can be
viewed as a special case of Theorem 3.1.16.

Chapter 4 is inspired by Attal and Joye’s work [5]. We investigate quantum
random walks which arise from the repeated quantum interaction model in which
the incoming particles are in a faithful normal state. We employ a concrete
GNS representation to present the state in a vector state form and then we
construct a rotation (Example 4.1.1) that maps the corresponding cyclic vector
to the ampliation of the unit vector that was exploited in the standard case. This
allows us to apply Theorem 3.1.12 to give a proof of the relevant convergence

theorems. The results obtained correspond to Examples 3.2.5, 3.2.6; however
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the driving noises are influenced by a faithful normal state rather than a pure
one. Further, we employ techniques involving conditional expectation, which
were initiated by Belton in 18, 19|, to obtain a simple condition, at the level of
generators, which suffices for the convergence of the associated random walks,
including the product case. The last section of this chapter is devoted to random
walks which are embedded in a smaller space then in the previous case, when the
incoming particles were in faithful normal state. We refer to them as compressed
random walks. The results obtained are analogous to the previous investigation,
however as pointed out, such cocycles have ‘smaller’ noise space.

The last chapter is devoted to quasifree cocycles and so it exploits all the
previous results. We start with a technical lemma involving the partial transpose
investigated at the beginning of Chapter 2. Due to the form of operators con-
sidered we explain in detail that the assumptions for the existence of the partial
transpose are automatically satisfied. Further, in Theorem 5.2.2 we give suffi-
cient conditions for the cocycle obtained by random walk approximation, whose
driving noises depend on the particle state, to be a gauge-invariant quasifree co-
cycle. Corollary 5.2.3 gives moreover necessary and sufficient conditions, but it is
restricted to a special case of the obtained cocycle. Theorem 5.2.5 establishes a
similar result to Theorem 5.2.2, however it concerns squeezed quasifree cocycles
rather than only gauge-invariant ones. Similarly, Corollary 5.2.6 is analogous to
Corollary 5.2.3, but it concerns the squeezed case.

Appendix A contains results concerning Fuler’s exponential formula which
was employed in Theorem 3.1.12 and Theorem 4.4.3. Due to the specific form of

these results, it is hard to find them in the literature; however they are elementary.
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Notation and conventions

The symbol := is to be read as ‘is defined to equal’ (or similarly).
The sets of non-negative integers and non-negative real numbers are denoted by
Np:=1{0,1,2,...} and Ry :=[0,00) .

The indicator function of a measurable set A of a measure space (X, X, u) is
denoted by 1 4. For a vector valued function f:R; — V and an interval I C Ry,
we denote the product of f and 1; by f;.

We will be using complex and separable Hilbert spaces unless otherwise stated
and inner products are antilinear in the first and linear in the second argument.

The algebraic tensor product between two vector spaces V; and V, is denoted
by Vi ® V,. For Hilbert spaces H; and H,, H; ® H, denotes their Hilbert-space
tensor product. For von Neumann algebras M and N, the ultraweak closure of
the algebraic tensor product M ® N is denoted by M ® N.

Let H be a Hilbert space. For u € H we define the bounded operators

(u|:H — C by (u|v = (u,v),
and

|u):C — H by |u)a = au.

The operators (u| and |u) are mutually adjoint and (u| |v) = (u, v) . For another
Hilbert space K and u € H, we define £,: K - K ® H to be the ampliation of
|u), that is, £, = Ix ® |u), and denote its adjoint by E¥.



Chapter 1
Quantum stochastic calculus

This chapter collects the rudiments of quantum stochastic calculus on the sym-
metric Fock space. All the sections contain material which is briefly discussed
without presenting the proofs, but while referring to the appropriate references.

For more details we recommend the reader consult the books [79], [77] and [63].

1.1 Symmetric Fock Space

Let H be a Hilbert space. Symmetric Fock space over H is defined by

rH) = H".

n=>0

where HY” is the symmetric n-fold tensor product of H, that is, the closed subspace
of H®" generated by {u®":u € H}, and HV? := C.

The symmetric Fock space was introduced by the physicist Fock in [47]; a
mathematical interpretation of this article can be found in [33].

The exponential vector of u € H is

e(u) = ((W)_l u®”) = (1 HOU UIU® u’) e I'(H).
n=>0

,u7 b
V23l

Exponential vectors form a linearly independent and total set in I'(H) (|79,
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Proposition 19.4 p. 126], [63, Proposition 1.32]). It is easy to see that
(e(u),e(v)) = ™ for all u, v eH.
For S € H we denote
E(S) :=span{e(u):u € S}.
The inequality (|63, equation (1.24)])
le@) — e)]| < [Ju — v]|le2®I+IVD* for all u, v e H (1.1)

shows that the map u + &(u) is continuous.
The continuity of u + e(u) yields that if S is a dense subset of H, then £(S) is
a dense subspace of I'(H) (|79, Corollary 19.5, p. 127|, [63, Corollary 1.30]).
Furthermore, Fock space possesses the exponential property (|79, Proposition
19.6 p. 127], [63, Proposition 1.31.]), that is, for any Hilbert spaces H;, Hy the
following holds
I'(H1 @ Hy) = I'(H1) ® I'(H2),

b2

where the equality sign “=" means that left and right-hand side of the equality

are isometrically isomorphic via the map
euUd V)~ e(u) e(v)
for all u € Hy, v € H,.

Fock operators

In this section we present some important Fock space linear operators.

The number operator on I'(H) is a positive self-adjoint operator a domain

Dom N := € € I'(H): > n?|&,]* < oo

n>0
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and action

NE = (ngn)n20-

Since N is positive and self-adjoint, we are provided with the operator +/N . For
more details we refer the reader, to [63, p. 202] and [15, p. 16].
For T € B(H), we define I'g(T') by the prescription

To(T)e(u) = e(Tu).

In particular, To(T*) C I'o(T)* and I'g(T)* is a closed extension of I'y(7T*).

We define the second quantisation on I'(H) as the closed extension of I'g(T)
and denote it by I'(T'). Moreover, I'(T) has the core £(H), and it is unitary,
isometric, contractive if T is. See also [79, p. 135|, [63, Second quantisation,
p. 208] and |77, p. 63]|. Annihilation and creation operators are closed, mutually-

adjoint operators defined on the core £(H) by

a(m)e(v) = (u,v)e(v),

d
a(w)e(v) = —e(v + tu) , forall u, veH,
dt t=0

respectively.
They both have common domain and satisfy the canonical commutation relations

[a(u),a’(v)] = (u,v) I forall u,v € H.

For more details the reader is recommended to consult |79, Proposition 20.12,
p. 144; Proposition 20.14, p. 146| and [77, creation and annihilation operators,
p. 61].

Let (U;)rer be a one parameter unitary group in H. By Stone’s theorem (|95,
Theorem 1, p. 345]) there exists a unique self-adjoint (not necessarily bounded)

operator H on H such that for all £ € R we have
Ut = e_itH.

Then for a one parameter unitary group (I'(U;));er there is a unique self-adjoint

10
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operator A(H) on I'(H) such that
C(U;) = e 1 e R,

The operator A(H) is called the differential second quantisation of H. We can
extend this definition to an arbitrary L € B(H) as follows let Aq(L) be defined
by the prescription

d
Ao(L)e(u) = = e(e’tu)],_, -
In particular, Ao(L*) C Ao(L)* and A¢(L)* is a closed extension of Aog(L*). The

second quantisation of L on I"(H) is the closed extension of Ao(L), it equals to

A(LJrL )+1A(L__L )
2 2i

We denote the second quantisation of L on I'(H) as A(L). Moreover, £(H) is
the core for A(L), and A(/) = N. For more details we refer the reader to |79,
Proposiiton 20.7, p. 140; Proposition 20.12, p. 144; Proposition 20.13, p. 145] and
[63, Differential second quantisation, p. 208].

Momentum and position positions operators are self-adjoint operators defined
by

pu) :=iaf(u) —a(u),
q(u) := a’(u) + a(u),

respectively. In particular, g(u) = —p(iu) and £(H) is a core for p(u) and q(u).
By virtue of Stone’s Theorem p(u) generates strongly continuous one-parameter

unitary group (Wy(tu));er, where
Wo(tu) = e 7M.

A unitary operator Wy(u) is called a Fock—Weyl operator, and its action on

the exponential vectors is

Wo(u)e(v) = e_%”””z_(“’”)s(u + v). (1.2)

11
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Moreover, Fock—Weyl operators satisfy the following relations

Wo(u) Wy (v) = e ™0 W (u + v), (1.3)
Wo(u) Wo(v) = e 2V 1o (0 Wy (u), (1.4)
Wo(u)* = Wo(—u) (1.5)

for all u, v € H.

For more details concerning Fock-Weyl operators we refer the reader to |79,
Chapter II: 20 The Weyl Representation| and [77, Weyl operators, p. 65]. For a
different approach see [63, Fock-space operators p. 207].

The abstract gradient and divergence operators
V:DomV C I'H) > H® I'(H) and S:DomS CH® I'(H) - I'(H)  (1.6)
are densely defined, closed, mutually-adjoint operators satisfying

Ve(u) =u ® e(u),

Su®ew)= %e(v + tu)

t=0

In particular, £(H) is a core for V, and H® £(H) is a core for S.

Those two operators were originally introduced by Lindsay in [64, p. 69 after
Proposition 1.2] in the context of Fock—Guichardet space [54]. Then they were
extended to symmetric Fock space over an arbitrary Hilbert space H in [63, Section
3.1]. The abstract gradient and divergence were also studied in [2]|, where the
author calls them the universal annihilation and creation operators, which is due

to the following observation (|2, Proposition 3.3|);
Proposition 1.1.1. For each u € H

o ((u[® Irgn)V = a(u),

o S(ju) ® Ir) = a’(w)

on E(H).

12
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Gradient V and divergence S are also related to the number operator, and
for S we have an isometric-type equality with a correction term (|63, Proposition
3.1], [2, Theorem 3.2 and Theorem 3.4]);.

Proposition 1.1.2. The following relations hold
1. DomV = Dom~/N,
2. SV =N,

3. For zy,z5 € Dom(Iy @ VN + 1),
(821, 822) = (z1.22) + (T ® V)z1, (T ® Irny) (In ® V)z2),

where IT denotes the tensor flip on H ® H, that is, I1 is an isometric

isomorphism such that x @ y — y @ x, for all x, y € H.

1.2 Quantum stochastic analysis

Quantum stochastic analysis arises from the natural filtration of the symmetric
Fock space over L?(R.; k), where k is a separable Hilbert space, called the noise

dimension space.
Now and for the rest of the thesis fix a Hilbert space h. We refer to h as the

matial space.

A piece of notation is required; let I C Ry be an interval, and denote
Fy:=T(L*1,k) and Qp, = &(0) € Fr.

We skip the subscript I whenever I = R,.

The exponential property yields the tensor decomposition
k k k k
f = f[O,s) ® ‘F[s,t) ® f[t,oo)

forall 0 <s <.

Definition 1.2.1. We call a subset S C L?(R,; k) admissible if

13
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e £(S) is dense in F¥,
o flopeStorall feS§, telR,.

Denote by S := span{cjo,:c € k,t > 0} C L*(R4;k) the set of all step
functions in L?(Ry; k). Given any A C k, let

Sa:={f €8S: f is A— valued}.

Note that S4 is admissible.

Proposition 1.2.2. If A is a total subset of k and 0 € A, then E(Sy) is dense in
Fk.

For the proof we refer the reader to [63, Proposition 2.1] in which the proof

is an adaptation of the main result in [87].

Operator processes

For further analysis we will require the quantum analogue of stochastic processes.

Definition 1.2.3. Let D be a dense subspace of h and let S C L2(Ry;k) be
admissible. An operator process on h with noise dimension space k is a family

X = (X})r>0 of linear operators
X DRES) - h® F*

such that
e the map ¢ — (x, X;y) is measurable for all x e h® F, y e D® E(S),

e the process is adapted, that is

(ue(f), X:(v®e(g))
= (M ® e(flo.n) X:(v ® S(g[o,t)))>(8(f[t,oo)), 3(g[t,00)))

forallu,veb, feL*(Ry:k),ge S andr eRy,.
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Therefore, if X is an operator process we can write it as
Xt = X1y ® Ie(S)1.000)- (1.7)

where Xy:D ® E(Sp,n) > H® }—[lB,t)'

The operator process X is called measurable (continuous) if the function
r— Xix

is strongly measurable (respectively, continuous) for all x € D E(S). It is called

bounded (contractive, isometric, unitary etc.) if all the operators X, have this

property.

Remark 1.2.4. Every continuous operator process is measurable. Pettis’ theo-
rem ([82, Theorem 1.1.|) yields that the operator process X = (X;);>¢ is measur-
able, if and only if, the function ¢t — X;7n is a.e. separably valued (some subset

of Ry with full measure is carried to a separable subset of the range of X;).

Using the notion of creation, annihilation and preservation operators defined

earlier we give an example of operator processes.

Example 1.2.5 (Fundamental operator processes). Let f, g € L2 (R4;k) and
ReLy

loc

strongly measurable functions from Ry with values in Banach space B(k). Cre-

(R4; B(k)), where this last space is the Banach space of locally bounded,

ation, annihilation and preservation (or gauge) processes Arf)’ A(g| and Np are
defined by

Arf) = (aT(f[o,t)))go,
Ag| = (a(gro,)))s>o0,
Ng := (A(Rpo,1))r>0.

respectively. These are continuous operator processes (|58, Proposition 4.1. p. 306]).

The next example of an operator process will tell us how to reverse the time

of a given operator process X = (X;)r>o-
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1. Quantum stochastic calculus

Example 1.2.6 (Time reversal). For each ¢ € R4 the operator r, € B(L?(R4;k))
is given by
f@&—r) ,ifr<t

(re f)(r) 1= | (18)
f(r) , ifr >t

Let R; be the second quantisation of r,, that is, it is the bounded operator on

h ® F* such that
Ri(u®e(f)) =u®e(rf). (1.9)

We call R = (R;):>0 the time reflection process. Note that each R; is a self-adjoint
and unitary operator.
For any bounded operator process X = (X;);>0, the time reversed process of X

is given by (R;X; R;)s>o-

Hitsuda—Skorohod and It6 integrals

Exploiting the abstract gradient and divergence of Malliavin calculus from (1.6),
we will define the abstract Hitsuda—Shorohod and It6 integrals, which we require
to produce quantum integrals. These techniques were first introduced indepen-
dently by Lindsay in [63] and Belavkin in [14].

We ampliate the abstract gradient and divergence operators, with for H =

L?(R4; k), in the following manner
Vih @ FF > L2Ry k) @) ® FF, S:L2(Ryk) @ h® F* - h @ FX,
and

Vu®e(f) =foue(f),

Sgu®e(f)=u® %e(f—l—tg)

t=0

We call § the Hitsuda—Skorohod integral and V is called the gradient operator

of Malliavin calculus.
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1. Quantum stochastic calculus

Notation 1.2.7. For z € DomS, § € DomV, and t > 0 we set
Sz =8z and V,£:=(VE), ek®bh® F

Apart from the Hitsuda—Skorohod integral we also use Bochner integrals,
which are vector-valued integrals with respect to time. For z € L'(R4; b ® F¥),

set

Tz := / z(s) ds,
0

and for z € L! (Ry;h® F¥), and ¢ > 0, set

loc

t
Tiz ::/ z(s) ds.
0

Note that Ry 3¢ — T;z € h ® F¥ is a continuous function.

Definition 1.2.8. For all f € L?(R,;k), a function z € L?(R;: k ® h ® F¥),
where 1 < p < 00, is called e( f)-adapted if, for each t € R,

Z = z1) ® &(f|[t.00))» Where zpy e k@ h ® ]-"['I)J). (1.10)

We denote by Lf( f)(R+; k ® h ® F¥) the subspace of such functions, and the
orthogonal projection in L?(R4; k ® h ® F¥) with range L /R k®H® FX) is
denoted by P#)). In particular, in case of g(0)-adapted functions we exchange
g(0)-script for the one with €, that is, we use LE(Ry;k ® h ® F<) and P9,
respectively.

Definition of e( f')-adaptedness also makes sense for locally integrable func-
tions. We denote the space of all locally p-integrable e( f)-adapted functions by
L )10 R+: k@b ® FX).

The Hitsuda-Skorohod integral possesses the following properties.
Proposition 1.2.9. We have
. Lg(f)(R_,_; k®bh® F*) C DomS, and for all z € Lg(f)(]R_,_; k®bhe F"),

ISz < (11 + VT+T712) Izl
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1. Quantum stochastic calculus

e [orallz € Lg(f)(]RJr; k®b® FX), the function
Ryt Szeh® F

1S continuous.

e For two triples (f.z@,zM) and (g, w@, w®), where f, g € L*(Ry;k),
2O ® ¢ LR k®h QR F%), and zV, wM e L} HRisk®b ® Fr),

we have

<«§z,§w> = / {(z,(l), wt(l)> + <zt, (g()) ® §tw> + <(f%,)) RSz, wt>} dr,

£ ©) w© R
where z = LW = and Sz = Tz® 4+ SzD,

) w®

For the proof we refer the reader to |63, Theorem 3.3, p. 225; Corollary 3.4,
p. 226; Theorem 3.5, p. 227|.

Definition 1.2.10 (It6 integral). The abstract It6 integral is defined by

L= Sliz @i xener
its adjoint D is said to be the adapted gradient operator.

Denote by Vg the inclusion map from L% (Ry; k®bh®F*) to L2(R4; k®hRF*).
Then the adjoint V5 may be viewed as P*% if we think about it as an operator from
L*(R4;k® b ® F*) onto the subspace L3 (R4;k®b® F*) of L2 (R4;: k@b F).

Then we can write explicitly
7 =S8Vq.

In particular, Z and D are bounded operators with Z being an isometry.
Set I,z := Iz[p,) for each z € LSZ'Z,IOC(R‘l'; k®bh® F and t € R,.

For more details on abstract Ité calculus on Fock space we refer the reader to
[3] and [7] (Fock-Guichardet approach).
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1. Quantum stochastic calculus

Quantum stochastic integrals

Integrals with respect to the fundamental operator processes (Example 1.2.5) are
defined in this section.

Let k := C @k, for ¢ € k set ¢ := (1) e k and for f € L?>(R;k) denote
f(t) = ]7(7) for each t € Ry.

The It6 projection is given by

A=[30]® 1 eBk®h) and At = g, —

A. (1.11)
Let D be a dense subspace of h and let S € L?(R,; k) be admissible.

Definition 1.2.11 (Quantum stochastic integrand). A measurable operator process
F = (Fy)t>0 on k® b such that Ft:EQ_@D@S(S) —k® h® F* for each t € R,
is called a QS integrand on R, if

e the function t — (A+ ® Ix)F, (f(t) ® u ® e(f)) is Bochner integrable,

o> (A® I;k)F,(f(t) ®u ® e(f)) is square integrable.

If the above functions are only locally integrable, then F is said to be a QS

integrand.

Definition 1.2.12 (QS integral). Let F be a QS integrand on R .
The QS integral of F is defined by

AF):DR®E - Hh®F ., AF)u®s(f)) =8z,
where z, = F,(f (1) @ u ® &(f)).
The definition makes sense also in the locally integrable case.
If Fis a QS integrand then Fjo), for each t > 0, is a QS integrand on R. Set

A¢(F) := A(Flo,r)-

Remark 1.2.13. Since k = C® k, we can write each QS integrand F in a matrix

K: M,
Ft == .
L, P

form
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1. Quantum stochastic calculus

In this case we will be using the following notation

Definition 1.2.14 (Time, creation, annihilation and preservation integrals). Let

F be a QS integrand on R;.
K 0
F = ,

then T(K) := A ([15 8]) is said to be a time integral.

0 M
F = ,

then A(M) := A ([8 M ]) is said to be a annihilation integral.

0 0
F = ,

then A*(L) := A ([2§]) is said to be a creation integral.

F:OO,
0 P

then N(P) := A ([§ 9 ]) is said to be a preservation integral.

o If

o If

o If

o If

All above integrals are in particular continuous operator processes.

Similarly, as for the QS integral we denote
o T:(K) :=T(Kp,n),

o A(M) := A(My,p)),

o AX(L) := A*(Lio,n)),

° NZ(P) = N(P[O,,)).
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1. Quantum stochastic calculus

Remark 1.2.15. Quantum stochastic integrals were introduced by Hudson and
Parathasarathy in [58]. Since then, there have been many different reformulations
and generalisations, the development of which, until the 1990s, can be found in
books, e.g., [79] and [77|. Here, the definition of quantum stochastic integrals is
taken from [63], where the author exploits the gradient and divergence of Malli-
avin calculus. A different, implicit approach based on the classical Ité calculus
can be found in [8]. The latter two approaches are extended in articles [3| and
[7]. Finaly there is now an explicit approach based on the abstract Ito integral
[66].

Now, we present the fundamental formulae of quantum stochastic calculus.

Theorem 1.2.16 (First Fundamental Formula). Let F be a QS integrand on R.
Then

(10 ® (). AF)w @ @) = [ (@ (/) ETOREgeo v ® e(2) ds

forallueh,veD, f e L*(Ry;k) and g € S.

For the proof we refer the reader to [63, Theorem 3.13 p. 232.

The estimate below is a consequence of condition (1) in Proposition 1.2.9.

Theorem 1.2.17 (Fundamental Estimate). Let F be a QS integrand on Ry.
Then

IACE) @ ® o(/)]
< [lete LorGn sue ]

+Cy (/ (A ® Ir)Fo(f (1) ® u @ e(f)) \|2ds)2

forallu e D, f €8, where Cyr = || fI| + 1+ | f]?

This estimate is improved in [66]. The Skorohod isometry, that is, condition

(3) in Proposition 1.2.9, yields the following.
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1. Quantum stochastic calculus

Theorem 1.2.18 (Second Fundamental Formula). Let F and G be QS integrands
on Ry. Then
(AG)(u ®e(f)), A(F)(v ® &(g)))
— [ (7@ ® (). ETO R Egeo 0 9 6(6) ds

+ [ {ER96.E 9 e(/). AP0 9 2(9)) ds
4 [ {6uE iy 95, (A © 1) FyEgeo (v 0 e(2) ds

forallu,veD, f and g€ S.

For the proof we refer the reader to [63, Theorem 3.15, p. 234].

The QS integral consists of time, annihilation, creation and preservation inte-
grals. Thus according to the Second Fundamental Formula, the correction term
(the third term of the sum in the Second Fundamental Formula) may vary for

different combinations of coefficients of the integrand.

Example 1.2.19. Let F and G be quantum integrands such that

0 O 0 0
Ft == and Gt =
L, 0 0 P

for each t € Ry. By applying the Second Fundamental Formula to
(A7 (L)u ® e(f), Ni(P)v ® £(g))

we obtain that the correction term equals to

! 0 L*P,
/0 <Ef(s)(u ®e(f)), [ . so } Ez(v ® 8(g))> ds

=u®e(f), Ai(M)v ® £(g))

for all u, v € D, f and g € S, where M; = L} P;. For simplicity we denote
(dA7,dN;) = (A7 (L)u @ e(f), Ni(P)v ® e(g)) and we say that it has the cor-
rection term of type dA4;.
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We have sixteen different possibilities, but only four of them are non-zero.
According to the procedure and notation in Example 1.2.19, we present all non-

zero correction terms in the quantum It6 table underneath.

the correction term
(dAy,dAT) dt
(dA7, dNy) dA;
(dN;, dAT) dA;
(dN;, dNy) dN;

Table 1.1: Quantum It6 table.

Remark 1.2.20. Since we haven’t defined adjoint operator processes, our quan-
tum It6 table has a slightly different form than the one which usually appears in
the literature. Therefore, we refer the reader to [63, Example 3.17 p. 235].

QSDEs and QS cocycles

In this section we investigate the connections between the solutions of quan-
tum stochastic differential equations and quantum stochastic cocycles. Quantum
stochastic differential equations and quantum stochastic cocycles have not only
mathematical beauty, but also important applications in physics, e.g., they de-
scribe the interaction between atoms and the electromagnetic field in the weak
coupling limit [24]. For applications in quantum optics we refer the reader to [49].

Let F = (F;);>0 be a bounded operator process on k® h and let T € B(h).
We say that an operator process X = (X;);>0 on b is a weak solution of the left

quantum stochastic differential equation

AdX; = X, F; dA,, Xo=T & Ix, (1.12)
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where f, = I; ® X;, if it satisfies

u®e(f). (Xi =T Q Irp)(v®e(g)))

_ /t <u ®e(f). Xs ETOF Bz (v ® e(g))>ds, (1.13)
0

forallueh,veD, f € L>(Ry;k)and g € S.

Definition 1.2.21. We call an operator process X = (X;)r>0 on b a strong
solution of (1.12) if it is a weak solution of (1.12) and 7 > X, F; is a QS integrand.

Remark 1.2.22. Since QS integrals are continuous operator processes so are the

strong solutions.

If, instead of (1.12) an operator process X = (X;);>o satisfies

we(f),(Xi =T ® In)(v ®£(g)))

= /Ot <u ® &(f), Ef(s)FsEg(s)Xs(v ® 8(g))>ds,

forallu e h, v e D, f € L>(Ry:k) and g € S. We call it a weak solution of the

right quantum stochastic differential equation

dX;, = F,X; dA;, Xo=T ® Ix. (1.14)

Remark 1.2.23. Picard iteration assures the existence and uniqueness of a weak
solution of the above quantum stochastic differential equations, whenever F;, =
F ® Iz« for some F € B(h ® ’k\) ([63, Theorem 4.2, p. 240], [88, Theorem 5.3.1,
p. 129]).

Further we abbreviate a quantum stochastic differential equation to QSDE.
Let S C L?(R4; k) be an admissible set (Definition 1.2.1). For an operator T
on F* with domain £(S) its shifts are defined by

01(T) = 15, @ Si TS/ | e(s) (1.15)
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1. Quantum stochastic calculus

where the right shift S;: 7% — .7-"[‘;’ o0) 18 given by

Sie(f)=ce(s: f), s:f(r)= f(r—t)forall feL*(Ry k), t €R,.

Definition 1.2.24 (Quantum stochastic cocycles). Let X = (X;);>0 be an op-
erator process on h (Definition 1.2.3). We call X a left QS cocycle on b if it

satisfies
X5y = X504(X;) for all s,¢ >0, (1.16)
where

Gy (X;) = (idpg) ® 0,)(X1)] ® £(S)

If instead of condition (1.16) we assume that X satisfies
X5y = 05(X,) X, for all s,¢t >0,

then we call it a right QS cocycle on b.

We will be using left QS cocycles associated with left QSDEs. All the theo-
rems which are true for left QS cocycles associated with left QSDE are also valid
for right QS cocycles associated with right QSDEs. We also show the connec-
tion between left and right cocycles, which involves the time reflection process
(Example 1.2.6) and allows us to use only left cocycles and obtain the results for
the right ones for free. Henceforth, the term “QS cocycle” will refer to a left QS

cocycle.

Definition 1.2.25. If X is a QS cocycle and it satisfies strongly the QSDE
dX, = X,(F ® 1) dA;, Xo = Lygrv, (1.17)

where F € B(E@ b), then we call F the stochastic generator of X, and denote X
by XF.
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Proposition 1.2.26. Let X = (X;);>0 be the unique strong solution of the QSDFE
dXt - A/X\Yt(F ® I]:k) dAt, X() - Ih®]:k’ (118)

where F € B(@@ ). Then X is a QS cocycle with generator F, simply X = X T

For the proof we refer the reader to |74, Theorem 2.3 b.|. For an operator

process X = (X;);>0 on h define the following operators on b;
PS4 = ESCON X, Eeq y foralle, d ek, t > 0. (1.19)

Proposition 1.2.27 (Proposition 3.2 in [72]). The following statements are

equivalent
e X is a QS cocycle on b such that Ee(f)X,Es(g) e B(h) forall f,gesS.

e Foreachc,d €k, (P,C’d),>0 is a semigroup on by, and for all right-continuous

step functions f and g € S,

Es(f[o,z))Xt Ee(g[o,z)) — Pf(to)’g(t(’) .. Ptf(t”)’g(t"), (1.20)

1—to —In

where {0 =ty < t; < ... < t, <t} contains the discontinuities of fio) and

8l0,7)-

The same holds for right QS cocycles except that the product in (1.20) is in the

reverse order.

Proof. Since in the literature the proof of the above proposition is usually omitted

or left as an exercise, we present it here. Observe that

Es(C[s,s+z))’5s(Xt)E = Ea(sfcu.sﬂ))XIE = ES(C[o.n)X,Ea(d[o )

e(ds,s+1]) e(ssdis,s+11)

forall ¢, d €k, 0 <s <t <oo. Thus, X is a QS cocycle if and only if (P,c’d)t>0
is a semigroup on b for each c,d € k.

Fix t € Ry. To manifest that (1.20) holds if and only if X is a QS cocycle
consider right-continuous step functions f and g € § € L?(R4; k) such that the
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set {0 =19 <13 <...<t, <t} forn €N contains all the discontinuities of for)

and gpo,r). For simplicity set f,4; :=f, we arrive at

Ee(f[o,t))Xt Ee(gro.07)

8(.’1 f(ti)[ti,ti+l))
—E \i=o X.E /.,
€<' Og(ti)[li,ll'_;’_l))

=

6(% f(ti)[li,ti_;’_l))
=E*V OO0 Xy EetooyounE V! o (Xi-n) E

6<A§]g(ti)[ti’ti+l))

€ 3 f(ti)[ti—t i1t ))
=E8(f(t0)[0’[1))Xt1 Es(g(to)[o,n))E <i:1 o Tt ( > )
&

,glg(ti)[ti_tlJiqu_tl)
Therefore, by repeating the above procedure we obtain

ES(f[OJ))Xt Es(g[o,t])

€ if(ti)[t,-.z,- ))
<f=° "IXE
8<,§Og(ti)[ti’ti+l))

ZES(f(tO)[O’”))Xn Es(g(to)[o,zl)) e Es(f(tn)[t"'t))atn (Xt—tn)Ee(g(tn)[zn.z))

:Ee(f(to)[o,zl—zo))Xt]_to Es(g(to)[o,zl—zo)) o Ee(f(tn)[o,z—zn))Xt_tn Es(g(tn)[o,z—zn))
:Pf(to),g(to) ) Pf(tn),g(tn)

t—to t—ty

]

We refer to {(Ptc’d),>0: c,d € k} as the family of semigroups associated to the
cocycle X and we denote the generator of the semigroup (P,C’d),>0 by He 4.

Definition 1.2.28. A QS cocycle X is called Markov reqular if each of the semi-

group in {(Ptc’d)t>0: ¢,d € k} is norm continuous.

The next proposition is an easy consequence of the semigroup representation
of the cocycle;

Proposition 1.2.29. Let F € B(E ® b) and let (F,) be a sequence in B(/Ig ®b)
such that F,, — F in norm as m — 00.
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If f, g € L2(Ry; k) are right-continuous step functions and T € R, then

lim sup HEs(f) (XtFm - XtF) Ecg)| =0,

m—>00 tel0,T]

where X = (XF), Xfm = (X,Fm) are Markov-reqular QS cocycles.

Proof. Let f, g be right-continuous step functions and let the set {0 =ty < #; <
... <1 <t} contains the discontinuities of fjo,) and go,), where k € N. Then,
by Proposition 1.2.27, we get that
Fﬂ’l ’ nls n
ES(f[O,t))Xt Es(g[o,t)) — P(m)f(fo) g(to) . P(m)tf—(f,‘n) gt )’

I1—fo

where P(m)¢9 := Ea(c[o'”)XszEs(d[o.z])'
f(li)’g(ti)7

Moreover, by Lemma A.0.7 each semigroup P(m);, "3,

fWi).e) _ pe(fE0.4;. —1;) v F
Pti—i—l_ti _ Ef (0.4 41—} Xt[+l_tiEe(g(ti)[oﬁti—i-l_ti))

converges in norm,
locally uniformly in time, to
fori €{0,...,n} and t,4+; = t. We end the proof by applying Proposition 1.2.27

again. [

Proposition 1.2.30. Let X be a QS cocycle with generator F € B(/IE ® b).
Then XT is Markov regular and for each ¢, d € k the generator of a semigroup
(PF%)i50 is given by

Hea = E°FE; + (c,d) Iy (1.21)

The proof can be found in [74], the formula (1.20) (below Corollary 1.4 ) in
[74] corresponds to our (1.21).

Proposition 1.2.31. Let X = (X;);>0 be a Markov-regular contractive QS co-
cycle, then X is the unique strong solution of the QSDE (1.18) for some F €
Bk®b).

The proof can be found in [74, Theorem 4.1].

To summarise we state the following theorem.

Theorem 1.2.32. Let X be a contractive operator process on by. Then the fol-

lowing statements are equivalent:

e X is a Markov-reqular QS cocycle.
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o X is the unique strong solution of the QSDE (1.17).

Proof. If X is a Markov-regular QS cocycle then Proposition 1.2.31 delivers
the QSDE to which X is the unique strong solution. The converse holds by
Proposition 1.2.26 and Proposition 1.2.30. 0

Proposition 1.2.33. Let X = (X[F);s0 be a bounded QS cocycle with the
stochastic generator F € B(’k\ ® b). Then its time reflection process (Y; =
R, XF R))>0 is the right QS cocycle with generator F.

The proposition above is a part of |71, Theorem 7.2].

Theorem 1.2.34. Let XF = (X[F )20 be a QS cocycle with the stochastic gener-
ator F € B(/k\ ® ). Then the following are equivalent:

1). XF is a family of isometries.
2). F+ F*+ F*AF =0.

3). F has a block matriz form

H 1L —L*W
F=|"'""72 , (1.22)
L W1

where H € B(h) is self-adjoint, L € B(h;k ® h), and W € Bk ® h) an

1sometry.

Furthermore, X¥ is a unitary cocycle, if and only if, W in (1.22) is a unitary

operator, which holds if and only if
F+F"+ FAF*=F+ F*+ F*AF =0. (1.23)

For more general case, where X is a contraction QS cocycle we refer the reader
to the original article [71, Propositions 7.5 and 7.6] and for the matrix form of
the generator to [50, Theorem 6.2].
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Chapter 2
(Quasifree stochastic calculus

The theory of quasifree stochastic calculus was initiated in 1985 by Lindsay in his
thesis entitled “A Quantum Stochastic Calculus”. Recently, in [67, 68| Lindsay
and Margetts has extended the previous theory by investigating various Araki-
Woods representation of the CCR algebras (|11]). Here we present some of the
results which they obtained, however we restrict their theory to the bounded

setting.

2.1 Conjugate space — partial transpose

In this section we discuss the partial transpose of bounded linear operators. For
more details, including the case for unbounded linear operators, we refer the

reader to the original articles [67], [68].

Definition 2.1.1. If k is a Hilbert space then k denotes the Hilbert space conju-
gate to k, i.e. k = {u:u € k}, with

U+U=u+v, au=au and (u,v) = (v,u) for all u, v € k and a € C.

The bijective map j:k — k given by ¢ > ¢ is called the conjugation.

Definition 2.1.2. Let ky, ko be Hilbert spaces with conjugations ji, j», respec-
tively, that is, jiik; — ki; ¢ > € for all ¢ € k (i = 1,2). Let D be a dense
subspace of k; and let D := {¢:c¢ € D}. For a linear operator T:D C k; — ks,
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2. Quasifree stochastic calculus

its conjugate operator T:D C k; — k, is defined by

T := j,Tj;', ¢ Tc.
Given B € B(ky, ky), the transpose of B is defined by setting
B':=B" € B(ka, ky).

In [67, 68] to build quasifree stochastic calculus the authors exploited the
notion of the partial (matrix) transpose. Before we introduce it let us make the
following observation.

Fix a Hilbert space H. Let B(ky; ks) or B(H) be infinite-dimensional, we can
map A ® X to A* ® X, where A € B(k;;k;) and X € B(H), however due to the
lack of completely boundedness of the transpose ([42, Proposition 2.2.7, p. 27])
this definition cannot be extended to an arbitrary element of B(k;: k) ® B(H)
by continuity. To solve this problem, we will consider some special classes of

operators.

Lemma 2.1.3. Transpose operation restricted to the Hilbert—Schmidt class of

operators is a unitary operator.

Proof. We can identify the class of Hilbert—Schmidt operators A € HS(ky;ks)

with k, ® k; via isometric isomorphism given by a prescription

Vinke ) ({d] > c®d (2.1)
for all ¢ € ky, d € k;. Now, observe that (|c)(d])* = W)(ﬂ Moreover,
wgﬁ(‘g)(ﬂ) = d ® ¢ and the tensor flip map

H:k2®k_1—>k_1®k2, c®d—d®c

is unitary. Therefore transpose restricted to the Hilbert—Schmidt class is unitary

as a composition of three unitary maps ¥ 7o IT o ¥ k- [l

To define the partial transpose we will need a few technicalities.
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Proposition 2.1.4. The map Ep.x, k. B(k; ® H; k, ® H) — B(H; B(ky; ko, ® H))
such that

Enk ko (T)u :=TE, (2.2)

for all T € Bky ® H;k, ® H), u € H, is a continuous bijective linear map, with
the 1nverse defined by the prescription

Eﬁ;lkth(S)(c ®u) = Suc, (2.3)
for all S € B(H: B(ky: ko ® H)), u € H and ¢ € k;.

Proof. Linearity is immediate, for the continuity note that

I Bt 0o (T) = Evi o (S| = sup (T = S)Eull < IT — S|

ueH:||u||=1

for any T, S € B(k; ® H; ko ® H). Tt is easy to check that (2.3) defines the inverse
of EH;kl,kz- ]

Now, let M be a von Neumann algebra acting on H.

Observe that if Eﬁ;lkl’kz(S) € B(k;; ko) ® M for some S € B(H; B(ki; k, ® H)),
then for all ¢ € ki, d € ky the operator u — E?S(u)c = EdEg;lkl’kz(S)Ecu is an
element of M.

Set

B(H: HS(ky: k2 ® H))u := {S € B(H; HS(ki: ko ® H)): ESS()e € M Veerydeks -

We identify HS(kq; ko ® H) with HS(ky:ky) ® H via isometric isomorphism

given by the following prescription
ld ®@u) (c| = |d) {c|®u

for all u € H, ¢ € ky and d € k,.
For § € B(H; HS(k;; ko ® H))m define an operator St € B(H; HS(k,; ky ® H))m by

Stu = (U & Iy)(Su) for all u € H,
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where U: HS(ky; ko) — HS(ky: ky) is the transpose, that is, U: A > A"

For simplicity denote
Mat(M, H)x, k, := {T € B(ki: ko) @ M: Vyen TE, € HS(kisko @ H)} . (2.4)

Definition 2.1.5. The partial transpose is the (unique) assignment ": 7 +— T'T

which makes the following diagram commutative:

E-L
H:ko K o
Mat(M, H); i “—— B(H; HS(kas ki ® H))w
"T—TT S+ St
Mat(M, H)y, x, B(H; HS(k;; ko ® H))wm
H:ky,ko

where En.x, ks Mat(M, H)y, x, = B(H; HS(k;; ko ® H))wm is the bijective linear map
defined by (2.2) with the inverse satisfying (2.3).

The operator TT is then called the partial transpose of T.
The corresponding conjugation operation for T € Mat(M, H)y, k, is defined as

follows
T¢:=(T")" € B(ki;k2) ® M. (2.5)

Remark 2.1.6. Note that the transpose of the adjoint might be not well-defined,
but if for T € Mat(M, H),, x, its adjoint T* € Mat(M, H)y, .k, then T¢ = (T*)T.

It is easy to see that (H ® X)T = H*® X for X € M and H € HS(k;;k;). In

particular, for all ¢ € k we have |¢)' = |¢)' = (€] and so (¢|" = [¢).

Lemma 2.1.7. Let T € Mat(M, H)xc. Then, for all ¢ €k,

TE. = E°T". (2.6)
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Proof. Now, for all u, v € H we have that
(u, E°TT (v))
( X u, TT(U))
- <c ®u, E; C k((EH;k,(C(T))T)(U)>
=(c
=(c

® u, (Eni,e(T))71)(v)1)
@ u, (U ® In)(TE,)1) .

By applying the definition of the transpose we arrive at

(€ ®u, (U In)(TE,)1)
= (1 ®u, TEyc)
=(1
= {

Qu,T(c ®v))
u, TE.(v)).
O
Lemma 2.1.8. If T € B(h:k ® ) then
T*E, = E°T". (2.7)

for all ¢ € k.

Proof. First observe that if T € B(h; k ® h) then T € Mat(M, H)c k. Therefore,

(u, ES(TT)*v)
={c®u, (TT)*v)
=(TT(c ®u),v)
(Tu,v ® c)
=
=

u, T*(v ® ¢))
u, TE v) .
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2.2 The CCR algebra

In this section we briefly discuss the theory of the CCR algebra. For more details
we recommend the reader consult the books [27], [83].

Let V be a real vector space equipped with a non-degenerate symplectic form
o, that is, 0: V x V — R is a bilinear form which is skew symmetric and non-

degenerate:
e o(u,v) =—o(v,u), forallu, veV,
o if o(u,v) =0 for all u € V then v = 0.

From now we will refer to the pair (V, o) as a symplectic space. Let (V1,07) and
(V2,02) be symplectic spaces, we call a map T:V; — V5 symplectic if it is real
linear and

02(Tu, Tv) = o1(u,v) for all u,v € V7. (2.8)

Relation (2.8) implies the injectivity of 7. Thus, if T is a surjective symplecitc
map then it is bijective. We call a surjective symplectic map T:V — V a sym-

plectic automorphism.

Definition 2.2.1. The CCR algebra CCR(V, o) is the C*-algebra generated by

elements {w,:u € V} satisfying
o W,W, = e_i"(”’”)wu+v forallu,veV,
o w, =w_,, forallueV.

Theorem 2.2.2 (Slawny). For any symplectic space (V, o) the C*-algebra CCR(V, o)

exists and it is unique up to isomorphism.

For the proof we refer the reader to [83, Theorem 2.1, p. 10].

If V"= H, where H is a complex Hilbert space, and 0 = Im (-, -) then the Weyl
operators on I'(H) defined in (1.2) give us a representation of CCR(H, Im (-, -))
and moreover the vacuum vector which is cyclic for this representation induces
the state ¢ on the algebra such that ¢(w,) = e~zluI* for all u € H. This
representation is called the Fock representation and the state is called the Fock

state.
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We abbreviate CCR(V, o) to CCR(V) if V is a real subspace of the complex
Hilbert space H and o is the imaginary part of the inner product on H.
A state ¢ on CCR(V, 0) is called a quasifree state if there exists a symmetric

positive bilinear form a:V x ¥V — R such that
o(wy) = e~ 2200 for all y € V.
If V' is a complex subspace of H then ¢ is called gauge invariant if
a(zu,zu) = a(u,u)

forallu € V and z € {w € C: |w| = 1}.

Theorem 2.2.3. Let (V',0') be a symplectic space, where V' is a real dense
subspace of a complex Hilbert space H'. The Bogoliubov transformation induced

by a symplectic map Q:V — V' is a *~monomorphism
®y: CCR(V,0) — CCR(V',0"), wy > wou
for allu € V. It induces a representation wg of CCR(V,0) on I'(H') satisfying
7o (W) = Wo(Qu)

and a quasifree state
o) = e~ H1OWT

for allu eV.

For the proof we refer the reader to [27, Theorem 5.2.8, p. 94].

Quasifree states via representation

Set H := L2(R4; k), where k is a separable complex Hilbert space. The conjuga-
tion j induces the conjugation J: L2(Ry: k) — L2(R4;k) such that

(J)@) = j(f@®) = f() forall f e L*Rysk).
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We use the following real-linear “doubling map” t: L2(R4;k) — L2*(Ry:k @ k)
defined by setting
f
L = 2-9
) ( g (2.9)

Example 2.2.4 (Gauge-invariant quasifree states). Let T be a positive self-
adjoint operator on L?(R,;k). Set V = Dom(T) and note that

o _[VTFT 0
T 0 JTJ*

for all f € L?2(Ry;k).

(2.10)

is also a positive self-adjoint operator with dense domain
DomX7 := spanct(V) C L2(Ry: k @ k).
Note that, for all f, ge V

(Zre(f). Zre(g))
< JI+T2f ) ( JT ¥ T2g )>

—JTf —JTg
(I +T?fg)+(Te.Tf)
=(f.8) +2Re(Tf, Tg).

Thus if 0 = Im (-, ) then X7t is symplectic and, furthermore, the map
ws.7: CCR(V) — B(F®), ws > Wo(Sri(f)) (2.11)

defines a representation of CCR(V') on F k®k  The corresponding vacuum vector

Q induces the gauge-invariant quasifree state ¢ such that
p(wys) = (Q, Wo(Zre(f)RQ) = e HIEH NP = VTR |

forall feV.
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Example 2.2.5 (Squeezed states). Let ®o be a Boguliubov transformation
induced by a symplectic automorphism Q of V := Dom(T). Since in our case
L*(R; k) is separable, Thereom 2.5, Corollary 2.6 and Corollary 2.8 in [55] give
the polar decomposition of Q, that is

Q = U cosh(D)|y + UK sinh(D)]|y, (2.12)

where U is a unitary operator on L?(R,;k), K is an antilinear involution on
L?>(Ry; k) (thatis, K = K* = K~') and D is self-adjoint and positive. Moreover,
this decomposition is unique in the sense of [55, Theorem 2.5 (e), p. 4296]. To
see more relations between U, D, K and Q we refer the reader to |55, Theorem
2.5,

Now note that X7 o010 Q = X7 o, where

. { VT + T2U cosh (D) —+/T + T2UK sinh (D)J* } (213)
T,0 = . .

—JT UK sinh (D) JTU cosh (D)J*

The map X7,0t is symplectic as a composition of two symplectic maps, and the
map

w510 CCR(V) = B(F®X), wy > Wo(Sr,0t(f)) (2.14)
defines a representation of CCR(V) on F kek,
The corresponding ‘squeezed’ quasifree state on CCR(V') has the form

o(wys) 1= (Q, Wo(Sr,0t(F)R) = o3Iz on|” = S IVTFRTZer |

for all f e V.

The duality theorem

Now we briefly discuss the duality theorem for the CCR algebra. We generate
a von Neumann algebra and its commutant starting from different subalgebras
of the CCR algebra which acts on the symmetric Fock space. Tomita—Takesaki
modular theory shows how to establish a connection between the von Neumann

algebra M and its commutant M’, through the modular conjugation Jg, that is,
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JeMJe = M’ provided that M admits a cyclic and separating vector & ([90,
Theorem 1.19, p. 13]).

Let K be a complex Hilbert space, and let the non-degenerate symplectic form
o be the imaginary part of the inner product on K. We consider CCR(K) which is
generated by the elements {Wy(u): u € K}, in particular it acts on the Fock space
I'(K). For a subspace Kq of K, we write CCR(Ky) for the subalgebra of CCR(K)
generated by {Wp(u):u € Ko}. If Kq is a real subspace of K such that Ko 4 iKq
is dense in K, then the vacuum vector Q is cyclic for CCR(Ky) (|83, Proposition
7.7 p. 65]).

We denote the von Neumann algebra (CCR(Kp))” by Mk,. The vacuum vector
Q is cyclic for Mk, as long as, we assume that Ko 4 1Ky is dense in K. Set K; to

be the symplectic complement of Hy, that is,
Ki:={u € KiVyek, o(v,u) =0}.

It is easy to see that K; = iKg, where L is the orthogonal complement with
respect to the real part of the inner product on K (|83, p. 66]). Using the property
(1.4) we observe that Wy(u)Wy(v) = Wo(v)Wo(u) for all u € Ko, v € Ky, and so

MK1 C Mi(o.

To obtain the equality we have to assume that Ky NiKg = {0} and use Tomita—

Takesaki modular theory. Therefore, let us state the duality theorem:;

Theorem 2.2.6. [83, Theorem 7.8, p. 66]. Let Ko be a closed real subspace of
K such that Ko + iKg is dense in K and Ko NiKy = {0}. Then M’KO = MiKOL.

Moreover, the vacuum vector 2 is cyclic and separating for both Mk, and My, .

We also refer the reader to the original article [11], the proof of [83, Theorem
7.8, p. 66| comes from [41].
For next two examples let us fix K := L2(R4: k @ k).

Example 2.2.7 (Gauge-invariant case). Let /: L2(Ry:k) — L2(Ry:k @ k) be
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the map

(= [ _IJ* } (2.15)

According to Example 2.2.4, define a closed operator

Y= 0 T (2.16)
T JJ1+T27* 0 '

with dense domain
DomX} := spanct/(J V) C K.

One can show that
e Rant¢ + iRant = K, Ran: NiRan¢ = {0}, and
e Ran! + iRan! = K, Ran/ NiRant = {0}.

For the proof we refer the reader to [67, Lemma 4.4, p. 15]).
Set

o Ko :=clX7t(V), which is the closure of the range of the operator

JI+T2
—JT ’

o Ky :=clX}/(JV), which is the closure of the range of the operator

T
|:J«/I+T2 }

If T is injective then T has dense range (|76, p. 231]) and so both X7 and X’
have dense ranges, moreover Ky + iKy is dense in K, and Ky NiKy = {0}. In

particular, we get that
Ky = iKj.

40



2. Quasifree stochastic calculus

Hence we can apply Theorem 2.2.6 and obtain a von Neumann algebra

N3 := (CCR(Ko))" = (z,7 (CCR(V)))" (2.17)
which acts on the Hilbert space F k@E, and its commutant

N§ = (CCR(K1))" = (5,7 (CCR(J V)))"

both having €2 as a cyclic and separating vector.

Example 2.2.8 (Squeezed case). Now, we use the duality theorem for the case
where the input is the operators from Example 2.2.5. Similarly to the preceding

example, we define a closed operator

;L —T UK sinh(D)J* T U cosh(D) (2.18)
L2 ™ JJT + T2U cosh(D)J* —J~/T + T2UK sinh(D) '

on the dense domain
DomX7 4 := spanct'(JV) C K,

where U, K, D are obtained from the polar decomposition (2.12). Set

o Ko :=clX7,0t(V), which is the closure of the range of the operator

1 + T?U(cosh(D) — K sinh(D))
JT U(cosh(D) — K sinh(D)) ’

o Ky :=cl Z/T,QL/(J V), which is the closure of the range of the operator

—T U(cosh(D) + K sinh(D))J*
JA/I + T?U(cosh(D) + K sinh(D))J*

If ¥7,0 has a dense range (e.g., when D is bounded [67, Example (Squeezed
states)|) then Ko 4 1K is dense in K, and Ko NiKy = {0}. Moreover, we get

K, = iKg.
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Hence, we can apply Theorem 2.2.6 to obtain a von Neumann algebra

Ny := (CCR(Ko))" = (n5,7,0(CCR(V)))" (2.19)
which acts on the Hilbert space F k®k and its commutant

N§ = (CCR(K1))" = (5,7 (CCR(J V)))"

both having €2 as a cyclic and separating vector.

In |67, p. 12-19], [68, p. 3-5] authors has established the general conditions for

the operators ¥ and ¥’ to generate von Neumann algebras
Ns = (Wo(Zu(f)): f € V)", Ng=W(EVWIS): feV).

For further calculations the following lemma will be helpful;

Lemma 2.2.9. Let f € V be such that /(Jf) € Dom(X*Y’), where ¥ and ¥’
are either, X7 and X7 or 7,9 and E’T’Q, respectively defined in Fxamples 2.2./,
2.2.5, 2.2.8 and 2.2.7. Then

JRKI(S* S/ (Jf)) = —S*S(Jf),

where

o JOk 2R, :k® k) = L2(Ry:k @ k) is the conjugation, that is,
T f)@) = F@) for all f € L’Ry:k@ k),
o II: L2(Ry:k d k) > L2(Ry: k@ k) is a direct-sum flip, i.e.

M(g®h)=hdg foralg, heL*Ryi:k).

For the proof we refer the reader to [68, Lemma 1.2].
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2.3 Quasifree stochastic analysis

Before we start to discuss quasifree stochastic analysis, we have to add a piece of
notation and make a few assumptions for the operators X7 defined in (2.10) and
Y710 given by (2.13).

Notation 2.3.1. For simplicity let us use the following notation.
e Henceforth, X is of the form X7 and X7, as in Examples 2.2.4 and 2.2.5.
e Similarly, ' is of the form X7 and X7 5 as in Examples 2.2.8 and 2.2.7.

e We will consider only the case when ¥ and ¥’ are bounded operators, in
other words T', Q and D € B(L?*(Ry;k)).

o Let W(f) :=Wo(Zou(f)) and W/(f) := Wo(X' o/ (Jf)) for every function
f € Lz(R+, k)

e Instead (/(Jf) we will write simply ¢(f), when this expression follows the
operator X', that is, we will write X't(f) instead of X'//(Jf).

We would like to be able to write

(X)) = Z:(f(0) (2.20)

for all f € L2(R4:k), for some family of operators (Z;);s0 on k @ k. For this to
hold we will need some conditions on the operators in Example 2.2.4 and 2.2.5.

The natural assumption is delivered by the following theorem.

Theorem 2.3.2. Let A € B(L*(R,; k). There exists a strongly measurable func-
tion B:Ry — B(k); t — B; such that

(Af)(1) = B(f(1)) (2.21)

for each t > 0, if and only if A commutes with My € B(L*(R4:k)) for all
g € L*Ry), where (Mg f)(2) = g(t) f(1).

For the proof we refer the reader to [89, Theorem 7.10, p. 259|.
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Remark 2.3.3. The condition which says that A commutes with M, € B(L*(Ry;k))
for all g € L*°(Ry), could be written more simply as A € (D ® Clk)/, where D
(often called the diagonal algebra) stands for the von Neumann algebra L*(R.),

elements of which act as multiplication operators on L?(R).

Theorem 2.3.2 let us changed the technical conditions assumed in [67, p. 17]
or [68, Proposition 1.3] to obtain X of the form (2.20). However, it was possible
since we assumed that ¥ is a bounded operator.

Further in this chapter we will be abusing notation by writing Xy for (X*),,
and X; ® Iy instead of (¥ ® Iy), for each t € R, where H is a Hilbert space.

Quasifree integrals

Stochastic integrals for the representation of CCR algebras were studied in [57, 13|
and recently in [67, 68]. Here, we discuss quasifree integrals defined as in [68].
Let A be a von Neumann algebra acting on a Hilbert space h, and let us denote
M:= A ® N, where N is {Wo(Z71(f)): f € L>(Ry:k)}”, as defined in (2.17), or
Wo(Zr.0t(f)): f € LA(Ry; k)Y, as in (2.19). .
For each t € Ry, let M, := A ® N;, where

N = {W(f): f € p:(L*(Ry;k))}". (2.22)
and p, € B(L*(Ry4;k)) is the projection given by f + flo.r).

Definition 2.3.4. A (bounded) X-quasifree process on b is a family of bounded
linear operators X = (X;);>o such that X, € M, for all € R;.

Definition 2.3.5 (Quasifree integrand). A quasifree integrand on b is a family

of linear operators F' = (F;);>¢, such that

K, M,
FE=|""""1, (2.23)
L, 0

where, for each t € R,

e K, e M,
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o M, € M(M, Fx®), . that is, M, € B(k;C) ®M and

M,E, € HS(k; h ® F*®) for all x € h @ F¥&K,

L4 Lt € B(C, k) ®m M7
and
o> Ku®Q) €Ll (Rish®F<®) forallu € b,

o« zifi> (ﬁ?&%) € L2, (Ry; (k@ k) ® b ® F¥@K) for all u € b.

Remark 2.3.6. Let Z: L3 (R ; (kdk) ®h®F @) — h® F*®k denote the abstract
It6 integral (Definition 1.2.10). The inclusion map from the space of all vacuum
adapted square-integrable functions (Definition 1.2.8) L3 (R4 (k B k) @ h® Fkek)
to L2(R,; (k ® k) ® h ® F*®) is denoted by V.

Definition 2.3.7 (Quasifree integral). Let F = ([Ilf; M )eso be a quasifree in-
tegrand on b, the Z-quasifree integral AZ(F):h @ NQ — h ® F&K is defined
by

AF(F)u®X'Q) = (I,®X) (7?(2“’)) +L(Vg(E® IW@E)VQ)(Z“’)) , (2.24)

L Q
where zt(o) =K, (uQ®Q), Zt(l) _ ( (u® Q) )

MT(u®Q)
Note that AZ(F) has a bounded extension.

Remark 2.3.8. For the quasifree integrand F from the preceding definition we

define quasifree time, annihilation and creation integrals by

o TP(K):=AZ ([ KO’ 0]), where

0
K, 0O
Ft - ,
0 O
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o AZ(M):=AF ([5™M]), where

0 M,
Fl’: ! )
0 O

]), where

Lo
oo

o APF(L):=AZ ([

respectively.
Caution: In quasifree stochastic calculus there is no number integral. For more
details we refer the reader to [68, Remark and Lemma 7.5, p. 21].

To draw the analogy between quantum stochastic analysis and quasifree stochas-

tic analysis we state three fundamental statemants.

Theorem 2.3.9 (First Fundamental Formula). Let F be a quasifree integrand
on b of the form (2.23). Then

(v W (HQUAT(F)(v® W (2)RQ))

=/ <E/’L(\h)(s) RuR W (f)Q.(Zs ® g rier) ([:L;T] (ve® W’(g)sz))> ds
0

s

forallu,v ey, f and g € L>(Ry; k), where h = f — g and S, =Ic DI,
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Proof. Let u, v € b, f and g € L>(R4;k). Then

(u® W' (f)Q AZ(F)(v® W' (g)RQ))
=(u®@ W (=W (. Ti(Kv® Q))

. Q
+ < & W OW (N2 TVE(E® fygpan) Vo) ( e ) >
: [0,7)

— [eo w2 Koo W) ds
0

! I I ! LS( ®Q)
+/o <z (f = 8)(S) @ W (=)W' (/)R (S5 ® Iy ruer) ( MJZt ® Q) >> .

~ [T =00 018 w2 hom (| & |08 WD) 05

A

The outline of the proof can be found in [68, Proposition 4.1]; here we give a

more detailed version for reader’s convenience. O

The bridge between quantum stochastic and quasifree calculus is the following

corollary of the First Fundamental Formula.

Corollary 2.3.10. Let F be a quasifree integrand on b of the form (2.23). Then
AE(F) = A(FP) on h@N'Q,

where

K, | M, L] |(ZF ® I g rer)

]
! (Et &® I@@]:k@?) I:]\s;'r] 0

(2.25)

—

is defined onk ®k ® h @ FkOk,

Proof. In |68] this corollary is a consequence of Explicit Formulae 68, Proposition
4.3], we derive it directly from the First Fundamental Formula.
First note that for any f € L?(R,;k) we have

W (f)Q = e 2T g3 (f)).
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For simplicity let ¢(¥/, f) :=e =3I NI,
Ifu,vebh,and f, g € L>(Ry; k) then we obtain

(u® W' ()2 A(F) (v @ W (g)Q)
—e(T f)e(=.g) / <u ® (S /). EXDOFIE —  (v® e(zA’L(g))> ds

u W (), EWfﬂs)FDEEf(\)( e W/(g)Q))> ds

- [0 (4 ® W), Koo ® W(9)2))) ds
+ [ e w(ne E¥ OO, @ g e [ 4 | 0@ W) ds
0
[ e WL M LT (58 Lo pmen) B v © W(©)2) ds

0

Lemmas 2.1.7 and 2.2.9 yield that

[ M, L] |(Z Iy g reai) Exri(g)(s)

=[ LT M, |Enq su@)s)
_ pOMI(E T u(g)() [ Ly ]
_ L

:EE/L(_g)(S)(Es b2 In@]—‘kEBE) [1\125'] ’

where IT: L2(Ry: k @ k) = L2(R4:; k @ k) is a direct-sum flip.

Therefore

/ (u QW (L, K;(v @ W (g)Q)))
(0@ W'(/)2 EZPO(E, @ g o) 1 | 0 ® W(9)2))) ds
+

- [(Fho oue (192,66 hope ([ £ Joowon) o
0 s

=W (f)QUAZ(F)v® W (g)RQ)).

(we W(NHR.[ M, LT (55 ® g pe) Esun® & W (©)R) ds

/\hé\
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2. Quasifree stochastic calculus

]

An immediate consequence of Z being an isometry and the triangle inequality

is the following fundamental estimate for quasifree calculus (|68, Proposition 4.1]).

Proposition 2.3.11 (Fundamental Estimate). For all u € b we have

F

IAFF) @@ ) < IT O+ (5@ fgnan (F )

L Q
where zt(o) = K,(uQ®Q), Zt(l) _ ( (U ® Q) )

MT(u®Q)

Corollary 2.3.10 and Second Fundamental Formula for QS (Theorem 1.2.18)
yields the following result.

Theorem 2.3.12 (Second Fundamental Formula). Let F = ([ IZ; Ag’])t>0 and

G = ([1;,; ]X’ ])z>0 be quasifree integrands on . Then

(AZ(F)u® W ()R).AF(G)(v® W (g)RQ))

- <E/’a<\h><s) ® AS(F)u ® W/(/)2), Sy & 1) ([ﬂ v W/(g)m)) ds
0

N

~[leen ([ & oewmnn) Sibo e aens we) i
0 s
- <<§s ® 1)([ A’Lj] v ® W/(f)sz)),Ak@k(is ® 1)([ }f](v ® W’(gm))}ds

for allu, v € b, f and g € L>(Ry;k), where h = f —g, I = I g rvax and

Aror = [g Ik(é;] R1ecBkdk®h® Fkok),

For more details including the proof we refer the reader to |68, Theorem 4.5].
The QF integral consists of time, annihilation and creation integrals, thus

according to the Second Fundamental Formula, the correction term may vary for

different combinations of coefficients of the integrand.
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2. Quasifree stochastic calculus

K, M, _ ([R N .
Example 2.3.13. Let F = ([L,t o ])t>0 and G = ([ P, 0[])90 be quasifree
integrands on h. By applying the Second Fundamental Formula to

(AF(M)u ® Q, AT (N)v ® Q)

we obtain that the correction term equals to

[beatmomn@ e anden(bloed)
:/Ot <v ® QoM (TI5, ® 1)([N°ST](U ® Q))>ds.

Let X be the covariance from Example 2.2.4 then we obtain

[beawwiesen([&]esw))s
= /Ot pb®QMPT(iT?*(s)j* ® I)N, (v ® Q) ds.

for all u, v € b.

For simplicity we denote (dAtE, dA,E) = (A?(M)u Q W'(f), AZ(N)v ® W’(g)).
When ¥ is taken to be the one from Example 2.2.4 then the correction term is
of type jT?(¢)j*dt.

We have nine different possibilities, four of them might be non-zero, depending

on the covariance operator X. Let XY, be of the form

55, = 5, = [ a(t) B) }

y() 8@)

for some a(t) € B(k), B(t) € B(k: k), y(t) € B(k. k), §(t) € B(k), t € Ry.
Analogous to the procedure in Example 1.2.19, we present all non-zero cor-

rection terms in the quantum It6 table underneath.
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2. Quasifree stochastic calculus

the correction term
(dAF,dAZ) 8(r)de
<dA?,dA?E> y(1)dt
<dA72,dA}E> a(t)d
<dAfj,dAF> B(t)dr

Table 2.1: Quantum Ito6 table.

In particular, if ¥ = X7, where X7 is as in Examples 2.2.4 then:

the correction term
(d4F. A7) JT2(t)j*dt
(dA?,dA?E> 0
<dA:E,dAf$> (I + T?)(t)dt
<dAfE,dA§> 0

For more details we recommend the reader consult [68, Corollary 4.6 and

Example 1, p. 13].

Quasifree-SDEs and X-quasifree cocycles

This section is based on [68], a recent development by Lindsay and Margetts .
Let F be a quasifree integrand on h of the form (2.23) and let T € B(h). We
say that a bounded X-quasifree process X = (X;);>0 on b is a weak solution of

the (left) quasifree stochastic differential equation

dX, = X, F; dAZ, Xo =T ® L e, (2.26)
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2. Quasifree stochastic calculus

where f, = I; ® X;, if it satisfies

(v ® W'(£)Q. (X — Xo)(v @ Q))
:/ <§Z\(f)(s) Qu W (f), X, ((/E\s ®1I) ([5} (v Q)))> ds,
0 s

for all, u, v € h and f € L2(Ry;k), where X, = I@ ® X;.
We call the solution strong if XF = ()/(\' +F¢)t>0 is a quasifree integrand on b.
We abbreviate a quasifree stochastic differential equation to Qf-SDE.

Proposition 2.3.14. Let F be a quasifree integrand on by of the form (2.23). If a
bounded operator process X = (X;)t=o such that each X; € M s a strong solution
(Definition 1.2.21) of the QSDE

dX; = X, F2dA,, Xo=T & Inen, (2.27)

with F given by (2.25), then X is a strong solution the Qf-SDE (2.26).

Proof. First note that XF is a quasifree integrand on h. Next, by Corollary
2.3.10 we obtain that X satisfies weakly the Qf-SDE (2.26). ]

The existence and the uniqueness of the strong solution of the Qf-SDE (2.26)
is obtained in a similar way as it was done for QSDEs, Remark 1.2.23. For more
details we refer the reader to [68, Theorem 6.1].

Definition 2.3.15 (X-quasifree cocycles). A left X-quasifree cocycle on a Hilbert
space b is a QS cocycle (Definition 1.2.24) X = (X;);>0, where X; € M, for each
t e R;.

Assumption. From now until the end of the thesis we make the following as-

sumption on X.

A. Covariance X is time-constant, that is,
Y=1Ir,)®Z, (2.28)

where Z € Bk @ k).
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2. Quasifree stochastic calculus

Proposition 2.3.16. Let X be a unique strong solution of the Qf-SDE
dXt = A/X\vt(F ® I]:kGBE) dAtE, XO - Iﬁ@]:k@ia

then X is a X-quasifree cocycle.
For the proof we refer the reader to [68, Lemma 7.1].

Theorem 2.3.17. Let X be a Markov-reqular contraction X-quasifree cocycle.
Then X is a strong solution of the Qf-SDFE

dX; = X((F ® Lner) AT, Xo = I g ror.

—

where F = - € ®k®bh). Furt ermore, the following statements are
here F I]f OL* Bk ® k ®b). Furth he foll

equivalent.
e X is a unitary cocycle.
e X s an isometry cocycle.

o There exists a self-adjoint operator H € B(h) such that
. 1 *
K =—iH — 5[ L —LT |, ®Z2*2)[ L. ].

For more details including the proof we refer the reader to |68, Theorem
7.9]. An immediate consequence of Proposition 2.3.14, Proposition 2.3.16 and

the preceding theorem is the following.

Corollary 2.3.18. Let F = [ X L™ for some self-adjoint operator K € B(h)
and L € B(h;h ® k). If a bounded operator process X = (X;);>o satisfies strongly
the QSDE

dX[ == Z(FD &® I]:k@?) dAt’ XO = Ih®]:k®i’ (229)
with
K —[L* -LT [(Z*®]
FO ) [ lz* e 1) (2.30)
(Z® Iy [ 5] 0
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2. Quasifree stochastic calculus

and |
K =—iH — 5[ L* LT |, ® 2*Z)[ L]

for some self-adjoint operator H € B(h), then X is a unitary X-quasifree cocycle.
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Chapter 3

Quantum random walk

approximation

Quantum random-walk approximation to Markov regular QS cocycles is discussed
in this chapter. As well as the mathematical description, we provide the reader
with some physical interpretations, based on repeated quantum interactions in-
troduced in [9] and studied by many others, e.g. [5], [6], [28], [38], [10] and [29].
Our convention here is slightly different than the one in Chapter 2; the generators
of cocycles are operators on h ® k rather than on k ® h. However this does not
make a difference since in Chapter 2 we could employ tensor flips to deal with
the space b ®/k\, but, it is more elegant not to use too many tensor flips. We start
by introducing the discrete version of Fock space F* on which random walks will

be defined.

3.1 Random walk convergence

Toy Fock space

The toy Fock space, introduced by J. L. Journé ([77, p. 18]), is a discrete model
for quantum stochastic calculus on F*. For more details on the topic we refer the

reader to [16] (Fock space setting) and [4] (Fock—Guichardet space setting).
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3. Quantum random walks

Let k be a separable Hilbert space with distinguished unit vector ey, and let
k := Ee(Ceo ={x € k: (y,x) =0 for all y € Cep}.

Definition 3.1.1. Toy Fock space over k is the countable tensor product

Tk = ®/k\(n)

n=>0

with respect to the stabilising sequence (€@) := €g)n>0, Where ’k\(,,) = k for each
n; the subscript (n) indicates the relevant copy.
For all n € N let

n—1 00
1r = ke and T, == &) kom. (3.1)
m=0 m=n

where T(l)‘) := C. For natural numbers n, k such that n > k let

n—1 n
T[I;c’n) = ® k(n) and T(kk,n] = ® k(n). (3.2)
m=k m=k+1

The identity T};) ® T[l}c m ® T = Tk is the analogue of the continuous tensor-

product structure of the symmetric Fock space.

Remark 3.1.2. Let 7 > O and set I, , := [hn, h(n+1)) for all n € N. We identify
Fock space F* and F*" := & ]—";h . by the following isometric isomorphism:

n=0

Fe— 7N () > Qe fl,,): (33)

n=>0

where the tensor product is taken with respect to the stabilising sequence (27, ,, )n>o0-
To embed toy Fock space over k into F* let us define the following map.

Definition 3.1.3. Let & > 0. For all n € N define the natural isometry

~ o 1
Ty k= Flunnns 1y’ ( . ) = Q2 h(n+1) T Ecl[hn,h(nm)- (3.4)
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3. Quantum random walks

This gives an isometric embedding

Ini=Q) Iy Tk — Fp. (3.5)
n>0
Note that JFe(f) = @ fa(m), where f,(m) = + [RED f @y,

m=0

Proposition 3.1.4. As h — 0% the projection J,Ji,* converges strongly to I z«.

For the proof we refer the reader to [16, Theorem 2.1].

Approximation theorem

The main aim of this section is to give a simple proof of the random walk ap-
proximation theorem for the Markov regular QS cocycles. Similar approximation
theorem for mapping cocycles (quantum flows) can be found in the literature,
e.g. |86, Theorem 3.3| or [17, Theorem 7.6, p. 431].

Similarly to the preceding section, we will be using a separable Hilbert space

k with a distinguished unit vector eg, and k will stand for k := k 6 Cey.

Definition 3.1.5. Let G € B(h ® k), n € N and k € {1,...,n}. The ampliation
of G to B(h ® k®") in the k-th place is the operator G,E”) € B(h ® k®") that

<u ® X xi.G" (v ®yi>> =WRx.Guy)) [[(xi.y). (3.6
i=1 i=1 i#k

That is, G,E") acts as G on the tensor product of h with the k-th copy of k and

G,E") acts as the identity on the other n — 1 components of ke

Definition 3.1.6. If 7 > 0 and G € B(h ®/|;) then the embedded quantum random

walk with generator G and step size h is the operator process (XtG’h)t>0 such that

Ih@fﬁ),oo) forn =0,
XtG’h = n—1 n—1 *
(I,, ® ® J,f) G"...GM" (Ih ® ® J,f) ® I for n > 1
k=0 k=0 [nh.00) ( >
3.7

ift € [nh,(n + 1)h), for allt € Ry.
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3. Quantum random walks

Before we can write a statement of a random-walk approximation theorem we

will need a few technicalities.

Definition 3.1.7. If A > 0 and G € B(h ® ’l;) then the modification m(G, h) is
defined by setting

m(G, h) = (%AL + A) (G — Iigp) (%AL + A) ,

where AL = I ® |eo) {eo| and A := Tyoi — AL,

Remark 3.1.8. Note that A defined above coincides with the one defined in
(1.11). In particular, if G = [é g] for A € B(h), B € B(h®k;h), C € B(h; h®k)
and D € B(h ® k) then

1oa_ 1
m(G,h):|:h(A b 758 }

7C D=l

Definition 3.1.9. Let n e N and x¢,x2,...,X, € k. We define a map
Ex1®xz®...®xn:b —> f) ® k®n by EX1®X2®...®xnu = U ® X1 ® X2 ® . ® Xn

and denote its adjoint by E*1®¥2®..®xn

Lemma 3.1.10. If G, H € B(h ® k) then

Ex1®x2G§2)H2(2)Ey1®yz = EY'GEy E”HE), (3.8)
and
Ex'®x2G§2)H1(2)Ey1®yz = EGE,,E"" HE), (3.9)

for all xy, x5, y1, y2 € k.

Proof. First note that

Ex oxt =u®@x; ® X3
=FEu®x;
=(Ex, @ I)E,u.
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3. Quantum random walks

and so

Ex1®x2 = (EX1 X I’k\)Exzv
E¥1®2 = E2(E¥ ® I). (3.10)

By applying (3.10) we obtain

EX®2GPHPE, g,
= E2(EY @ )G HYP (E,y, ® R)E,,.

Then
E¥(EY @ )G HP(Ey, ® [)E,,
= EX(E"G ® [)H (E,, ® I)E,,
and since
HP(Ey, ® I) = (Ey, ® [)H,”
we obtain

E*(E¥G ® I)H(E,, ® [E,,
= E®(EY'GE,, ® I)HE,,.

Now note that for any A € B(h) the following holds
E*(A® I;) = AE™,
therefore

E*(E¥GE,y, ® I)HE,,
= E¥GE, E®HE,,,

and hence,
EN®2GOHPE o = EXGE, E¥HE,,.
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3. Quantum random walks

To show that (3.9) holds we start by applying (3.10)

Exl@xz G§2) Hl(Z)Ey1®yz
=E7(E" ® )G HP (Ey, ® L)Ey,

Now observe that (E*! ® I}) Géz) = G(E* ® I}), because G;z) acts as an identity
on the first copy of E, and so

Ex2(Exl ® Ii)Géz)HfZ)(Em ® ]E)Eyz
—E®G(E" ® I)HP(E,, ® I)E,,.

Furthermore,
Hl(z)(E)/l ® IE)Eyz = H(Eyz ® IE)HEyl

where IT € B(h ® k® E) is given by
Nu®y®x) =u®x®y
for all x, y € k. Therefore,

E¥*G(E" @ ) HP(E,, ® I)E,,
—E®G(E™ @ I)TI(E,, ® I;)HE,,,

Note that (E*' ® I)II(E,, ® It) = E,, E*' and hence,

E¥G(E™ @ I)n(E,, ® ) HE,, = EXGE,, EX' HE,,

Lemma 3.1.11. If G € B(h ®/k\) then
E¥1® 8 L GWE o ey, = EX'GE,, --- EX"GE,, (3.11)

forall xy, ..., Xn, Y1, --+, Yn e k.

Proof. We proceed by induction on n. For n = 2 the condition is satisfied by the
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3. Quantum random walks

preceding lemma. Assume (3.11) holds for n. Now we show the inductive step

X1 @ ®xp®xpt1 7+ ~(n+1) ~(n+1)
E e Gl Gn Gn+1 Ey1®---®yn®yn+1

= E¥ 1 (E¥1®7® @ [)(G" @ [) (G ® )GV (Ey g0y, ® I) Ey,
= E™ (EX@'“@X"GY)‘”G;S") ® IE) GIAY (Eyig@yn ® 1) Ey,y

= EnH! (Exl@"@x”an) e Gr(ln)EYI®"'®J’n ® Iﬁ) GEy”“

= EXN®®uG" . GWE, 6.y, E" GE
= E¥IGE,, - E*"GE,, E*"+GE

Yn+1

Yn+1-°

]

The next theorem is a main result of this section. It is a special case of a
quantum analogue of Donsker’s invariant principle proved in [17, Theorem 7.6,

p. 431], however we give a new more elementary proof.

Theorem 3.1.12. Let G: (0,00) — B(h ® k), and let F € B(h ® k) be such that

h—07t

m(G(h),h) "= F (3.12)

m norm.
If f, g € L2(Ry; k) are right-continuous step functions and T € R, then

lim  sup “E‘“’(f H(XEP - XT) Euy| =0, (3.13)

h—07 te[0,T]

where X = (X[F) is the Markov-reqular QS cocycle with generator F.

Proof. Observe that
E® = E¥ (A + @A) and E~ = (A +aA)Es

for each @ € C and x € k.

For each x, y € k denote by (P;"”),>o the associated semigroup of the cocycle
XF.
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3. Quantum random walks

Now, let t € Ry, let ¢, d € k and let h > 0. Then ¢ € [nh, (n + 1)h) for some
n € N and

(E”CG(h)E@)
= (E«/ZC (G(h) — Ih®f<\) E@ =+ Ih +h (C, d) Ih)

n

= (E/f;(\/mL + A)m(G(h), h)(VhA*T + AVE = + Iy + h {c.d) Ih)
— (Ef(\/EAL + VhA)(F + o)) (VhAT + VRA)E; + Iy + h (e, d) Ih)"

~ n
_ (zh +h (ECFEJ ¥ (e, d) Ih) + o(h))
h—0t ~
2) exp {z(ECFEg + (e, d) Ib)} :
where the convergence holds in norm due to Proposition A.0.9 (Euler’s exponen-

tial formula).

According to Proposition 1.2.30 we arrive at
exp {t(E‘A’FEg + (e, d) Ih)} — p&e

and hence,

/f; - " c,d +
(E G(h)Eﬁd) — P ash — 07", (3.14)

Let f, g be right-continuous step functions and let {0 =ty <t; <... <t <
tx+1 =t} for some k € N, contain the discontinuities of fo ) and gpo,s). Let [; be
such that

hl; <t; <hl;+h fori=0,....,k+1.

In particular,

hn = ]’llk+1 Kt=1try1 < ]’llk+1 + h

SO lg11 = n.

See the figure below:

0 I 1) Ik Ikt
—f—t—f—f—Fo—f—F——F—F—F+ot+—Fo—+to—
h hlq hily hl hiy hn
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By applying Lemma 3.1.11 we obtain

EE(f)XtG(h)’hEe‘(g)
n—1 _~_
® fu(m) .
= (e(fihn.o0)s €(€Mhno)) En=0" G - G(h)¢ >Enél —
m=0gh m

_ 0 . ESD .
- (g(f[hn,oo)), E(g[hn,oo))) E h G(h)Egh(O) E h G(h)th(n—l).

The functions f and g are constant on
(hl; + h,hli4q) C (8, tigq1) fori =0,...,k,

SO

n—1 o k o — liy1—1i—1
Jn(J) = Jn(i) o Vhf) -

H}E GWE 5 = IIE GE (E G(h)Eﬁg(t,-)) '

Jj= 1=

Now, for all i=0, ..., k

1 h(l;+1) N
li:—/ s)ds -0 ash—0T,
Ju(l;) i Ju S(s)

because f is a step function, so bounded and similarly for g.

Moreover, observe that

E°G(h) Ey = E°(G(h) — I gp) E5 + 1y
= hE°m(G(h). h) E5 + I

— Iy ash—0".

Hence,

Falli) _ +
E G(h)Egh(l,-) — Iy, ash—0".

Furthermore, by (3.14),

f\ li+1—1i—1
EVH @) G(ME —— N Pf(tl),g(ti),
( ) Vhe ;) ‘i

63



3. Quantum random walks

where 7; ~ h(l;11 —[; — 1), but
h(li_H —1; — 1) = hli_H —hl; —h — tiy1—t; as h— 0"

and so T; = tit+1 — 1;.

Hence,
BN xSWhp
h—0t o).t e
5 (6 (fir.o0)» £(8lr.00))) PEE) | p S ti)e (0
F
- (S(f[t"’o))’ g(g[”w)» Es(f[o’l))Xt Ea(g[o,z))
:EE(f)XtF Ee(g)~

To see that this convergence is uniform for all ¢+ € [0, T], where T > 0 is
arbitrary, suppose first that ¢t € [T}, T3] for some Ty, T, € [0,T], and f, g are

constant on (T, T]. From the previous working

Ea(f)XzG(h)’hES(g)

k — —_— li_l,_l—l,'—l

— Jn(i) o Vhf(t) I
~ (oo et ) [ EPDGOE ) (EHOGUE )
(3.15)

where nh <t < (n + 1)h and the [; are as we previously used in the proof. As ¢
varies in (77, T»], since t > t;, the last point of discontinuity, only two terms in
(3.15) vary:

o (efinmon): £(8mo) = exp [z (£(5). () ds) exp ([7F (f(s).8(5)) ds)

and

—_ n—Ix—1
Ex/ﬁf(tk)G h EA) )
* ( () Vheg (1)

Note that, the integers lo,..., [y do not depend on ¢, but lx+; = n does. Thus

convergence is uniform on (77, 73] if

7> 1>
exp ( / 00 ds) S exp ( / (£(5).8(5)) ds) (3.16)
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3. Quantum random walks

and

JhFan) Y Ft),8 @)
(E G(h)Eﬁg(tk)) = P, (3.17)

uniformly in ¢.
Condition (3.17) holds by Proposition A.0.9 (Euler’s exponential formula).
To show (3.16) first note that

I (£(5). g()) ds— [ (f(s). g(s)) ds
< (=) floollglloo < 2lf loolig oo

(3.18)

where | fllooc = sup;ep, [f(D)]-
Now let z € C and {z;:h € (0,00)} C C be such that z;, — z as h — 07. We take

d > 0 such that |z,| < |z| + 1 whenever 0 < h < §. By using a similar argument
to the one in the proof of Lemma A.0.7 we obtain that if 0 < 4 < § then

|exp(zp) — exp(2)| < |z — z]e?!* 1, (3.19)

Hence, we show that (3.16) holds by combining (3.18) and (3.19).

Finally, we can write [0, T'] as
{0y U (0, T1JU (T, To] U ... U (Ty—1, Ty]

where f and g are constant on (7, T;41] fori = 0,...,n — 1. Since convergence

is uniform on each of the interval, it is uniform on the whole [0, T']. O

Next two lemmas will tell us when we can have a stronger convergence than

the one in Theorem 3.1.12, that is, the convergence in equation (3.13).

Lemma 3.1.13. Let Hy and H, be Hilbert spaces, let D be a total subset of Hy
and let T > 0. If{X;:t € [0,T]} and {Y,(h): h>0,t €[0,T]} are bounded subsets
of B(Hy ® Hy) such that

lim sup ||Ec(Yt(h) —X)Eq|| =0
h—0% tefo,T]
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3. Quantum random walks

for all c,d € D then

lim sup ‘<u, (Yt(h) — X,)v)) =0
h—07% tefo,T]

for all u,v € H; ® H,

Proof. If x, y € Hy and ¢, d € D then

sup |(x @ e (1~ x) (v 2 )
t€[0,T]
h
<Ixllyl sup [ESY, — X)Eq|
t€l0,T]
-0 ash —0t.

It follows immediately that

lim sup ‘(91, (Y,(h) — X,)92>
h—>0e[0,T]

=0

for all 91, 92 € H1 @D
Let u and v € H; ® H, and let (u,) and (v,) be sequences in H; ® D such that

lup, —u|| >0 and |jv, —v|| > 0 as n — oo.

Since sup (|| X|| + ||Y,(h))|| < o0 we obtain
t€[0,T]

sup )(u DA Xt)”)‘
t€l0,T]

< sup {‘(M — Un, (Yt(h) - Xt)v - Un>
t€l0,T]

+ Ku — Uy, (Y,(h) — X,)v,,>

+ ’(un (Yt(h) - X)v — vn>

!

h h
< s[upﬂ{||u—un||||v—vn||<||Y,( 1+ 1D+ o = wa Y+ XD
t€lo,

+ )<u,, ¥ ® _ X,)v,,>

h h
ARV A N DAY NCACED ATH

—0 ash—> 0" and n — co.
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]

Lemma 3.1.14. Let T > 0. If (Yth)te[O,T] is a family of contractions in B(H) for
all h > 0 and (X;)reo,11 s a family of isometries in B(H) such that t — X,u is
continuous for all u € H, and

lim sup ’<u v — Xt)v>‘ — 0, for allu,v € H, (3.20)

h—07 tef0,T]

then

lim sup H(Y,(h) — X,)uH — 0, for allu € H.
h—07 sef0,T]

Proof. Fixu e Hand T > 0.

If X is is an isometry and Y is an contraction then

(X — Y )ul?
=((X = Y)u, (X —Y)u)
=[lull® + 1Y ull® = (Xu, Yu) — (Yu, Xu)
=|lu|®> + |Yull* = (Xu, (Y — X)u) — (Xu, Xu) — (Y — X)u, Xu) — (Xu, Xu)
=|Yul|® — |Jul|* + 2Re (X — Y)u, Xu)
<2Re ((X — Y)u, Xu)
L2 {((X = Y)u, Xu)|.

Then

sup H(Y,(h)—Xt)u‘ <2 sup K(Xt—Y,(h))u,X,uH.
t€f0,T] t€l0,T]

As t — Xu is continuous on R, it is uniformly continuous on [0, T'].
If s, t €[0,T] then

(X — Yy, Xu
( )

<[ = v = x| + (X = ¥ X

<2Jull (X = Xoull + |{C = ¥,y Xou)|
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Givene >0let 0=ty <t, <...<t, =T be such that

&
X —Xu|| < ———
I = Xl < iy

if t € [tj,tijzq], fori =0,...,n—1. Then

sup )<(X, — Yt(h))u, X,u>‘
t€l[0,T]

2(ulle "
2fJufl + 1 Xe =Y, Xy, >‘
T2 u + 1 03’131}{_1 )<( t rou, Xyu

<6+ max K(X,—Y,(h))u,X,iuH

o<isn—1

—e as h — 0.

As ¢ is arbitrary, the result follows. O]

In [80, Theorem 4.1] Parthasarathy showed that the Markov-regular unitary
QS cocycle can be obtained as a limit (in the sense of Definition on p. 156 in
[80]) of quantum random walks (defined in [80, equation (4.3), p. 161]). However,
the theorem was proved under the assumption that the initial space h = C. The
random walk generator used in the next example is taken to be of a similar form
to the one considered on p. 163 in [80], but b is an arbitrary Hilbert space finite

or infinte-dimensional.

Example 3.1.15 (Toy Weyl generator). Take

e 0 (I — L*L)? LW
X(H,L,W):= . ] 3en
0 e Hel L (I—-LL*)*W

where L € B(h; h ® k) has norm less or equal 1, W € B(h ® k) is an isometry and
H € B(b) is self-adjoint. Note that X(H, L, W) is an isometry.
For h > 0 set G(h) := X(hH,vhL, W) and denote

—iH —1L*L —L*W
F = : (3.22)
L W—1

By Theorem 1.2.34 we know that the Markov-regular QS cocycle generated by
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F, that is, X T is a family of isometries.
Observe that

m(G(h), h)

_ ﬁl 0 I —ihH + o(h) 0
0 I 0 I —ihH ® I + o(h)

—LhL*L + o(h) —vhL*W 1o il 0

VhL W —IhLL*W + o(h) 0 I 0 I
| I—=iH —3hL*L +0(1) —L*W +0(1)
B L+ o(1) W —1+o0(1)

—F ash—0".

=

Therefore Theorem 3.1.12 together with Lemma 3.1.13 and Lemma 3.1.14 imply
that, if 0 €e h ® F* and T € R, then

lim  sup H (X" - xF) 9“ —0.
h—07F sef0,T]

Random walk products

The results presented in this section concerns the product of random walks.

Theorem 3.1.16. Let
G1:(0.00) > B(h ® k). Gy:(0.00) — B(h @ k).

and let F; € B(h ® /k\), F,eBbh® /k\) be such that

—0 h—o0t

mG (). 1) "2 F and m(Gy().h) "2 Fy

m norm.

If f, g € L2(Ry; k) are right-continuous step functions and T € R, then
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i |7 (8 37 | =0
—> €[o0,

where X = (XF) is the Markov-reqular QS cocycle with generator
F = F1 + F2 + FlAFz.

PTOOf. We claim that n’I(Gl(h)Gz(h),h) — F1 + F2 + FlAFz.
The key step of the proof is the following observation

ab—1=@-1Hb-1)4+a—-1+b—-1,

for any elements a, b of a unital Banach algebra.
Thus,

m(G1(h)G2(h). h)

= (LAL + A) (G1(h)Ga(h) —1I) (LAl + A)

Vh Vh
(L a2 _ o LaL
_(\/EA +A) (Gy(h) — T)(Ga(h) I)(\/EA +A)+m(G1(h),h)

+ m(Ga(h), h).

Furthermore,

(%AL + A) (G1(h) — I)(Ga(h) = I) (%Al + A)

=m(Gy(h), h)(hA+ + Aym(G,(h). h)
=m(G1(h), h)Am(Go(h), h) + hm(G,(h), h) A*m(Ga(h), h).

Therefore,

—0

+
m(Gy(h)Ga(h).h) "= Fi + F, + FLAF,.

We finish the proof by applying Theorem 3.1.12. O
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Definition 3.1.17. We say that the operators Fy, F, € B(h ® @) commute on
the initial space b if and only if for all xy, x5, y1, v2 € K the following holds

EMFE, EPRE, = EXFRE, E*"FE,,. (3.23)
Corollary 3.1.18. Let
G1:(0.00) = B(h ® k). G2:(0.00) — B(h ® k),

and let Fy, F, € B(h ® E) be such that

h—07t

mGy (). 1) "2 Fy and m(Ga). 1) "2 Fy

m norm.
If Gy (h) and G,(h) commute on the initial space by for all h > O then

lim sup | ED (XS @hx P08 xF) g =0,

h—07% tef0,T]

for all right-continuous step functions f, g € L*(Ry:k) and T € Ry ,where
= (X[F) is the Markov-reqular QS cocycle with generator

F = F1 + F2 + FlAFz.

Proof. First we show that X'y GW-h — y GrGahh y 145 if and only if
G1(h) and G,(h) commute on the initial space. Since J}i‘ is an isometry for any
k € N it is sufficient to show that G;(h) and G,(h) commute on the initial space
if and only if

(”)(h) (”)(h)G(n)(h) . (n) (h) (n)(h)G(n)(h) . (n)(h)G(ﬂ) (h)
(3.24)
for alln € N, where Gl("J) (h), for I € {1,2}, is the ampliation of G;(h) to B(h®’k\®”)
in the j-th place. Now we show that the equation (3.24) implies that G;(h) and
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G, (h) commute on the initial space. Note that (3.24) yields the equality
GGy = GHG5.
By applying Lemma 3.1.10 we obtain that
EX®R G (NG5 Ey 0y, = E¥ Go(h) Ey, EZ Gy (h) Ey,.
On the other hand
E¥®2 G (MG (1) Ey 0y, = E¥Gi(h) Ey, E¥ Gy (W) E,,

due to the equation (3.9). Therefore, G;(h) and G,(h) commute on the initial
space. Application of Lemma 3.1.10 and the induction on n delivers that the
equation (3.24) holds if Gy(h) and G,(h) commute on the initial space.

Finally, to finish the proof we apply Theorem 3.1.16. O]

Proposition 3.1.19. Let X1, X2 be Markov-reqular QS cocycles generated by
Fi, F, € B(h ®E), respectively. If Fi and F, commute on the initial space by then
(X,F1 Xth)t>0 15 a QS cocycle with generator Fy + F, + F1AF,.

Proof. Assume that F; and F, commute on the initial space h. Let h > 0.
Define

Gi(h) := hAYFiAY + VALY FIA + VEAF A + AYFA* + 1,
Go(h) := hATF AL + VEALFA + VEAF A + ATF A + 1.

Then m(Gy(h),h) — F; and m(G,(h),h) — F, in norm as h — 07. It is easy to
see that G(h) and G,(h) commute on the initial space h. Thus,

XtG'(h)’hX,Gz(h)’h — XtGl(h)GZ(h)’h.

By applying, e.g., quantum Donsker’s invariance principle, that is, Theorem 7.6
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p. 27 in [16], we obtain that

lim H (X,Gl(h)’h _ X,Fl) (U ® & f))H — 0 and

h—0t
lim_| (X7~ x2) @ e(f)] =0

h—0+

for all u € h and f € L?(Ry;k). Observe that

(@ e(f), X1 PROM 0 @ e(g))
=(u®e(/), XD XD @ o(g)))

=((x5ON @ e(£). X2 @ o(g))
h—
2w e(). XX 0 © £(6)
for all u, v € h and f, g € L?2(R4; k). On the other hand, by Corollary 3.1.18,

(1@ o(f). X7 PP 0 @ e(g))) > [u @ o(f). X7 (v @ ().

where F = F; + F, + F1{AF,. Therefore, due to the uniqueness of the limit
(XtF1 Xth)@O is the Markov-regular QS cocycle with generator Fy + F, + F1AF,.
O

Remark 3.1.20. Instead of using the quantum Donsker’s invariance principle in
the proof of the preceding proposition, we could use our convergence results if we
assume that the cocycles X1, X2 consist of isometries.

Let XF1| X2 be isometric Markov-regular QS cocycles and assume that F;
and F, commute on the initial space h. By Theorem 1.2.34 we know that F;
and F, are of the form (3.22) for some Ly, L, € B(h; h ® k), isometries Wy, W, €
B(h ® k) and self-adjoint Hy, H, € B(h). Now, set

Gi(h) := X(hHy, VhL,,Wy) and Ga(h) := X(hHy, NhLy, Ws)

as in Example 3.1.15. Thus, G(h) and G,(h) commute on the initial space b.
Example 3.1.15 yields that X°'®”" — xJ' and X,Gz(h)’h — X2 in strong op-
erator topology as h — 07. Analogously to the proof of the preceding proposition
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we obtain that (XtF1 X,Fz)t>0 is a Markov-regular QS cocycle with generator
Fi1 + F, + FIAF,.

We may also consider infinite products. The next lemma is a simple tool
which will be used to obtain a non-trivial limit when we take an arbitrary large

number of generators.
Lemma 3.1.21. For any d € C the following holds
n k
) n d d
nlgrolokZ_;(k) (;) =e’—1—d.

Proof. By virtue of the binomial theorem we obtain

B0 - (£

— lim (1+g) —1—-d=¢%-1-4d.
n

n—o00

O

Proposition 3.1.22. Let G = [é g] for some A € B(h), B € B(h ® k:b),
C e B(h:h ®k), D € B(h®@k). For alln € N let G,: (0,00) — B(h ® k) satisfy

G
m(Gu(h). 1)) — —

in norm as h — 0. If f, g € L>(Ry; k) are (right-continuous) step functions
in L2(Ry;k) and T € Ry then

lim lim sup ”Ee(f (x5O XT) B
n—>00 h—0% se[0,T]

=0,
where X = (X[F) is the Markov-reqular QS cocycle with generator

P A+ Bexp,(D)C Bexp;(D)
exp;(D)C exp(D)—1 |’

n—1 n—2
where exp;(D) := Zn>1 DT, exp, (D) := Zn>2 P

n!
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Proof. First note that induction yields

n k—1
m(Ga(h)' h) = Y (Z)% (A%)

k=1

in norm as h — 0%. Now, observe that for any k € N

GAG...AG =
~————_—

G appears k-times

(7)o (s8)”
e ()] e =]

Le s L@ % L7

in norm.

BD*2C BD*!
Dk—IC Dk :

Therefore,

S| Q

The previous lemma gives us the following norm convergence

o > (Z)nika re exp(D)—1 — D,
k=2

M=

(M) L DF " exp (D) — 1

k=2

n n—>00
o Y (Z)nika_2 — exp,(D).
k=2

@ EER LY

nsoo|  Bexp,(D)C  Bexp,(D)—1)
| (expy(D)—1)C exp(D)—1—-D |

We arrive at
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Hence,

m(Gu(h)", h) — [ A+ Bexpy(D)C Bexp, (D) }

exp,(D)C exp(D) —1

in norm, as & — 0% and n — oo.

We end the proof by applying Proposition 1.2.29.

3.2 Open quantum systems

Let Hqs be a Hilbert space and let Hgs € B(Hgys) be self-adjoint. We refer to
the pair S = (Hgys, Hsys) as a quantum system; we call Hqgys a state space for
S and Hss a Hamiltonian for S (it describes the dynamics of the system §).
We say that S is an open quantum system if it is coupled to another quantum
system B = (Heny, Heny), which we call the environment, and interacts with it.
We may view S as a triple (Hgys, Hsys, @sys), if the quantum system § is considered
to be in the normal state weys: B(Hsys) — C (an ultraweakly continuous positive
linear functional of norm 1). If the open quantum system S interacts with the
environment B, then the Hilbert space of the total system S + B is given by
Hsys ® Heny. The Hamiltonian Hi(f) of S + B may be taken to be of the form

Htot(t) = Hsys X IHem, + IHsys &® Henv + Hint(t),

where Hin(t) € B(Hsys ® Heny) is the Hamiltonian describing the interaction be-
tween the system S and the environment B at time ¢. The evolution of the total

system is given by a differential equation

dy, )
d_tt = i (1)U(2).

For more details we refer the reader to [30, 3.1.3 Dynamics of open systems,
p. 115].
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(Hsys ® Henva Htot(t)’ wsys @ wenv)

(Hsys s Hsys ’ wsys)

(Henv’ Henv» wenv)

Figure 3.1: Interaction of the open quantum system S with the environment B
at time 7.

We will be exploiting the above model further in this chapter, but before let

us formulate some important technicalities.

Lemma 3.2.1. Ifa, b and ¢ are elements of a Banach algebra and h > 0 then
exp (@ + Vhb + he) = exp (@)+Vh f (@ b)+h(f(a,)+g(a. b)+o(h) as h — 0*,

where
o) 1 n—1
. _ J n—1—j
f(x.y) = Zﬂ! > xlyx
n= j=0

and

IIMN

—2—j
Z x]yxkyxn—?a—j—k.
k=0

2015
gx.y): Zn—

For the proof use a definition of the exponential function in Banach algebras

(it is defined via power series) and then group the terms according to h.

Lemma 3.2.2. Let
G(h) := exp (A + vhB + hC), (3.25)
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where A, B, C € B(h ®E) We obtain that

—0t

m(G(h), h) e AT (f(A,C) + g(A, B)AT + AT f(A, B)A + Af(A, B)A*
+ A(exp A —1)A

i norm, if and only if
At(exp(A) — 1) =0 = (exp(4) — )AL and AL f(A,B)AT =0. (3.27)

Proof. By Lemma 3.2.1, the modification m(G(h), h) equals to the sum of F and

the reminder term

lAJ‘(eXp (4) — AT + LAL(exp (A) — 1A

h vh
+%A(exp (A) — AL + %AL]‘(A, B)A* + o(h).

Hence, m(G(h), h) converges as claimed if and only if A+(exp(4) — )ALt =0
and
At(exp (A) — DA + Aexp (A) — AT + AL f(A, B)ALT =0,
by considering the associated block matrices, the second identity holds if and only
if
At(exp (A) — I)A = A(exp (A) — )ALt = AL (A, B)AL = 0.
m

Lemma 3.2.3. Let G(h) be defined as in Lemma 3.2.2. If A*A =0 = AAL and
A+BAL =0 then

h—o0t | n n
m(G(h),h) = AL(C + Bexp,(A)B)AL + ALBexp,(A)A

+ Aexp;(A)BAL + Alexp A —I)A

= F
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wm norm, where

1 |-
expy(A4) := Z;A” U and exp,(A) := ZEA 2,

n>1 n>2

Proof. Assume that A*A4 = 0 = AAL. Then the first condition in (3.27) holds

and the second one becomes
A+BAL =0.

Furthermore,
o AL f(A, B) = At Bexp,(A),
o f(A, B)AL = exp,(A)BA*L,
e Atg(A, B)At = AL Bexp,(A)BA*L,
o ALf(A,C)AL = ALCAL,
Hence,
F = AY(C+Bexp,y,(A)B) AT+ AL B exp,(A) A+ A exp,(A) BAT+A(exp A—T)A.

(3.28)
0

An immediate consequence from the preceding lemma is the following corol-

lary:

Corollary 3.2.4. Assume that G(h) is as in Lemma 3.2.2. If A = 0 then we
obtain

1
F=At (c - 5Bz) A+ + ATBA + ABA*.
If instead we assume that B =0 and ATA =0 = AAL then

F = AtCAt + A(exp A —T)A.
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Repeated interactions

Let k be a separable Hilbert space with a distinguished unit vector eg. In this
section we discuss the repeated quantum interactions, during short time intervals
of length h, between the open quantum system S = (b, Hsys) with the environ-
ment B, which is given by an infinite chain of identical quantum systems. The
coupled system S + B is called a repeated interaction quantum system. The model
of repeated quantum interactions was introduced by Attal and Pautrat in |9] and
investigated in many others articles, e.g. [5], [6], [5], [38], [28], [29] and [10]. Let
P = (/IE, Hpar) be a typical element of the infinite chain B. Thus the Toy Fock
space T(’k\) is the state space for B. The system S interacts first with P during

the time interval [0, &) for some small 4 > 0, according to the total Hamiltonian
Htot(h) = Hsys ® I’k\ + Ih ® Hpar + A‘hHinta (329)

where H;,. € B(h ® E) is the interaction Hamiltonian and A, > 0 represents the
strength of interaction depending on h. Then the system S stops interacting
with P and starts with the next particle, again for a period of length h. This

procedure is continued for one particle after another, and so on.

S = (h’ Hsys)

interaction: Ay Hint

environment: B

— p| P |P | P |P|P

Figure 3.2: A repeated interaction system.

The unitary operator representing the evolution during the time of length h
is given by
U(h) = e_ithot(h).

Let n € N. To describe the sequence of interactions, we consider the unitary
operator U (h),(cn)7 which is the ampliation of U(h) to h ® k®" with the notation
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according to Definition 3.1.5. The coupled evolution during the time [0, hn) is
given by
Vb = UMY - Uh)".

Hence, the whole evolution is described by the family (V(h)n)nen. We will be
investigating the behaviour of the evolutions as A — 0%. To obtain a non-trivial
limit we have to scale the total Hamiltonian in terms of /& in a way that strengthens
the interaction. We consider three different scalings, one of order ~/i, another of
h, and the third combined. When k is finite dimensional, it was shown in [9] that
those scalings lead to the limits which are Markov-regular unitary QS cocycles.
Later this was generalised to infinite dimensional case, e.g. in [17]|. Similarly to
[9, IV.2 Typical Hamiltonian: weak coupling and low density |, below we present
all possible limits while different scaling is chosen. In contrast to the results in [9]
and [17], we also give the necessary and sufficient conditions on the interaction
Hamiltonian to obtain the limit. In contrast to [9], the continuous-time limit of
unitary evolutions are left QS cocycles, although due to Proposition 1.2.33 no

generality is lost.

Example 3.2.5 (Scaling of order /). First let us consider

1
Hioi(h) == Heys ® It + Iy ® Hpar + ﬁHint. (3.30)
Then the associated unitary evolution can be expressed as follows
U(h) := exp (—ihHo(h)) = exp (—i\/EH;nt +h (—iHsys ® Iy —ily ® Hpar)).
Lemma 3.2.3 and Corollary 3.2.4 imply that
AL S l 2 1
m(U(h),h) = — A~ | iHys ® It +ily @ Hpor + 2Hint A

—iAtH A —iAH AT = F (3.31)

in norm as & — 07T, if and only if AtH,, A+ = 0.

Set k := k 6 Cep, where ¢ is a distinguished unit vector in k. The condition
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AL+ H, ALt = 0 holds if and only if

0 L*
H;, = |: L D i| (3.32)

for some L € B(h; h ® k) and self-adjoint D € B(h ® k).
Thus, if H;,; has the matrix form (3.32) then

o [ i (Hays + eo. Hf,z,eo) I) - 3L°L —iOL* } | (3.33)
—1

Hence, to obtain the most general form of (3.33) it is sufficient to consider

interaction such that

0 L*
H; = |: L 0 i| (3.34)

for some L € B(h; h ® k). Observe that F satisfies the conditions in (1.23).

Therefore, Theorem 3.1.12 together with Lemma 3.1.13 and Lemma 3.1.14
yield that X ,U(h) A converges in the strong operator topology to the Markov-regular
unitary QS cocycle (X[);>o.

The interaction Hamiltonian given by (3.34) together with the scaling of order
Vh correspond to a so-called typical renormalised dipole Hamiltonian which is
often considered in the weak-coupling limit, also called the van Hove limit. Fur-
ther in the thesis we will give more details and references concerning this type of
the limit.

Example 3.2.6 (Scaling of order /). To exploit another possibility of scaling set

1
Htot(h) = Hsys ® I’k‘ + Ih ® Hpar + EHint fOl" aH h > 0. (335)

Furthermore,

U(h) := exp (—ihHyt(h)) = exp (—iH;nt + h (—iHsys ® I —ily ® Hpar)).
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Lemma 3.2.3 and Corollary 3.2.4 imply that if A+H, = Hine A+ = 0 then

m(U(h), h) — — AT (iHgys ® I; + i1y ® Hpar) AL + Afexp (—iHin) — 1)A

=:F ash— 0",

The condition At Hiyy = Hine A+ = 0 holds if and only if

0 0
Hin = |: 0 D i| (3.36)

for some self-adjoint D € B(h ® k). Therefore, if H;y; has the matrix form (3.36)
then

F = |: —i (HSys + (30, HpareO) Ih) 0 i|
0 e—iD -1 ’

and such F satisfies the conditions in (1.23).
We finish by applying Theorem 3.1.12, Lemma 3.1.13 and Lemma 3.1.14 to
obtain that X,U(h)’h converges in the strong operator topology to the Markov-

regular unitary QS cocycle (XF);=o.

The next example is a generalisation of |9, Theorem 19, p. 35|, however we
also give the necessary and sufficient conditions on the interaction Hamiltonian

to obtain the limit.

Example 3.2.7 (Combined limits). For the combined scaling let us consider
self-adjoint operators Hgys € B(h), Hpar € B(/lz),

1 1
Hioo(h) := Hys ® It + Iy @ Hpoe + —=H, . + —H,, forallh >0, (3.37)

\/E int h int

€ B(h @ k) and H”. € B(h ® k).

int

where H/

int

The associated unitary evolution is given by

U(h) : = exp (—ih Hr(h))
= eXp (—iH-N — IN/EHllnt + h (_iHsys &® I’|; - llh ® Hpar))-

int
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3. Quantum random walks

Hence, by Lemma 3.2.3 if

AtH' At =0and ATH' = H' At =0 (3.38)

int int int

then we have

m(U(h).h) — = A* (i (Heys ® Iz + Iy ® Hpar) + Hiy exp, (<1H;) Hy) A*
— 1AL H] expy (—iH,,) A —iA exp; (—1H],) H} A+
+ A(exp (—iHp,) — I)A
= F ash—0".

Note that conditions (3.38) hold if and only if

, 0 v+ , 0 0
H . = and H/, = (3.39)
vV C 0 D

for some V € B(h; h ® k) and self-adjoint operators C, D € B(h ® k). Therefore,
if H,, and H/, have the matrix form (3.39) then

P —i (Hgys + (€0, Hyareo) Iy) — V* exp,(—=iD)V  —iV* exp,(—iD)
B —iexp,(—iD)V exp(—iD)—1 |’
(3.40)

Hence, to obtain (3.40) it is sufficient to consider

, 0 v+
Hint:
V 0

for some V € B(h; h @ k) and H,’. of the form as in (3.39).

To show that F given by (3.40) generates a unitary Markov-regular QS cocy-

cle, according to Theorem 1.2.34 it is sufficient to show that it has a form

—iH —3L*L —L*W
F = (3.41)
L W—1
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3. Quantum random walks

for some L € B(h: h ® k), self-adjoint H € B(h), and unitary W € B(h ® k).
To do that, first note that L = —iexp,(—iD)V, W = exp(—iD).
Now, for each 0 # z € C we have exp,(z) = %(ez — 1) which implies that

exp,(z)e™® = %(ez — 1)e™® = exp;(—z). Thus, the holomorphic calculus yields

that
—L*W = —iV*exp,(iD) exp(—iD) = —iV™* exp,(—iD).

We have also
- 1, .
_EL L = _EV exp;(iD) exp,(—iD)V,
while the top-left entry of the matrix (3.40) containing V equals
—V™* exp,(—iD)V.

The last operator from the matrix (3.41) to determine is H. Note that simple
algebraic operations give us the following equalities
° —% exp; (ix) exp;(—ix) = ﬁ(% —1) = x—lz(cosx —1),

o —exp,(—ix) = xlz(e_ix +ix — 1) for each x € R\ {0}.

Now, observe that

1 . 1 1
—exp,(—ix) = ;(e_‘x +ix—1)= ;(cosx —-1) - i;(sinx — X),

x2n—l

and set sing(x) := ), (~1 et

Therefore,
H = Hy + (eo, Hpareo) Iy — iV * sing (D) V.

Hence, Theorem 3.1.12 together with Lemma 3.1.13 and Lemma 3.1.14 imply

that X tU(h)’h converges in strong operator topology to the Markov-regular unitary
QS cocycle (X[ )0

Remark 3.2.8. Note that the above example can be also obtained by Proposition
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3.1.22 if we take G, (h) such that its modification converges in norm to

G- —i (Hyys + (€0, Hopareo) Iy) —iV*
—iV —iD |’
Then
lim lim+m(U(h)”,h) =F
—0

n—oo p

in norm, where F is of the form (3.40).

The next example is a generalisation of [10, Theorem 3.1]. The physical
description which we discuss below comes from [10, 2 Description of the Bipartite
Model|, however in our case we don’t have to assume that the space of a single
particle is finite dimensional. In contrast to [10], to obtain a limit cocycle we
present a completely different technique than the one used in the proof of |10,
Theorem 3.1]. We show that [10, Theorem 3.1] can be obtained as a special case
of Proposition 3.1.16.

Example 3.2.9 (Bipartite model). Let §; = (hl,Hs(yls)) and S, = (hz,Hs(yzs))
be two quantum systems, and assume that they do not interact together. The
evolution of the quantum system S := §; 4+ S, with the state space h; ® b, is
therefore expressed by

Hyo=HY @ Iy, + I, ® H®

sys Sys *

Let b := bh; ® ho. Let S be coupled to the environment made of an infinite
chain of identical systems P = (E, Hp.r), which is represented by a state space
T(’k\) To describe the interaction between S and B, we use the quantum repeated
interactions model. Thus P interacts with S for a short time then stops, letting
the next to repeat the procedure, and so on. A single interaction between P
and S is described as follows; P interacts first with S during time & without
interacting with S,, then it stops and start interacting with system S, without
interacting with S; it happens for the length of time 4 and then stops. The
dynamics of the coupled system with the state space h ® k is described by the
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3. Quantum random walks

following Hamiltonians, for the first interaction we have

HY(h) := HY @ Iy, @ It + Iy @ Hpo + HY (1),

sys int

for the second one

HZ () =1, ® H® @ I + Iy, ® Hpar + HZ (h),

sys int

where Hp, € B(k) Hlﬁlt)(h) e Bh® E) acts on by as an identity operator Iy,,
I?t) (h) e B(h ® k) acts as Iy, on h;. Each total Hamiltonian yield the unitary
evolutions

: (1) . @
U](h) = e—Ithot (h) and Uz(h) = e_'thot (h)

The combined evolution of the single interaction between S and a particle is given
by
V(h) := Ux(h)Uy (h).

The sequence of interactions is described as before in quantum repreated interac-
tions, that is, we consider the sequence of unitary operators V(h),(cn), which is the
ampliation of V(h) to h ® k®" with the notation according to Definition 3.1.5.
The coupled evolution during the time [0, 2hn) is given by

W(hy, == V() -V ()W,

and so the whole evolution is described by the family (W(h),),>1. To investigate

the behaviour of the evolutions as & — 07, let us consider the following interaction

Hamiltonians:
1o L*
HD ) = H(l). b ’
|nt( ) \/}_l Int \/_ | L 0
1 [ o m*
H(z) ) = (2) :
|nt( ) \/}_l |nt \/E | M 0

for some L € B(h; h ® k) which acts on by as Iy, and M € B(bha; b, ® k) which
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acts on by as Iy,. Therefore, by (3.31) we obtain that

2
m(Ui(h), h) > — A+ (iHs(yls) ® Iy, & I +ily & Hyar + > () ) At
—iATHDA —iAHD A = Ry,

1 2
m(Ua(h), ) > — A% (ilho ® HY, ® I +ily ® Hyw + 5 (HyY) ) At

AATHPA AHPAL = F,

int int

in norm as &# — 0%. Note that

F:= F] + F2 + F2AF1 (342>
_ —i(HS) ® Iy, + (eo. Hpar(€0)) I) — 3L*L —L*
L 0
N —i(Iy, ® HZ) + (e, Hpar(€0)) Iy) — 3M*M —M*
M 0
[ —M*L 0
+
0 0

satisfies conditions (1.23).

Hence, Proposition 3.1.16 together with Lemma 3.1.13 and Lemma 3.1.14
yield that X ,UZ(h)U‘ "k onverges in the strong operator topology to the Markov-
regular unitary QS cocycle (XF);=0.

Now let us establish the result similar to [10, Theorem 3.2|, that is, we would
like to find a Hamiltonian on f)®I<\ according to which the usual repeated quantum
interactions (described at the beginning of Section 3.2) lead us to the unitary
cocycle generated by F given in (3.42). To do that we compare the generator
F with the one which is usually obtained during repeated quantum interactions
(Example 3.2.5), see (3.33) and (3.31). We will also be able to identity the
interaction Hamiltonian which has been created by the environment between S,
and S,.
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Observe that
—M L_E(M M+ L L)=§(L M-M L)—E(M-I—L) (L+ M).

Therefore we could obtain F by using the usual repeated quantum interaction

with the total Hamiltonian

1
HR ) = HDD © I+ 1, © 2+ —= (1Y + H).

where .
Hs(yls),(z) _ Hs(yls) ® Iy, + Iy, ® Hs(yzs) i % (L*M — M*L).
In particular, )
% (L*M — M*L)

represents the interaction by the environment between S; and S,.
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Chapter 4
Random walks and thermalisation

In this chapter section we will again be using the quantum repeated interactions
model. However we assume that an infinite chain of identical systems is such that
each system in the chain is in a normal faithful state w. An interesting example is
to consider the thermal Gibbs state at inverse temperature 8 given by the density
matrix

_lsHpar

1
= —— ,
PB = Ty (e PHomr)

however for pg to be well-defined we have to assume that e #Her is a trace
class operator. The zero-temperature case, refers to the repeated interactions
which we considered before. By employing the Gelfand-Naimark theorem we
will investigate the limits of unitary evolutions, which, in contrast to the zero
temperature case, depend on the given faithful normal state. The first results
regarding such limits are due to Attal and Joye [5], where the noise space is
assumed to be finite dimensional and the approach is coordinate dependent. It
was generalised to infinite dimensional noise space by Belton in [18|, where his
approach was coordinate free and mapping cocycles were mainly investigated.
Later, in [19] it was shown that the convergence result can be obtained even
with particles being in an arbitrary normal state. In our case the noise space is
infinite dimensional and the particle state is faithful and normal. We investigate
only operator processes. We obtain necessary and sufficient conditions on the

interaction Hamiltonians for the model to have a limit.
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4. Random walks and thermalisation

4.1 Thermal states

Concrete GNS representation

Let p be a density matrix which acts on a separable Hilbert space K, that is,
p >0, p? € HS(K), Trp =1

and assume that the corresponding normal state w: A — Tr(pA) is faithful. Fix

an orthonormal basis {en},]lvzo of K, where N € N or N = oo, such that

N
p = Zyn len) (enl (4-1)
n=0

where

N
ZVn=1, Yo=y1 =2 ...>0.
n=0

Assume that the eigenvalue yq is nondegenerate, so yo > y1.

The injective normal unital *-homomorphism

m:BK) = BK®K), n(T) =T Q Iy, (4.2)

N —
together with the vector £ = > /yn en ® €, € KQK give a GNS representation
n=

of (B(K),w); that is, w(A4) = (S?n(A)S) for all A € B(K).

Rotation

Here, we start with some important technicalities.
Let R € B(K ® K) be a unitary operator such that RE = ey ® &y and let
R:= Iy ® R be its ampliation.

Below we present an example of such a unitary operator.
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4. Random walks and thermalisation

Example 4.1.1 (Rotation R). Let

N
Y Jviei®e
~  i=0

&= Na=Ti (4.3)

Note that {eq®ey, 5} is an orthonormal set and § = aeg®eg+ g, where @ = /Yo
and B = /1 — y9. According to the orthogonal decomposition

K®R=@m@%@@?@((k@@%)ea(ceo@h)@((k@E)ecé'), (4.4)

where k := K © Cey, let

a B 0 0
- 00
R=| P © : (4.5)
0 0170
0 00 I

where I represents the appropriate identity operator.

It is easy to see that R is unitary and

=eg ® €.

S O ™ R
S O o =

We will always emphasize whenever we will be using the operator R from

Example 4.1.1 instead of a general R which satisfies the condition
Ré =€y R %

Unless otherwise specified, we will be using a general R.

Definition 4.1.2. If 4 > 0 and G € B(h ® K ® K) then the R-modification
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4. Random walks and thermalisation

mg(G, h) is defined by setting

mg(G,h) := (%AL + A) R(G — I ggr)R* (%AL + A) .

where At = I} ® |eo ® 20) (eo ® o] and A 1= [ gz — A™.

Remark 4.1.3. Note that if k = K ® K and its distinguished unit vector n =
eo ® e then A defined above coincides with the one defined in (1.11) and

mr(G,h) = m(RGR*, h),

Lemma 4.1.4. Let
G(h) := exp (A + VhB + hC), (4.6)

where A, B, C € B(h @ K® K). We obtain that

h—0T T~ ~e L
mg(G(h),h) — ATR(f(4,C) + g(4. B))R"A
+ALtRf(A, B)R*A + ARf(A, B)R* A+
+A(Rexp (A)R* — 1A
= F

i norm, if and only if
Ef(exp(A) — I)R* = 0 = R(exp(A) — I)E¢ and Eff(A,B)E; =0, (4.7)
where

o0 1 n—1 ' .
fXY):=>" — > xiyxrt
n'

j=0

n=1

and
[ee) 1 n—2n—2—j
o v vk —3—j—k
g(X,Y) = E;HE j k§ CXJYXKYy xRk
n= j=0 k=0

forall X, Y € B(h @ K® K).
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4. Random walks and thermalisation

Proof. Lemma 3.2.2 implies that

=0t 1 5 Sen L 15 =
mg(G(h),h) = ATR(f(A,C)+ g(A, B)R*At + A*Rf(A, B)R*A
+ARf(A, BYR* A+ + AR(exp A — I)R*A
=:F

in norm, if and only if

A*R(exp(A) — I)R* = 0 = R(exp(A) — I)R*A+ and A*Rf(A, B)R*A* = 0.

(4.8)
Now, note that the following holds:
o AR = (Iy ® leo ®2)) (Iy ® (§]) = Eeomg -,
o R*AL = (I ® |£)) (I ® (e ® &) = Eg E«0®%.
Hence, the condition (4.8) if and only if (4.7) is satisfied. O

Lemma 4.1.5. Let G(h) be defined as in the preceding lemma.
If E¥A = AE¢ = 0 and E* BE; = 0 then

h—>0F | ~ Ska L
mgr(G(h),h) — A~R(C 4 Bexp,(A)B)R*A

+ ATRBexp,(A)R*A + AR exp,(A) BR* A+

+ A(Rexp (A)R* — )A.

=F
m norm, where

1 n—1 1 n—2

exp;(4) = Z ;A and exp,(A) := Z ;A .

n>1 n>2

Proof. Assume that ES4 = AE; = 0. Then the first condition in (4.7) holds and
the second one becomes
E*BE; = 0.

Furthermore,
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e ALRf(A, B) = ALRB exp,(A),

e f(A, B)R*AL = exp,(A)BR* AL,

e ALRg(A, B)R*AL = ALRB exp,(A)BR*AL,
o ALRf(A,C)R*AL = ALRCR*AL,

where

1 |-
exp;(A) = Z;A” ' and exp,(4) := Z ;A” 2,

n>1 n>2

Hence,

F = AYR(C + Bexp,(A)B)R*A*+
+ AYRB exp,(A)R*A + ARexp,(A)BR*A*
+ A(Rexp (A)R* — I)A.

O

An immediate consequence from the preceding lemma is the following corol-

lary:

Corollary 4.1.6. Let G(h) be defined as in Lemma 4.1.4. If A = 0 then we

obtain
~ 1 ~ ~ ~ ~ ~
F = A'R (C + EBZ) R*A*+ + A*RBR*A + ARBR*A*.
If instead we assume that B =0 and ESA = AEg = 0 then

F = AYRCR*A* + A(Rexp (A)R* — A,

4.2 Limit cocycles

In this section we investigate repeated quantum interaction when each particle
from the infinite chain is in a faithful normal state w. We consider different scal-

ing of the interaction Hamiltonians and so the corresponding random walks will
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converge to unitary QS cocycles, whose noises depend on the state w. Example
4.2.6 is a generalisation of the main result obtained by Attal and Joye in [5],
Example 4.2.12 generalises the work by Dhahri [38].

Weak coupling limits

As we mentioned by the end of Example 3.2.5, the interaction Hamiltonian to-
gether with the scaling, which are exploited there, correspond to a so-called typ-
ical renormalised dipole Hamiltonian which is often considered in the weak cou-
pling limit (van Hove limit). The notion of weak coupling limit was first studied
by van Hove [91]. The mathematical picture comes from the series of articles by
Davies [36], [37]. Briefly, in the weak coupling limit we assume that the interac-
tion between a quantum system and the environment is such that the influence
of the system on the environment is small [30, 3.3.1 Weak - coupling Limit|. In
this section we scale the interaction Hamiltonian in the same way as in Example
3.2.5, therefore we expect that it will correspond to a dipole Hamiltonian.

To obtain a more general picture we start with ‘particle’ operators defined on
K®K, rather than ampliating the ones defined on K to K®K. However, having the
ampliation, which appears naturally in repeated quantum interactions, when each
particle from the infinite chain is in a faithful normal state w, will be discussed
in detail in 4.2.6.

According to (3.29) we take

1
Hiot(h) := Hgys @ Iygr + 1y @ Hpar + ﬁHint (4.9)

where k is replaced by K ® K, and so Hya: € B(K ® K) and Hiy € B(h ® K ® K).

The associated unitary evolution is naturally given by

U(h) = exp (—ih Hyoy(h)). (4.10)
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Lemma 4.1.6 yields

~ 1
mR(U(h), h) - — AJ'R (iHsys ® IK®R + llh X Hpar + EHiit

i (ALﬁHintE*A n AﬁHintE*AL) (4.11)

) R*AL

in norm as & — 0% if and only if

EfHy Ee = 0. (4.12)
Set
. 1Lnf: : 1 2 D* AL
Fi=— A*R(iHuys ® Iqgk +ily ® Hpar + S Hi ) RTA
—iAYRH, R*A —iARH R* A+ (4.13)

Lemma 4.2.1. The Markov-regular QS cocycle with stochastic generator F de-
fined in (4.13) is unitary.

Proof. We want to show that the condition (1.23) is satisfied, that is,
F+F*+FAF*=F + F*+ F*AF =0, (4.14)

Observe that
F+ F* = —A+*RH2 R*AL.

int

Now we obtain

FAF* =A+*RH, R*ARH; R* A+
—ALR (H.2 Hintﬁ*MﬁHmt) R*AL

int

=ALRH2 R*A* — AYRH E¢ E* Hy  R* AL,
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and hence

FAF* =AY*RH2 R*A* — E¥ Hy E¢ EX Hy E: ® |eo ® €5) (e0 ® &
N—
=0
=AtRH2 R*A*.

int

Similarly, F*AF = AYRH2 R*A' and thus (4.14) holds. O

int

Remark 4.2.2. Since the modification mg(U(h), h), where U(h) is given by
(4.10), converges in norm to F defined as in (4.13), as h — 07, we will still be
able to apply the random walk approximation theorem, that is, Theorem 3.1.12
(bearing in mind that k = K ® K and the distinguished unit vector n=-eo® ep)
together with Lemma 3.1.13 and Lemma 3.1.14 to obtain that

lim sup (X VP —xF)x| =0
h—07 tef0,T]

for all x € h @ FK®OCTw® 4nd T e R, , where (X[ );5¢ is the unitary Markov-
regular QS cocycle with generator F.

In [5, Proposition 8|, Attal and Joye show that the limit cocycle obtained via
their convergence theorem (|5, Theorem 7|) is quasifree (Definition 2.3.15), thus
the driving noises form a representation of the relevant CCR algebra.

However, in our case the limit cocycles are defined on h @ FK®KSCo®e rather
than on h ® F(k@@%)@(@e()@@’ where k := K & Ceg, how it was done in the
quasifree case. To solve this problem let us do the following; first observe that

we can decompose
KQK=Cokdk ®@k®k, wherek:=Keo Ce. (4.15)

Secondly, if the generator of the limit cocycle has the form

Fg F{ 0 B(h) B(Hh® (k&k);h) B(h®k®k;h)
F=|FFoo|€|B0:nekob) BOSKSK)  BOHRKSkH®(kSK) (4.16)
0 00 B(h;h®@k®k) B(hQ (k&k);h®k®k) B(h®k®k)

according to this decomposition, then we can think about F as an element of
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B(f) ® (C @ (ko E))) with the following matrix form:

Fo| o FR B(b) B(h® (ke k):h)
Ft oo Bh:he kaek) Bhe kok) |

Hence, we can see that the QS cocycle generated by such F will be defined on

the desired space.

Furthermore, let us state the following necessary and sufficient condition to

obtain the cocycle’s generator to be of the form (4.16);

Lemma 4.2.3. The operator F given by (4.13) has the form (4.16) if and only
if E®dRH; E¢ = 0 for all ¢, d € k.

Proof. First note that F has the form (4.16) if and only if
im (AﬁHintié*Al) Ch® kak).
Now, observe that im (AﬁHintﬁ*AL> C h® (k@ k) if and only if

(RHin) (6 ® CE) Cha (Ceo @7 @ (kB K)).

because

im(RAY) = h ® C¢ and A(h ® Cey ® 7) = {0}.

Moreover, (RHi)(h ® C£) C h® ((Ceo R ® Kk E)) if and only if
im(RHin Ee) L h® (k® k).
Hence the required necessary and sufficient condition is that
E®RHEe =0
for all ¢, d € k. O

Lemma 4.2.4. With R defined as in Example /.1.1 and Hyy self-adjoint, it holds

99



4. Random walks and thermalisation

that E* HywEs = 0 and EC®E§HintE§ =0 for all ¢,d € k if and only if

A4 -%4 Cc* D*
_a g 24 Gr _ap*
H., = P B , (4.17)
C G M N*
D —4D N P

where @« = /Yo, B = /1 — Y0, A, M, P are self-adjoint operators and B, C, D,
G, N are bounded operators defined according to the decomposition (4.4).

Proof. First assume that Hiy is of the form (4.17). Clearly,

(0 )

E*HE¢ = E* =0 and

E®RH,E; = E® = 0.
aC + BG
N0
Let
A B* C* D*
B E G* H*
Hy = , (4.18)

C G M N*

D H N P
where A, E, M, P are self-adjoint operators and B, C, D, G, H, N are bounded

operators defined according to the decomposition (4.4).
Now, if E®4 ﬁHintEg = 0 for all ¢, d € k then we obtain the following system of

equations to solve

—aBfA +a’B — B*B* + afE =0,
aD + BH = 0.
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By regrouping the terms and using the fact that E is self-adjoint we get

B = B*,
_ p_a
poas(P-%)n
o
H =—=D.
p

Therefore, we can write the interaction Hamiltonian as

A B c* D*
ﬂ o * o *
L | B A+(E—F)B G* —2D
int )
c G M N*
D —2p N P

where A, B, M, P are self-adjoint operators.
Moreover, if E¢ Hin Eg = 0 holds then we obtain that

:83

oa’A+afB +p*A+—B =0
(04

and since a? + 2 = 1 then
ﬁZ
A+,B(oz+—)B=0andso
o
o
B=——-A.
p

Hence, Hiy has the form (4.17). O

Let us summarise the results in this section by stating the following proposition:

Proposition 4.2.5. Let U(h) be a unitary operator defined as in (4.10) for all
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h > 0 and let R be the rotation from Example 4.1.1. It is sufficient to consider

C*
G*
0
0

Hyy = (4.19)

o O o o
o Q © o
o o o o

where C, G € B(h;h @ (k @ k)), instead of Hy defined in (4.17), to obtain that

lim sup [[(X 7P — x| =0
h—07 tef0,T]

forallx € h @ FKEKSCo®e 1y T ¢ Ry, where (X[ )i=o is the unitary Markov-

reqular QS cocycle with generator F of the form

FQ F° 0
F=|F 0o o[, (4.20)
0 0 0

where
F(? = — iI—Isys - 1(5’ Hpars) Ih
1
1 (%C"C + Vil =) (C°G + G*C) + (1 - )G
FO = _1(mc* +V1- VoG*) and
Ff ==i(VnC + VT=1G).

Proof. According to (4.11)
mg(U(h),h) = F

in norm, as & — 0%, where F is given by (4.13), if and only if
EfHy Es = 0.

Thus, if E$HmtEg = 0 then Theorem 3.1.12 together with Lemma 3.1.13 and
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Lemma 3.1.14 guarantee that

lim sup (X VP —xF)x| =0
h—0% t¢f0,T]

for all x € h @ FK&KOCeo®20 514 T € R,
By Lemma 4.2.3 we know that F is of the form (4.16) if and only if

E® RH,\ Eg = 0

for all ¢,d € k. By applying Lemma 4.2.4 we can write Hj, explicitly in the
matrix form (4.17). Now, let us calculate all non-zero entries of F which as we

know has the matrix form

F F? 0
F=|F5 0 o],
0 0 0

for some FY € B(h), F? € B(h ® (k@ k);h) and F," € B(h;: h @ (k @ k)).

Top left corner of the matrix is obtained as follows

o~ 1
F(;) = — Ee0®eOAJ_R (iHsys ® IK®R + llh ® Hpar + _H2

B int) E*AlEeo@%

= — iHsys - i(i—‘, Hpar$> Ih - %ESHiitEE
= — iHys —i{§, Hpuk) Iy

1 * * * *
=5 (0C*C + VT =10)(C*G + G*C) + (1 = )G*G).

Now let ¢,d € k, we arrive at

F—EEc—i-E
= —iEe0®%Al§Hintﬁ*AEc+g
= =i (VW€ + VT=1G") E.pq.
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Therefore,

FY = =i (ViC* + VT=7G")

Similarly, we get that F," = —i (\/%C + 1 - )/OG).

Hence, it was sufficient to consider H;,; of the form

0 0 C* 0
0 0 G* 0

Hi, = , (4.21)
C G 0 0
0 0 0 0

where C, G € B(h:h ® (k ® k)). O

The following example is the generalisation of |5, Theorem 7].

Example 4.2.6. Now, let us again consider a repeated quantum interactions
model. As we mentioned earlier, we assume that all the particles from an infinite
chain are in a normal faithful state w, induced by a density matrix p given by
(4.1). Therefore, we consider the same total Hamiltonian as in Example 3.2.5,

that is,

1
Htot(h) = Hsys ® Ik + Ib & Hpar + ﬁHint’

where Hyys € B(h), Hpar € B(K), and Hin € B(h ® K). The associated unitary

evolution is given by
U(h) := exp (—ih Hyr(h)) = exp (—i«/ﬁHint + I (—iHye ® Ix — il ® Hpa,)).

However, to include the state of each particle in the interaction we will involve
the GNS representation 7 defined in (4.2) and the unitary operator R € B(K®K)
which maps £ > eg ® eg.

Now observe that
7(Uh)) = exp (—i«/ﬁ (Hine ® I + h (=iHays ® Iigig — ily ® Hpar ® IK))

where 7 = idg@) ® 7 is the ampliation of the representation 7.
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Thus, by Lemma 4.1.5 the norm-limit of
lim mg(w(U(h)),h)
h—0+
exists if ES(Hip ® Igx)Ee = 0 and in this case

~ h—07t ~ (. ) 1 -
mr(E@UM).h) "= — AR (1Hsys ® Ixgr +ily ® Hpar ® I + S Hp, @ IK) R At
—iAYR (Hypy ® I) R*A —iAR (Hy @ I) R*A*

=: F. (4.22)

A V*
Now assume that H;,, = v B for some V € B(h;h ® k) and self-adjoint

operators A € B(h), B € B(h ® k), where the matrix decomposition is due to the
identification K = Ceq & k.
Then, according to the decomposition (4.15),

A [v*ol 8
Hi ® Ix = |:[I(ﬂ [g AQ%I;] [V*®Ik}i| .
0 [0V®IL] B®I

Caution: this is not the same 4 x 4 decomposition as in (4.4).

The expression Eé(Hin @ Ix)E¢ can be written as

[Vv*ol 0

r 4
Eeeo®eothe |:[‘6] [g Agli} [V*gblk}} Eeoeer+pE
0 [0V®I] BeI

=a’A + B2 Ex(B ® I)E,
where @ = /7o and f = /T— y,. Thus, E*(Hin ® Ig)Eg = 0 if and only if
2 L
A=-SE5B®L)E;
(04

Let R be as in Example 4.1.1; we can write it according to the decomposition
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(4.15) as follows:
o 0 B <§‘
R = 0 Ik@ﬂ 0 . (423>
—p ‘S> 0 aleg & Iygheck

In particular, Iz = ‘§> <§‘, and so

Ol[h 0 ,BEg

N
Il

—PEg 0 olioct @ Lig(kekeck)

According to Lemma 4.2.3 the operator F given by (4.22) has the form (4.16) if
and only if Ec®d§(Him ® Ix)Es = 0 for all ¢,d € k.

Furthermore,

ié(Hint ® Ix) Et
i o’ A + BEE(B ® 1) E;
oV
POV* ® ) Ex
| —eBEgA+ P (O‘Ih®<C§ ® Ih®(k®E)6(C§) (B ® I Eg
N . -
alV

V" ® L)

| —eBEgA+ 6 (O‘Ih®<C§ S Ih@(k@i)@@?) (B ® I)Ez

To obtain the condition E¢®4 R (Hint ® Ix) Ee = 0 we have to check when

—ofE;A+ B (O‘Ih@xc? & Ib@(k@i)ecg) (B® I)Eg =0.

Observe that we can write (B ® I;) Ez in the following way:

E¥(B ® I})Ez + (B ® Iy) Ez — EzE¥(B ® I) Ex. (4.25)
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which splits it according to the direct sum decomposition
heCEdhe (kek o CE.
Since —afEgA has its values in h ® Cg then, according to (4.25),
(B ® I)E; — EzE5(B ® I})Ez = 0,

but this is true if B = 0 or the image of (B ® I?)EE lies in h ® (Cg. If B =0 then

A = 0, thus we consider the second case, that is,
im((B ® Ip)Ez) C h ® CE.
Then we have to check when
~aBEzA + oBEzES (B ® I)Ez = 0,

but this holds if and only if A = Eg(B ® Iy) Ez and, since by (4.2.6) we know
that A = —22 E¥(B ® I,)Ez, then A = B = 0.

o v
Now note that if H;, = Voo for some V € B(h:h ® k) then we can write

Hine ® Iz with respect to the decomposition (4.4) as follows

0O 0 C* 0
0O 0 G* 0
Hint ® IK = )

cC G 0 O
0O 0 0 O

|4 0

where C = and G = .
0 Ve IF)Eg

Hence, Proposition 4.2.5 leads to the following conclusion

lim sup [ (X FCOE_ x| =0
h—07 ¢ef0,T]
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for all x € f)®]:(K®R)eC€°®% and T € Ry, where (X[F),0 is the unitary Markov-
regular QS cocycle with generator F having the form (4.16), where
Fy = —iHy, — iw(Hpa) Iy
1 * *
=3 (Vv + U= B vV ® I Eg).

Fr=—i(ym[ v o]+ Vi—w[o Ervern ).
i == ] e ])

Example 4.2.7 (Bipartite model). In this example we consider a generalised
bipartite model (recall Example 3.2.9). Thus, according to Example 3.2.9 let us

consider
HY () :=HPY ® 1 + Iy ® How + —=Hy,)
b tot ( ) . sys ® h KK b par f int »

o HR(h) =1y, ® HY & Ixgr + Iy @ Hpar + JH,Y,

sys

where

e HD € B(hy), Hpar € B(K ® K), and

sys

0 0 M* O
0 0 P* O
Hy,! ,
M P 0 O
0 0 0 0

where M, P € B(h; h ® (k @E)) are such that on b, they act as I,, and the

matrix decomposition is with respect to (4.4),

o H® c B(h,) and

sys

0 0 N* 0

0 0 0% 0
H = :

N O 0 0

0 0 0 0

where N, Q € B(h;h ® (k d k)) are such that on b; they act as Iy, .
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The associated unitary evolutions are given by
Uy (h) := exp (—ihHE (h)) and Us,(h) := exp (—ihHZ (h)).

By (4.11) we obtain

h—0T ~ 1 .
mg(Uy(h),h) — — ALR (iH“) ® Iy gker + iy ® Hoy + E(H“))z) R*AL

sys int
—iAtRHWR*A —iARHD R* AL
=: F

h—0t ~

1 ~
mg(Us(h),h) — — ALR (11,“ ® H? ® Iygr + ily ® Hpar + 5(Hifﬁ))z) R* A+

—iAtRHO R*A —iARHD R*A*
=: G.
By Proposition 3.1.16 the random walk X tﬁUz(h)U‘ (MR converges (in the sense as
in Proposition 3.1.16 ) to the Markov-regular QS cocycle with generator F + G +
FAG. It is easy to check that F + G + GAF satisfies the conditions (1.23) and
therefore it generates a unitary cocycle. Lemma 3.1.13 and Lemma 3.1.14 yield
that the convergence of the random walk X t§U2(h)U1 R is in particular a strong
convergence, locally uniform in time ¢. Moreover,

GAF = -A*RHPR*ARHWR*AL,

int int

Now, let R be the rotation from Example 4.1.1 then the generator is

F+G— [VON M+yo(1=y0)Q M+«/0 Yo(I=yo)N*P+(1—y0)Q* P 8 8] ’ (4.26)

0 00
where the matrix form is taken with respect to (4.15).

According to [10, 5 Thermal Environment| it is natural consider the bipartite
model, which we described in Example 3.2.9, in the setting when each of the
particles in an infinite chain are in a normal faithful state w, induced by a den-

sity matrix p given by (4.1). The working below gives an appropriate description;
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Let

b Ht(olt)(h) = H( ) ® Ih2®K + Ih ¢ Hpar + IH'E]%E)’

sys

o HQ(h) =1y, ® HY ® Ix + Iy ® Hpar + - Hyy

sys

where

0
o HY € B(h), Hp € B(K), and HYY = "

B(h:; h ® k) such that M acts on b as Iy,,

M*
0 i| for some M €

Sys int

0 N*
o H? € B(h,), and HY = |: N o :| for some N € B(h; h ® k) such that
N acts on by as Iy, .

The associated unitary evolutions are given by

Uy (h) = exp (—ihHLY (h) and Uy (h) := exp (—ihHS (h))

R7 (U2(h)7 (U1 (h) R*

we obtain that the random walk X, converges in the strong op-

erator topology to the unitary cocycle with the generator given by
F+G—A"RH? @ L)R*ARHY ® Io)R* AL,
where

sys

F=-A'R ( HY ® I, gkgr + i1y ® Hoo & Ig + = (H,(nlt) ® IK)Z) R*AtL
—ATRHY @ I R*A —iARHY ® I R* AL,

int int

G=—AR (11,“ ® HY ® Iygr + ily ® Hpy ® I + (H,E,? ® IK)2) R*AL

—IATR(HP? @ I R*A —iAR(H® ® Io)R* AL,

int int

When we choose R to be the rotation from Example 4.1.1 then the generator

becomes
N*M+(1—y0) EENM*QIE=
F+G_|:J/0 +(1 1'03 QI ggg] (4_27)
0 00
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where the matrix form is with respect to the decomposition (4.15).

Low density limits

Here, we again discuss repeated quantum interaction model when the incoming
particles are in the same faithful normal state. However, in contrast to weak
coupling limits we let this state depend on A.

The interaction Hamiltonian together with the scaling in Example 3.2.6 are
typical for the density limit [1]. The density limit is usually considered when an
interaction corresponds to the preservation term (generalised number operator).
For more details on a density limit including the physical interpretation we refer
the reader to [1]. Here, we scale the interaction Hamiltonian in the same way as
in Example 3.2.5, therefore we expect that it will correspond to the density limit.
Let R be the rotation from Example 4.1.1, that is,

a B 00

_ 0 0 _
R—| B e BK®K),

0 0171 0

0 0 0 I

where @« = /yo and B = /1 — yy and the matrix decomposition is taken with
respect to (4.4). Denote R := I ® R.

Theorem 4.2.8. For h > 0, let
G(h) = exp(A + hC),

where A,C € B(h @ KQ K). If

N
B>=> yij=o(h) as h—0* (4.28)
j=1
and
AtA=0=AAt (4.29)
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then
mgr(G(h),h) — A(e? — A + AtCAt (4.30)

in norm, as h — 0%,

Proof. First note that Lemma 3.2.1 implies

1 ~ ~
mg(G(h), h) =EALR(eA — )R*A*

1 ~ ~ 1~ -

+—ALYR(eA—I)R*A + —AR(e? — I)R*A*
N stRe =1

+AR(e? — I)RA + A*R f(A,C)R*A+

+o(1) ash — 0T,

where f(4,C) = Y3, Yo A1CA™1)
Now note that

AliézAlq _“ﬁ 5}@91)

and since B2 = o(h) as h — 0T then

Il
—
S R
S ™
L

@

o

%(1 —a) = %(1 VT = %(1 — VT=o() = o(v/)
and Ji];ﬂ =o(l)ash— 0",
Hence .
E(Al —AT*R) >0

in norm, as & — 0%. Furthermore, since R — I is a normal operator, by the
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spectral radius formula, its norm equals

IR —I| =max{|Al:A €o(R—1}
=max{|A:(A —a;))A—a+ 1)+ B> =0}
=max | — 1 £ if|
—Ja-1T

=2(1 — ).

In particular, if (4.28) holds then R — I in norm, as h — 0%
Moreover, if (4.29) holds then

At —1I)=0= (e —1)At
and, if (4.28) holds as well, we obtain

)(e? — 1)(LAL) = 0;

1 |~ ~ 1
lim ZALR(eA — )R*A+ = hlim (—=A* 7

h—0+ —ot “/h

similarly,

= Alp,A — = Al A R*A —
hl_l)r(r)1+ \/_A R(e* = R*A = hm «/_A (e —1)R*"A =0

and

1 ~ - 1
lim —AR(eA — )R*AY = lim A(e? = DHR*(— A1) = 0.
h—0t /h ( ) h—0t ( ) (\/E )

Thus, under assumptions (4.28) and (4.29),
mr(G(h),h) — A(e? = A + AL (A, C)A+ = A(e? — A + AtCAL

in norm, as h — 0%. O

Define

1
Htot(h) - sys X IK®K + IE) &® Hpar + EHint

for all & > 0, where Hyy € B(h), Hpar € B(K ® K) and Hyy, € B(h ® K ® K) are
self-adjoint.
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The associated unitary evolution is given by

U(h) = exp (_thtOt(h)) = €Xp (—lh (Hsys X IK®R + Ih X Hpar) — iHint)~

Corollary 4.2.9. We have
mr(U(h), h) — — 1A (Hys ® Iggr + Iy ® Hpar) AT + Alexp(—iHin) — I)A

in norm as h — 0% if

N
B*=> yj=o(h) as h—>0* (4.31)
j=1
and
At Hy = 0 = Hy At (4.32)

Proof. Tt is an immediate consequence from the preceding theorem with A4 =
—iHy and C = —i (Hyys ® Ixgi + Iy ® Hpar)- O

Lemma 4.2.10. Denote
F = —iA* (Hys ® Ixgi + Iy ® Hpar) A + Alexp(—iHi) — A, (4.33)

Theen the QS cocycle with stochastic generator F is unitary.

Proof. Again, we will verify the conditions (1.23). First note that for an arbitrary

unitary operator U we have

U+U*=21=U-1){I-U*.
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Now,
F + F*+ FAF* = A (exp(—iHiy) + exp(iHiy) —21) A
+ Alexp(=iHin) — I) Alexp(iHin) — 1)A
= A (exp(—iHin) = I) (I —exp(iHin)) A
+ A(exp(—iHin) — I)(exp(iHin) — 1)A = 0.
Similarly, F + F* + F*AF = 0. O

Example 4.2.11. According to Example 3.2.6 we consider

1
Htot(h) = Hsys b2 I'k\ + Ih & Hpar + ZHinta

where Hyys € B(h), Hpar € B(K), and Hin: € B(h ® K). The associated unitary
evolution is defined by
U(h) := e M Hiot(h)

If
At (Hiy ® I) = (Hie ® ) AT =0 (4.34)

then by Corollary 4.2.9 we obtain

mg(7(U(h)), h) - — AT (Heys ® Ixgi + Iy ® Hpar ® Ig) AT
+ Alexp(—iHin) ® Ix — Iygrer)A =1 F

in norm as h — 0.

A V*
Now assume that Hi, = v oD for some V e B(h;h ® k) and self-

adjoint A € B(h), D € B(h ® k), where the matrix decomposition is due to the
identification K = Cey @ k. Then according to the decomposition (4.15)

A4 [v*ol 0
Hi ® Ix = [[K] [zg A@gli] [V*%Ik]i| -
0 [0VeL] DoI

0 0
Thus A+ (Hiye ® Ig) = (Hi ® Ig) A+ =0 if and only if Hi,e = |: 0 b :|
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Hence,
—iHsys—i<e0,Hpare0)Ib 0 0
F = 0 [efiDgI'@k 8] 0
0 0 (e™P—Iyg® I

Example 4.2.12. In [38] Dhahri considers the repeated quantum interactions
model, such that the system § = (b, Hyy) interacts with a chain of particles
represented by the state space ), C"*1, so that the Hamiltonian of each piece
of the chain is Hpa € B(C"t!). The associated total Hamiltonian defined on
h ® C"*! is given by

1
Htot(h) = Hsys X I(Cﬂ—i-l + Ib ® Hpar + EHint

0 0
for all & > 0, where H;,, = o D for some self-adjoint D € B(h ® C*). The

thermal state w: B(C"*1') — C of each particle is defined by density matrix

e_ﬁT (Hpar_.uN)

P= (e~ BrHpumui))’

where Br >0, u <0, N = Y"_,ile;) (ei| and Hpar = Y i_ i |e;) {e;] for some
real numbers «;.

Let & > 0 to obtain the random walk convergence the assumption ef7#* = h?
is made. However, according to the condition (4.28) in Theorem 4.2.8 observe
that 1

e Brao N

_ _ Br(a;—ao), . j
Yo = Zy:o e—ﬂT(aj—Mj) o Ze ’ . ’

Jj=1

where k = ePr*. Since
B=1-yo=1x+ O0(?

if p is chosen such that k = o(h) then (4.28) holds and we can apply Theorem
4.2.8.
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4.3 Conditional expectation

Random walk approximation involving conditional expectations was first intro-
duced by Belton in [18] to obtain QS cocycles whose generators depend on a
thermal state. One of the advantages of this approximation technique, which is
related to work that we have done in the previous section, is the simplification
of Example 4.2.6; to obtain the same result we will have to verify a condition at
the level of h ® K, rather than h ® K ® K.

Definition 4.3.1. Let A be a C*-algebra and let Ay be a C*-subalgebra of A.
A conditional expectation is an idempotent map from A to A of norm one and
range Ay.

Although, it is equivalent (see |22, Definition 1.6.10.1; I1.6.10.2 Theorem p. 132])
to say that a conditional expectation d: A — Ag is a completely positive con-

traction such that
e d(ag) = ag for all ag € Ay,
e d(aga) = apd(a) for all ag € A and all a € A,
e d(aag) = d(a)ay for all ay € Ag and all a € A.

Let (M, ¢) be a quantum probability space, that is, M is a von Neumann algebra
and ¢ is a normal faithful state. Let d: M — M, be a conditional expectation,
where M is a C*-subalgebra of M. Assume that d preserves the state ¢, that is,
¢ od = ¢, then d is ultraweakly continuous and My is a von Neumann algebra

([84, p. 251]).

Example 4.3.2. Let (M, ¢) be a quantum probability space. The identity map

id v is a conditional expectation that preserves ¢, and so is the map a — ¢(a)1 4.

Notation 4.3.3. Set § := idp@ ® d, where d:B(K) - M, C B(K) is a
conditional expectation that preserves w. Then § is a conditional expectation

onto B(h) ® M, which preserves @ := idg@) ® . Furthermore,
[ ] 8(A®IK):A®IK,

o 3(T18(T2)) = 3(8(T1)T>),
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o 0(8(T)T>) = w(T18(T3)),
e W((A® IKT) = Aw(T), for all A € B(h), T, T; and T, € B(h ® K).

Example 4.3.4. Define the diagonal map §.: B(h ® K) — B(h ® K) given by
8e(T) = Iy ® )" (T @ IN)(Iy ® S),

where S is the Schur isometry S € B(K; K ® K), that is, Se; =e; ® e; for all j.

If D, is the maximal abelian subalgebra of B(K) generated by {‘e j) (e j |}j>0 then

8. is the unique lifting of the conditional expectation onto D, that preserves w.

Note that we can write 8, as idg@) ® d, where

N
d(s) =Z ek, Sex) |ex) {(ex]

for each S € B(K).

Definition 4.3.5. If 4 > 0 and G € B(h ® K) then the d-modification mq(G, h)
is defined by setting

mg (G, h) := (%5 + %&) (G — Iygk),

where (SJ' = idB(b@K) — 4.

The next theorem is a special case of [18, Theorem 3 p. 324|. We present a
slightly different approach.

Theorem 4.3.6. Let G:(0,00) — B(h ® K), and let F € B(h ® K) be such that

h—0t

ma(Gh),h) " =5 F (4.35)

m norm.
If f, g € L2(Ry, (K®K) © C(eg ® 29)) are right-continuous step functions
and T € R4 then

hh%l+, S[l(l)lz" | H Ee) ( x REGWR: _ Xt\I/(F)) Eso) H —0.
e €
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where XYF) = (X,qJ(F)) is a Markov-reqular QS cocycle with generator

U(F) := AYRFE(F)R*A* + AR(F o §Y)(F)R*A* + AYR(F o 81 (F)R*A.
(4.36)

Proof. First note that G(h) — Iygk = (hé + Vh8HYmg(G(h), h) for all h > 0.
The identity @ o § = @ implies that
1 D~ D *
EALR(n(G(h)) — Ligkor) R* AT
57 (G (h) — Iygk) E¢ Eeyoes £ 0%

S| = S~

&(G(h) — Iygk) Eepgeg E°®°

= (1 1 eo®eq
(360 = how) + =54G0) ~ Tow) ) Eupors E°F

@ (mg(G(h), h)) Eeyges E®%
AR (mq(G(h), h))R* AL,

LAE(ﬁ(G(h)) — Iioker) R* A" = ART(VhS + §2)(ma(G(h), h)) R* AL,

h
%Alﬁ(ﬁ(G(h)) — Ligker) R*A = ALRFZ((VhS + 81)(ma(G(h). ) R*A,
AR(F(G(h)) — Iygker) R*A = AR ((hS + Vhs*)(ma(G(h), h)) R*A.

Set ® := my(G(h),h) — F then

m(R7Z(G(h))R*,h) — W(F) = A*RZ(O)R* A+ + AR(% 0 §H)(O)R* AL
+ ALR(7 0 81 (O)R* A + Vir(G(h)).
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where

r(G(h)) ;= AR(F 0 8)(mg(G(h), h))R* A+ + A+R(7 0 8)(ma(G(h), h))R*A
+ ARF (VRS + 8%)(ma(G(h), h))R*A.

Therefore, the result follows by Theorem 3.1.12. [

Example 4.3.7. According to Example 3.2.5 we take

1
Htot(h) = Hsys ® Ik + Ih & Hpar + ﬁHint’

where Hyys € B(h), Hpar € B(K), and Hin: € B(h ® K). The associated unitary

evolution is given by
U(h) := exp (—ih Hir (1)) = exp (—iﬁHint + I (—iHye ® Ix — il ® Hpa,)).

Let 8, be the diagonal map from Example 4.3.4 and let

0o v

for some V € B(h; h ® (Ko Cey) then
ma, U 1) "3 s, (iHSys ® Ix + ily ® Hpar + %Hiﬁt) - [ 1(1)/ ”(/)* } =: F.
Denote
W(F) := ALRZ(F)R*ALt 4+ AR(F 0 8})(F)R*AL + ALR(T 0 81)(F)R*A.
We show that
W(F) + U(F)* + U(F)AW(F)* = U(F) + U(F)* + W(F)*A¥(F) =0

and so by Theorem 1.2.32 W(F) generates the Markov-regular unitary QS cocycle
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generated. First note that

W(F) + V(F)* + W(F)AV(F)*
=AYRFZ(F + F*)R*A+ + A*R(Hy ® Ix)R*AR(H, ® ) R* AL

Now since @(T) = E*7(T)E;¢ for each T € B(K), and & o §, = @ we obtain

ATRF(F + F*)R*A* 4+ A*R(Hip ® Ix) R* AR(Hipy ® I) R* A+
=—AYR(H2, ® I)R* A+ + A*R(Hyy ® Ix)R*AR(H;p ® ) R* AL

int

We can write A as I — AL so

— AYR(H2, ® I)R* A+ + AT R(Hiy ® Ix) R* AR(Hipy ® I) R* A+

int

= — AYR(Hipy ® I)R* A*R(Hine ® I)R* AL,

but
Alﬁ(Hi“t ® IK)E*AL = Eeo®%EE(Hint &® [K)EEE%@%

and as we shown in Example 4.2.6
ES(Hint (%9 IK)E%' =0

for Hi, of the form (4.37). Thus, W(F) + V(F)* + V(F)AV(F)* = 0, and

similarly by repeating the above arguments in the different order
W(F)+ W(F)" +Y(F)*AVY(F) = 0.
Hence, Theorem 4.3.6 together with Lemma 3.1.13 and Lemma 3.1.14 imply that

XtRz?(U(h))R*,h N Xt\IJ(F)

in the strong operator topology as & — 0, uniformly in ¢ € [0, T'], where X ¥Y() =
(X,\IJ(F) ) is the unitary Markov-regular QS cocycle with generator W(F).
Now let R be the rotation from Example 4.1.1. Again, by using the argument
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4. Random walks and thermalisation

that @(T) = E*7(T)Eg for each T € B(K), and & o §, = & we obtain

AJ_E%(F)E*AJ_ = - iI_Isys - iC()(I{par)lh

1 * *
=5 (V" V + A= Eg(VV* 8 Eg).

2
ARG SHIR A =—i] Ve VT-RES(V eI |,
AR(T o 8 (F)R* AL = —i [ m‘{gv@ 1) Ex } .
— JE;

Therefore, the limit cocycle coincides with the one in Example 4.2.6.

Similarly, to Proposition 3.1.16, we can consider the products of random walks.

Theorem 4.3.8. Let
G1:(0,00) = B(h ® K), G,:(0,00) — B(h ® K)

and let Fy € B(h ® K), F, € B(h ® K) be such that

—0 h—o0t

+
ma(Gi(h). ) "2 F and ma(Ga(h), k)Y F

m norm.
If f, g € L2X(Ry; (KQ® K) © Cleo ® €9)) are right-continuous step functions
and T € R4 then

lim  sup ” Ee) (Xﬁﬁ(Gl(MGz(h))ﬁ*,h _ X\IJ(F)) E
h—0% ¢ef0,T] ! !

ez | =0,

where X¥F) = (X,\P(F)) 15 a Markov-reqular QS cocycle with generator

W(F) :=A*R7(F)R*At 4+ AR(% 0 §*)(F)R*A*
+ ATR(F 0 8 (F)R*A
and F :=F) 4+ F, + 8(§1(F1)61(F,)). (4.38)

o+
Proof. 1t is sufficient to show that m;(G1(h)G,(h), h) e Fi+F48(8(F)8H(F)).
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4. Random walks and thermalisation

Working similarly to the proof of Theorem 3.1.16 observe that

ma(G1(h)Ga(h), h)

(e, 1o _ _
_(h3+ ﬁa)((c;l(h) 1)(Ga(h) — 1))

+ ma(Gi(h), h) + ma(G(h)2, h).

Next, note that

18(G1() = D(Ga() — 1)

= 25 ((5 451G ) — DG + 589Gl — 1)
1

=0 (84(G1(h) = D8(Ga(h) — 1)) + %3 (G1(h) — 1) 8 (Ga(h) — I)

= § (55 (ma (G (h). )8~ (ma (Ga(h). 1)) + 18 (ma (G (h. 1)) 8 (ma(Galh, )
— 6 (8L(F1)8l(F2)) ash — 0T,

whereas

Ry _ _

= (G = 1)(Gat) = 1)

= L5 (6 + 85 (Gr(h) — 1S + 85 (Gah) — 1)

7
=0 (G ) = D3 G0 = ) + =8 (Ga(h) = 1) 8+ (Ga(h) = 1)

gt _ -
S A CHORELICEORE)

=Vhs* (§4(ma (G (h). )8+ (ma(Ga(h). h)))
+ h (8(ma(G1(h), )8 (ma(Ga(h), h)) + §-(ma(Gi(h), h)§(ma(G(h), h)))

—0 ash—0T.

Therefore,

ma(Gy(h)Ga(h),h) — Fy + Fy + 8 (§(F1)6*(Fy)) as h — 0%
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4. Random walks and thermalisation

and the result follows by Theorem 4.3.6. O

Corollary 4.3.9. Let
G1:(0,00) = B(h ® K), G,:(0,00) — B(h ® K)

and let Fy, F, € B(h ® K) be such that

o+
ma Gy 1) "2 Fy and ma(Ga(h). 1) "2 F,

M norm.
Let h > 0, if G1(h) and G(h) commute on the initial space by then

h1—1>I(r)l+tS[léI;~ | H Ee) (Xthr(c;l(h)R*,h X REG2R R _ X;II(F)> Ese) “ — 0,
€

for all right-continuous step functions f, g € L>(Ry; (K® K) & C(ep ® eg)) and
T € Ry, where X¥YUF) = (X\IJ(F)) is a Markov-regular QS cocycle with generator

(4.38).
Proof. The follows the same argument given for Corollary 3.1.18. O
Example 4.3.10. Similarly to Example 4.2.7 let
o Hl(h) := H) ® Iy,ox + Iy ® Hpar + lef\1t)7
o HQ(h) =1y, ® HY ® Ix + Iy ® Hpar + —- Hyy

where

e HY < B(bhy), Hpy € B(K), and HYY =

sys int

0 M*
for some M ¢
M 0

B(h; b ® k) which acts on by as Iy,,

Sys int

0 N*
o H® € B(h,), and HE = |: N o :| for some N € B(h; h ®k) which acts

on by on Iy,.
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4. Random walks and thermalisation

The associated unitary evolutions are given by
Uy (h) := exp (—ihHE (h)) and Us,(h) := exp (—ihHZ (h)).
By Example 4.3.7 we obtain

h—0T 1
mde(Ul (h)’h) — Fl = 8e (iHs(yls) ® Ihz@K + ilh &® Hpar + §(H|E11t))2)

0 iM*
iMm 0 |

h—07t . . 1
mde(Uz(h),h) - F2 = 8e (llhl ® Hs(yzs) ® IK + llh X Hpar + §(H|$12t))2)

0 iN*
iN 0

Applying Theorem 4.3.8 we obtain that

X FECDTR b W)

strongly as h — 0, uniformly in ¢ € [0, T], where X¥(F) = (X;II(F))t>0 is the

Markov-regular unitary QS cocycle with generator

W(F) := A*RF(F)R*AY + AR(T 0 61)(F)R* AL
+ ATR(F 0 1) (F)R* A
and F := F| + Fy + 8.(87 (F1)8(F»)).

Now, let R be the rotation from Example 4.1.1. Observe that
W(F) = W(F1) + W(F) + Y(6.(8; (F)S; (F))),

and for i € {1,2} the form of W(F;) is as in Example 4.3.7.
Since @(T) = E7(T)Eg for each T € B(K), and & o0 §, = @ the correction
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4. Random walks and thermalisation

term equals

M*N+(1—y0)EEMN*®I-E= 0 0
WS, (B (F)SE(F)) = — [V" " R o],
0 00

where the matrix form is with respect to the decomposition (4.15). Therefore as

we would expect, the result agrees with Example 4.2.7.

Proposition 4.3.11. Let F € B(h ® K) and let G,:(0,00) — B(h ® /k\) be such
that
F
mq(Gn(h), h)) — o

in norm, as h — 0%, for alln € N.
If f,ge L>(Ry, (K®K) 6 C(ep ® 29)) are right-continuous step functions and
T € Ry then

lim lim  sup H £ ( XlR?f(Gn(h)ﬂ)R*,h B X,‘I’(H)) Eqo) | = 0.

n—>oo0 -0+ t€l0,T]

where X ¥H) = (X;p(H)) 1s the Markov-regular QS cocycle with generator
W(H) :=A*RFZ(H)R*A* + AR(% o §%)(H)R*A*+
+ AYR(F 0 Y (H)R*A,

1
and H :=F + 5(S((SL(F)(SL(F)).
Proof. Induction yields that

ma Gy i) 22 H, = o M D (SL(E)SL(E)) .

2n n n

By applying Theorem 4.3.6 we obtain that if f, g € L2 (R4, (K®K)©C(eo ®2p))

are right-continuous step functions and 7' € R4 then

I HEg(f) (Xﬁﬁ(G,,(h)")ié*,h _ X\Il(Hn)) E H —0.
o O e
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4. Random walks and thermalisation

where

W(H,) = A*R7(H,)R* A+ + AR(% o §Y)(H,)R* A+
+ ATR(F 0 1) (H,)R*A.

Since H, converges in norm to H as n — oo, we get that W(H,) converges in

norm to W(H) as n — co. We end the proof by applying Proposition 1.2.29. [

4.4 Compressed walks

In this section we construct random walks such that no special condition on
the interaction Hamiltonian (stated in Remark 4.2.2) will have to be assumed
to obtain convergence to the cocycles defined on h @ F*&®Ce)S(Ceo®k)  where
k:=Ko (Ce().

Let us recall that the embedding map J;': K — ]-"[‘;m’h(n +1y) Is given by

1
ey + ¢ = aAQmnhn+1)) + ﬁ61[hn,h(n+l))»

for all n € Ny, @ € C and ¢ € k.
We denote 72 the similar embedding which maps K to ‘F[Ehn,h(n +1)) for all n € Np.

By modifying Definition 3.1.6 we define a quantum random walk which embeds
into h @ Frek,

Definition 4.4.1. If h > 0 and G € B(h ® K® K) then the compressed embedded
quantum random walk with generator G and step size h is the operator process
(Y,G’h),>0 such that

1 forn =0,

o, | *
n- —k n n n —k

(1h® (1% J,f‘®Jh) G§>...G},)(1h® (%9 Jf@]h) ® luer  forn>1
k

=0 k=0 [nh.oo)

if £ € [nh, (n + Dh), for all t € Ry
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4. Random walks and thermalisation

Remark 4.4.2. According to (4.15) we can decompose
KQK=Ca® kd k) @ (k®k).
Let us define an isometry 0:h ® (C & (k ® k)) — h ® K ® K by setting
Qe (ig)=ug(ee®@e%+c0T%+e®d)

foralla € C, ¢, d € k.

Theorem 4.4.3. Let G:(0,00) — B(h @ K® K), and let F € B(h ® K ® K) be
such that
h—>07T
mgr(G(h),h) — F (4.39)
in norm, where mg(G(h),h) is defined as in (4.1.2).
If f, g€ L*>(Ry:k @ k) are right-continuous step functions and T € Ry then

I HEg(f) (YEG(h)E*,h _ XQ*FQ) E
Y _1)%1+ tes[lé’pT] t t e(g)

=0,
where X2'F2 = (XtQ*FQ),>0 18 the Markov-regular QS cocycle with generator
O*FQ.

Proof. The proof of this theorem is analogous to Theorem 3.1.12. Therefore, we

are only going to show the following convergence:

‘Pﬁemﬁ+aab(chmﬂ*m__xg*FQ) 0 (4.40)

£(¢fo. T4fo.1))

for all ¢, ¢/, d and d’ € k.

For simplicity denote X := eg + x and x/—l—\y = (4y) eC (ko k) for all
x,y €k.

Now, let t € Ry, let ¢, ¢/, d and d’ € k and let h > 0. Then t € [nh, (n + 1)h)
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for some n € N and

e(co.n+di0.0) y RGWR* ,h -
£ g &(fo.ndp0.1)
<8(C[hn 0 F diwn.0)- €(Cnp) + djy. t))>

(vfe®~f’d)®” ) ”
(RG() R - (RG(h) R*). .E(;:;®&F;)®n.

Since <8(c[hn,,) + dihn))s 8(thn,t) + d[’hn’t))> — 1 as h — 0% and by applying

Lemma 3.1.11 we obtain

_ _ n
ES(C[O.t)+m)YlRG(h)R*’h Efc®deG(h)R E— /\) ,

e(cfo.n o) ( Vhe'®Vh &

where ~ means that both expressions on the left and right-hand side have the
same limit.

Now observe that

ETF}E@«//E\Z _ Eeo®%+c®5+eo®2+~/ﬁc®3(AL + «/ZA) (4.41)

and by taking the adjoint we obtain

i
Efc@fd (A7 + \/_A)Eeo®%+0®%+eo®3+«/ﬁc®3' (4.42)
Similarly
Eeo®etc®erteo®d _ E(:/JF\EQ*
B, ge5+caesteosd = QE:_\d (4.43)
Note that
EVReVRd R () R* E—
( ) fc ®f hd’

=Eji®ﬁa(§GMMﬁ—I +%4J%c+d(?+d>

”®K®K) Jhe'oJh &
+o(h) ash—07.
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Now consider the first term of the above sum:

o Vheavhd (R BE N

=£ (RG(h)R Ih@K@K) b reedia

_ phe@Jhd L L P

=FE (VhAY + Aymg(G(h), h)(VhA +AE~

_ pvheavhd 1 N o N
=E (VhA*T + A)(F + o) (VhA +AE = o ash—> 0"

By applying (4.41) and (4.42) we obtain

EVh®VhA (/AL £ AYF + o(1)(VhAL + NE =~ =
_ Go+coe+eo®d +Vhe®d
=h (Ee0®eo+c®eo+eo® Fhe® FEeg@%—i—c’@%—i—eo@?—i-«/ﬁc’@?) + O(h)

_ eo®eo+c®eg+eo®d o +
—h (E FEEOMWMHOM) +o(h) ash— 0"

Now, we use (4.43) to get

eo®e0+c®eq+eo®d _
h (E F eo®%+c/®%+eo®df) +o(h)

=h (Ec+dQ*FQE ’/-l-\d’) +o(h) ash—07.

Hence,

Jhe@ hd B e
E RGMR'E~ —

=Iy +h (ECHQ*FQE:; + <c +d,c +?> Ib) +o(h) ash— 0",
c 4
Therefore,
E#Cw0ntdon) y REWR

s(cfo,t)‘*'d[/o,z))
h—0t

2Y exp {t(EC+dQ*FQE — <c vd.c + E) Ih)}
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and by Proposition 1.2.27 together with Proposition 1.2.30 we obtain

exp (S Q FOE ~ +(c+d.¢'+ ) 1,,)}
c /

— peleo.n+don) y @ FQ L

E X &(cfo.tdio. )’

Convergence for arbitrary right-continuous step functions f, g € L?(Ry:k @ k)
and its uniformity on the bounded intervals of Ry holds and can be verified

analogous to the proof of Theorem 3.1.12. n

Example 4.4.4 (Weak coupling limits). According to Section 4.2 we define

U(h) := exp (=ih Hyo (h)),

where
1
Hiot(h) := Hgys @ Igr + 1y @ Hpar + ﬁHint

and

0O 0 C* o0

0 0 G* 0

Hint:
cC G 0 O
0O 0 0 O

for some C,G € B(h;h ® (k@ k)) and k := K © Ce,.

—0

+
Then mg(U(h), h) e F in norm, where

~ 1 ~
F:=—A'R (iHSyS ® Ixgr + ily ® Hyar + 5Hiflt) R*At

—iAYRH R*A —iARH R*A*
Hence, by Theorem 4.4.3 together with ith Lemma 3.1.13 and Lemma 3.1.14

YtRU(h)R*,h N XtQ*FQ

in the strong operator topology, as & — 07, locally uniformly in ¢.
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Moreover, if we consider R to be a rotation from Example 4.1.1 then we obtain

Q*FQ:|:F(? FE}E[ B(H) B(f)@(k@F);h)] (4

Fyf 0 Bh:h® (kok) Bl kek)

where

Fy = —iHgs —i(§, Hyué) Iy
1
=5 (nC*C + VT =10)(C*G + G*C) + (1 = 7)G*G).

FY =—i(JnC* + VT=7G").
0+:—1(MC+MG).

An interesting special case of the above approximation can be obtained analo-
gously to Example 4.2.6, that is, instead of considering the ‘particle’ operators
on K ® K, we ampliate the ones defined on K to K® K. Tt delivers us the cocycle

with generator

FQ F°
e[ ) s
0

where
F) = —iHys — io(Hpa) Iy
l * *
-3 (yOV V4 (- y)E(VV*® IE)EE) :

Fl=—i(vn|[ v o]+Vi-n[o Even ).
i == (a4 ] s ))

for some V € B(h; h ® k) and self-adjoint Hyys € B(h), Hpar € B(k).

Combining the preceding theorem and Theorem 4.3.6 we obtain
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Corollary 4.4.5. Let G:(0,00) — B(h ® K), and let F € B(h ® K) be such that

h—0t

ma(G(h),h) "= F (4.46)

in norm, where mg(G(h), h) is defined as in (4.3.5).
If f, g€ L*(Ry:k EBE) are right-continuous step functions and T € Ry then

R7(G(h)R*,h O*W(F)Q
o i)

lim sup =0,

E
h—07F sef0,T] =@

where X 2"YFQ = (X,Q*IP(F)Q)@O is the Markov-reqular QS cocycle with gener-
ator Q*W(F)Q and W(F) is given by (4.36).

Equipped with Theorem 4.4.3 we can proof the analogous result to Theorem
4.3.8 and Proposition 4.3.11:

Proposition 4.4.6. Let

G1:(0,00) > B(h ® K) and G,:(0,00) — B(h ® K)
and let F; € B(h ® K), F, € B(h ® K) be such that

ma(Gi(h).h) "2 Fy and maGa(h).h) "2 Fy

m norm.
If f,ge L*(Ry:k @® k) are right-continuous step functions and T € Ry then

lim sup =0,

E
h—07 tef0,T] °(®)

H Ee) (YtﬁaGl(h)Gz(h)ﬁ*,h B XIQ*‘IJ(F)Q)

where X2 YC — (X,Q*‘IJ(F)Q)@O 1s the Markov-regular QS cocycle with W(F)
given by (4.38).

Proposition 4.4.7. Let F € B(h ® K) and let G,: (0,00) — B(h ® k) be such
that
F
ma(Galh). 1)) —

in norm, as h — 0%, for alln € N.
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If f, g€ LAR4:k @ k) are right-continuous step functions and T € Ry then

lim lim sup HEE(f) (XtRﬁ(G"(h)n)R*’h - X,Q*\II(H)Q) Eq (o) H =0,

n—>o00 b0+ t€[0,T]

where X2 YHEC — (XtQ*\p(H)Q),>0 1s the Markov-reqular QS cocycle with gener-
ator Q*W(H)Q,

W(H) :=A*RZ(H)R*A* + AR(% o §Y)(H)R*A*+
+ ATR(F 0 8Y)(H)R*A,

and H :=F + %S(SL(F)SL(F)).
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Chapter 5
Quasifree random walks

In [5, Proposition 8 p. 278| Attal and Joye showed that the quantum stochastic
cocycle (or equivalently the strong solution of the constant coefficient QSDE)
obtained in [5, Theorem 7, p. 272| induces a non-Fock quasifree representation of
the CCR algebra. Motivated by their work we generalise their result by giving the
necessary and sufficient conditions when QS cocycles (obtained as a continuous-
time limit from repeated interactions) induces quasifree representations of the
CCR algebra. In contrast to [5|, we obtain the representations which induce a

gauge-invariant quasifree state, as well as, a squeezed quasifree state.

5.1 Transpose lemma

Let k be a Hilbert space. Denote by Uy the isomorphism |u) (v| — u ® v between
HS(k) and k ® k. The Hilbert space HS(k) is also isomorphic to k ® k, the
isomorphism U HS(k) — k ® k is such that Ug(Ju) (v]) = v ® u for all u, v € k.

Lemma 5.1.1. For any M € B(h:h ® k) and N € B(h:h ® k) we have the

following equalities:

1. (M*® [)Ey, = (1h ® Ufl(x)) Me

2. EX(M®I)=MT" (1,, ® (Ufl(x))*>

8. (N*® L)y @ IME, = (I, ® U ' (x)) N°
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4 By @ (N @ 1) = NT (I ® (U7 ()")
for all x € k ® k, where I1 is the tensor flip on k ® k.

Proof. Let ¢,d € k and u € h. By Lemma 2.1.8 we have that M*E, = E°M¢,
which gives (1) when x is a simple tensor. The general case follows by taking
limits. We obtain the identity (2) by taking the adjoint of (7). The proofs of (3)

and (/) are analogous. O

Remark 5.1.2. Since M € B(h;h ® k) then ME,, € HS(C;h ® k) for all u € h.
Therefore, M € Mat(M, H)cx according to the notation used in (2.4) and by
Definition 2.1.5 the partial transpose M T exists and so is the associated conjugate
M¢< = (MT)*. Hence, we don’t have to make an extra assumptions associating

our operators with Mat(M, H)¢ k.

Example 5.1.3. Let £ be a unit vector defined in (4.3). Then by the preceding
lemma, for any M € B(h, h ® k) we obtain

1 N
(M* ® I)Ez = T (Ih ® Z Vi le) (e_il) M°.
i=1

where N € N U {oo}.

5.2 Quasifree setup

According to Example 4.4.4 the unitary QS cocycle X which we obtained

through convergence of random walks has the generator

F:[FOO Ff}e[ B(H) B(b@(kesb;b)} 651)

F 0 Bh;h® (kak) Bhe kok)
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5. Quasifree random walks

where

F(? = — iI—Isys - 1(5’ Hpar%-) Ih

1 * * % *
=5 (0C*C + V(=) (C*G + G*C) + (1 - 9)G*G).

FO =i (mc* + MG*) , (5.2)
—i (V€ + VT=7G).

In Example 4.4.4 we have also emphasized the special case of X', obtained from
the natural setup of repeated quantum interactions. The corresponding generator

is given by F as in (5.1), where

Fy) = —iHys — iw(Hpa) Iy

1 *k *k
=5 (VY + - BV @ [ ER).

F=—i(vn|[ v o]+Vi—n[o EEven]). 63
FJ:”(”[ }“ [W*@WD

for some V € B(h; h ® k) and self-adjoint Hgys € B(h), Hpar € B(k).

The results in this section will answer the question when the generators F
defined in (5.1) with matrix coefficients as in (5.2) or (5.3) can be written in
the form (2.30), and therefore when the unitary QS cocycle X ¥ is a Z-quasifree
cocycle (Definition 2.3.15).

Remark 5.2.1. Recall that j:k — k stands for the conjugation, that is, it is

given by ¢ — ¢.

Theorem 5.2.2. Let

Z:[«/IJFTZ 0 }

0 jTj*
FQ F9
be as Examples 2.2.] for some positive operator T € B(k), and let F = [F(jr 0*]
0
M

be as in (5.2), where Hys € B(h) and Hyar € B(K) are self-adjoint, C =1
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and G :=i|: ? } for some M, R € B(h;h @ k) and N, S € B(h:h ® k).
If

o H = Hys + w(Hpar) 1y,

. mM+MR:(Ih®m)L,

o /YN + VT=yS = — (I, ® jTj*) Lc for some L € B(h,h ® k),

then the unitary Markov-regular QS cocycle with generator F is quasifree with

covariance Ip2p, )y ® Z.

Proof. Let L € B(h,h ® k). We obtain

Fi = =i (V%€ + VT=76)

| M + VTR
| VN + JT=3S

(o[0T D]

~wen| ]

Similarly,

F =] JM* + JT=pR* JRoN* + VT= 755" |
:[L* —LT](1h®Z).
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5. Quasifree random walks

Now, observe that

=3 (WC*C + VR = TI(C°6 +GC) + (1 - )G76)
1
= — E(\/%C* + vV 1— yoG*)(\/%C* + vV 1-— )/()G*)

1
=— [ VM + VTR mN*+MS*][

i e[ 4]

Hence, we obtain that

J7oM + JT=yR
VYN + JT= 1S

N L
F(;’:—lH—E[L —LT}(I;,®ZZ)|:_LC]

Therefore by virtue of Corollary 2.3.18, the unitary QS cocycle with generator
(5.1) is Ep-quasifree. O

All the remaining results in this chapter will exploit Corollary 2.3.18.
Henceforth, N € N U {oo}.

Corollary 5.2.3. Let

N
VYo D o lei) (e 0
7 = i=1

N
0 > Jviai lei) (el
i=1

0 0
for some (ay) € £° and let F = [;j‘}r I:)+] be as in (5.3), where Hsys € B(h) and

Hyar € B(K) are self-adjoint, and Ve B(h: b ® k).
Then the unitary Markov-reqular QS cocycle with generator F is quasifree

with convariance I12w, )y ® Z if and only if

N
V=-i(ly ® Zai lei) (ei] )L
im1
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5. Quasifree random walks

for some L € B(h,h ® k) and o, = Jﬁ for each n > 1.

Proof. According to the notation used in Theorem 5.2.2, V =iM, N =R =0
and by applying Lemma 5.1.1

1 N
S = V=T <Ib®;ﬁ|€7) (€_i|) Mc.

Set T := ZlN=1 Bi |ei) (ei| for some sequence (B,) of positive numbers. Observe
that

VoM = (1h ® VI + T2)L
VI—yS =— (I, ® jTj*) L

if and only if M = (I, ® Y_ «; |ei) (e;]) L for some L € B(h, h @ k) and a sequence
i>1
(cty) of positive numbers such that

Vvooi = 1+ B}
ﬁai = Bi.

Hence,

JroM = (1h ® VI + TZ)L
VI=pS =~ (I, ® jTj*) L°

if and only if

N
V=—iM =—i(I, ® > aile;) (e ) L.
i=1

where

e (U, = 1
n A/Y0~Vn a d

o T =YL, A e) el
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5. Quasifree random walks

Note that T = Y~ L_’ le;) (ei| is a Hilbert-Schmidt operator.
=1 /yo—vi

Example 5.2.4. Let k = C and the covariance be induced by a number o such
that 02 > 1 and
o2 =2 +p* and A*—p* =1,

where A and p are positive real numbers. According to Theorem 2.2.3 we obtain
a representation of CCR(FC)

wy > W) = WoAf) @ Wo(—p f)
and a gaug-invariant quasifree state ¢ given by
o(wy) = (L W()Q) = e 27" I/,

Now, by applying the preceding corollary, to calculate o we will have to solve the

following system of equations

Yoor? + (1 — yo)a? = o2
Yool — (1 — yo)a? =1

for some « € C.

Hence, we obtain

Theorem 5.2.5. Let

7 — VI 4+ T?U cosh (D) —+/1 + T?UK sinh (D) j*
| —jTUKsinh(D) jTU cosh (D) j*

be as in Example 2.2.5 for some positive operators D, T € B(k), unitary U € B(k)
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5. Quasifree random walks

0 0
FQ F9

and an involution K on k, and let F = [F+ 0
0

] be as in (5.2), where Hyys € B(bh)
- | M | R
and Hy, € B(K) are self-adjoint, C := 1|: N i| and G := 1|: < j| for some M,
ReBMh:hk) and N, S € B(h: h ® k).
If
e H= Hsys + a)(Hpar)Ih'

(V7oM + JT=1R) = (I, ® VT + T2U cosh (D)) L
+ (I, ® VT + T2UK sinh (D)j*) Le’

(V7N + V/T=%S) = —(I,® jTUK sinh(D)) L
— (Iy® jTU cosh (D)j*) L¢

for some L € B(h,h ® k), then the unitary Markov-reqgular QS cocycle with gen-

erator F is quasifree with convariance Ip2g H®Z.

Proof. Let M, N, R and S be as claimed in the theorem and take an arbitrary
L € B(h,h ® k). Then we arrive at

Fif =i (mc + MG)
_ i YoM + mR :|
| YN + V1-y3S
i (Ib ® VT + T2U cosh (D)) L+ (zrh ® /T + T2UK sinh (D)j*) Le }
i —(Iy® jJTUK sinh (D)) L — (Iy ® jTU cosh (D)j*) L¢

(1 e VT +T2U cosh (D) —+/T + T2UK sinh (D);* L
’ _jTUK sinh (D) jTU cosh (D) * e |

By simple algebraic operations we can show that the other entries of the matrix
in (5.1) have the desired form. O

Corollary 5.2.6. Let K be an involution on k, let

Z:[ Siss /o lei) fei| —Zfilmmwiueiu*}
—J Yily VEBiK e el J XL i le) (el S
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5. Quasifree random walks

0 0
FQ F9

for some (o) € £°, (Bn) € £*° and let F = [F+ . ] be as in (5.3), where
Hys € B(h) and Hp,r € B(K) are self-adjoint, and Ve Bh:;h ® k).
Then the unitary Markov-regular QS cocycle with generator F is quasifree

with convariance I 2w,y ® Z if and only if

N N
V =—i (I;J ® Zai le;) (eil) L—i (Ih ® Z,BiKlei> (€i|j*) L*
i=1

i=1

for some L € B(h,h ® k), where

L4 |an| 2 \/ﬁ7 |/8n| 2 0;

o |y —|Bul* = m for each n.

Proof. According to the notation used in Theorem 5.2.5, the above V = iM,
N = R = 0 and by applying Lemma 5.1.1

1 N
S=—m<lb®;ﬁle—iﬂe—il)w-

Set

o T:=) . ¢ile) (e, where each ¢; > 0,

e D=3, l|dille) (e, where {d,} € £,

o U =7 ,wle) (e, where each w; € C is such that |w;| = 1.
Observe that

V7oM = (Iy® VI +T2U cosh (D)) L + (Iy ® VI + T2UK sinh (D) *) L®
V1=y08S =—(Iy ® jTUK sinh (D)) L — (I, ® jTU cosh (D) *) L

if and only if M = (I, @ /L, ailer) (ei]) L+ (I ® S5, BiK ler) (ei] j*) L
for some L € B(h:; h ® k) and sequences (a,), (B,) € £*° such that
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5. Quasifree random walks

Ve = 1+ ctuicosh(d)
NZ T mwismh(ld"|)-

NZI T ciw; sinh(|d;|)
ﬁai = C;W; COSh(|d,‘|)

Hence,

VoM = (1,] ® v I + T2U cosh (D)) L+ (Ih ® v I 4+ T?UK sinh (D)j*) L
VT=708 = —(Iy ® jTUK sinh (D)) L — (I, ® jTU cosh (D) j*) L

if and only if

N N
V = —iM = —i (Ih ® Zai le;) (eil) L —i(lh ® Z,BiK|ei) (€i|j*) L
i=1 i=1

where

i > — |Bi]* =
B>

Oli/ b

L for each i,
Yo—Vi

T =YL, 72 le) (el,

U=y, & e (eil = Y/, Lo lei) (el
cosh(D) = Z,N=1 i | /Yo — Vi lei) {eil,
sinh(D) = Y1, 1Bl /7o — Vi lei) (eil-
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Appendix A

Let A be a unital Banach algebra with the unit 1.
Lemma A.0.7. Let a € A and let b: (0,00) — A be such that
lim ||b(h) —a| =0
h—0t
then

lim sup |le'® —e®*®| =0,
h—07 ¢ef0,T]

forallT > 0.

Proof. Note first that for any k € N we have

ak — b(h)*
=(a —bh)a* ' + bh)(a—bh)a* 2+ ...+ bh)*(a —bh)).

By taking the norm of the above expression and applying the triangle inequality

we obtain

la* —b(h)¥|
<lla = b@IAal*™ + 1b@Hal* + ... + bW lall + 15 |).

Fix T > 0, let § > 0 be such that ||b(h)|| < ||a|| + 1 whenever 0 < h < § and take
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t €[0,T]. If 0 < h < § then we arrive at

t*lla® — b(h)¥|
th(h) _ _ta
le e <> x

k>1

< tlla—be) Y UMD

k=1

< tla— by Y 0D
k>0 )

<t — by Jer 41+

< Tha byl 01+

h—ot

— 0.

Lemma A.0.8. Let xo € Ry and let x:(0,00) — R4 be such that

hl_l)I(I)1+ x(h) = xo.

Then

lim sup |e™® — (1 4+ hxr)Lil| =0

h—07 tef0,T]

for all T >0, where L%J ;=max{m € Z : m < %}

Proof. The proof is inspired by [85, Example 2.3, p. 32].
¢ k
First note that since (%J)hk < %hk < 2—k, for all k € {0,

£—1< L%J then we have

,L%J} and

0.< ™ — (14 hx(r)LE) < &0 — (1 4 hx(m)F~".

for all t > 0.

Now assume that 7 > 1 and let t € [0,T]. Let 1 < @ < B < oo define

a function f:[a, B] — R, by setting f(z) = z'. It is clearly continuous and

differentiable on [e, B]. Hence, by the mean value theorem there exists y € («, B)
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such that

IBt_at_ ’
5 = ().

We obtain

B —d'| = f'()(B—a) =ty (B—a) < Ty" ' (B—a) < TB'(B~a). (A1)

Let §; > 0 be such that e*® < e 4+ 1 whenever 0 < h < §; and let §, > 0 be
such that (1 + hx(h))% < e* + 1 whenever 0 < h < 6,.

If 0 < h < §, where § = min{§;, 6} then we arrive at
W < e¥ L1 and (14 hx(h)* < e™ + 1.
Therefore,

™™ _ (1 4 hx(h))L#]

< e ® — (1 + hx(h))i™!

=" — (1 + hx(W)F (1 + hx(h)™")

< (14 hx(h)™

t
(e My _ ((1 + hx(h))%) ' + (14 hx ()™ hx (h)eT*®.
Hence, by applying (A.1) we obtain

(1 + hx(h))™!

(M)t — ((1 + hx(h))'ll>t‘ + (1 + hx(h)) ™" hx(h)e™®

<T(E™ + )7 (1 + hx(h) ™" |e*® — (1 + hx(h) 7 | + (1 + hx (k)" hx (h)eT*®

—0 ash—0T.

[]

Theorem A.0.9 (Euler’s formula). Let a € A and let b:(0,00) — A be such
that

lim ||b(h) —al = 0.

h—0+
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Then

lim  sup W1+hbm»ﬁl—em —0 (A.2)

h—0% tef0,T]

forall T > 0.

(M) itk €0,...,n}

Proof. For each n € N let c(k,n) := _
0 otherwise

We have

e — (1 + hb(h))L#) "™ _ (1 + hb(h))Lh]

<

'@ _ ptb() H n

where the first term of the right-hand side tends to 0 as & — 0%, uniformly in ¢
by Lemma A.0.7.

Now, since (Z) < ’,‘c—]: for 1 < k < n then for each t € R4 the expression

o (i)

is always non-negative. Therefore, we obtain

< (e 1)) wor
\bok! | h

— PO _ (1 4 pYjb(hy[) LA

h—o0t
—

e™®™ — (1 + b () L]

By applying Lemma A.0.10 we obtain the uniform convergence of (A.2) for ¢ on

each compact subinterval of R, . O]
Let A = B(X), where X is a Banach space.

Corollary A.0.10 (Euler’s formula for semigroups). Let (Ty);>0 be a norm con-

tinuous semigroup of operators on X with generator A € B(X).
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If B:(0,00) — B(X) is such that
li B(h)—A|| =0
i || B(:) - A|
then

lim  sup H(l + Byl — T,

h—>0% ¢e[0,T]

forall T > 0.
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