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Kernel Hebbian Algorithm for Iterative Kernel
Principal Component Analysis

Kwang In Kim, Matthias O. Franz, Bernhard Sitkopf

Abstract. A new method for performing a kernel principal component analysis is proposed. By kernelizing
the generalized Hebbian algorithm, one can iteratively estimate the principal components in a reproducing kernel
Hilbert space with only linear order memory complexity. The derivation of the method and preliminary applications
in image hyperresolution are presented. In addition, we discuss the extension of the method to the online learning
of kernel principal components.

1 Introduction

Kernel Principal Component Analysis (KPCA), a non-linear extension of PCA, is a powerful technique for extract-
ing non-linear structure from data [1]. The basic idea is to map the input data Repr@ducing Kernel Hilbert
Space(RKHS) and then, to perform PCA in that space. While the direct computation of PCA in a RKHS is in
general infeasible due to the high dimensionality of that space, KPCA enables this by using kernel methods [2]
and formulating PCA as the equivalémrnel eigenvalue problemA problem of this approach is that it requires

to store and manipulate the@rnel matrixthe size of which is square of the number of examples. This becomes
computationally expensive when the number of samples is large.

In this work, we adapt the Generalized Hebbian Algorithm (GHA), which was introduced as online algorithm for
linear PCA [3, 4], to perform PCA in RKHSs. Expanding the solution of GHA only in inner products of the samples
enables us to kernelize the GHA. The resultifgrnel Hebbian Algorithm{KHA) estimates the eigenvectors of
the kernel matrix with linear order memory complexity.

The capability of the KHA to handle large and high-dimensional datasets will be demonstrated in the context
of image hyperresolution where we project the images to be restored (i.e., the low resolution ones) into a space
spanned by the kernel principal components of a database of high-resolution images. The hyperresolution image
is then constructed from the projections by preimage techniques [5]. The resulting images show a considerably
richer structure than those obtained from linear PCA, since higher-order image statistics are taken into account.

This paper is organized as follows. Section 2 briefly introduces PCA, GHA, and KPCA. Section 3 formulates
the KHA. Application results for image hyperresolution are presented in Section 4, while conclusions are drawn
in Section 5.

2 Background

Principal component analysis. Given a set of centered observations= R,k = 1,...,l,and> ! _,x; =0,
PCA diagonalizes the covariance matrix

= I T1
C= 7Zj:1 Xij .

This is readily performed by solving the eigenvalue equation

v =Cv
for eigenvalues\ > 0 and eigenvectors; € RV \ 0.

"More precisely, the covariance matrix is defined asfifiex ' |; C' is an estimate based on a finite set of examples.



Generalized Hebbian algorithm. From a computational point of view, it can be advantageous to solve the
eigenvalue problem by iterative methods which do not need to compute and’stbrectly. This is particulary
useful when the size of is large such that the memory complexity becomes prohibitive. Among the existing
iterative methods for PCA, the generalized Hebbian algorithm (GHA) is of particular interest, since it does not
only provide a memory-efficient implementation but also has the inherent capability to adapt to time-varying
distributions.

Let us define a matri’w (t) = (w1(t) 7, ..., w.(t)7)T, wherer is the number of eigenvectors considered and
w;(t) € RY. Given a random initialization oW (0), the GHA applies the following recursive rule

W(t+1) = W(t) +n(t)(yt)x(t)" —LT[y()y(t) W (1)), 1)

wherex(t) is a randomly selected pattern frdrmput examples, presented at time (t) = W (¢)x(t), and LT[]

sets all elements above the diagonal of its matrix argument to zero, thereby making it lower triangular. It was
shown in [3] fori = 1 and in [4] fori > 1 thatW () — V; ast — oc.? For a detailed discussion of the GHA,
readers are referred to [4].

Kernel principal component analysis. When the data of interest are highly nonlinear, linear PCA fails to capture
the underlying structure. As a nonlinear extension of PCA, KPCA computes the principal components in a possibly
high-dimensionaReproducing Kernel Hilbert Spa¢RKHS) F' which is related to the input space by a nonlinear
map® : RV — F [2]. Animportant property of a RKHS is that the inner product of two points mappedl tgn

be evaluated usingernel functions

which allows us to compute the value of the inner product without having to carry out thémaggplicitly. Since
PCA can be formulated in terms of inner products, we can compute it also implicitly in a RKHS. Assuming that
the data are centered i (i.e., Z;=1 ®(x;,) = 0) the covariance matrix takes the form

C = %@Té, (3)
where® = (®(x1)",..., <I>(xl)T)T. We now have to find the eigenvaluds> 0 and eigenvectors € F \ 0
satisfying
Av = Cv. (4)
Since all solutionss with A # 0 lie within the span of ®(x;), ..., ®(x;)} [1], we may consider the following
equivalent problem
APV = ®C v, (5)

and we may representin terms of ari-dimensional vectog asv = ® " q. Combining this with (3) and (5) and
defining anl x [ kernel matrixK by K = ®® " leads to \Kq = K?q. The solution can be obtained by solving
thekernel eigenvalue problefi]

IAq = Kq. (6)

It should be noted that the size of the kernel matrix scales with the square of the number of examples. Thus, it
becomes computationally infeasible to solve directly the kernel eigenvalue problem for large number of examples.
This motivates the introduction of the Kernel Hebbian Algorithm presented in the next section. For more detailed
discussions on PCA and KPCA, including the issue of computational complexity, readers are referred to [2].

3 Kernel Hebbian algorithm

3.1 GHA in RKHSs and its kernelization
The GHA update rule of Eq. (1) is represented in the RKFI8s

T
Wit +1) = W(t) +n(t) (y(O)ox(6) T~ LTly(O)y(®) W (D)), (7)

2Originally it has been shown that; converges to théth eigenvector ofs[xx ' |, given an infinite sequence of examples.

By replacing eaclk(t) with a random selectior; from a finite training set, we obtain the above statement.

3The centering issue will be dealt with later.



where the rows oW (¢) are now vectors irF’ andy (t) = W (t)®(x(t)). ®(x(t)) is a pattern presented at time
t which is randomly selected from the mapped data pojdtéx, ), ..., ®(x;)}. For notational convenience we
assume that there is a functioift) which mapst toi € {1,...,1} ensuring®(x(t)) = ®(x;). From the direct
KPCA solution, it is known thatv(¢) can be expanded in the mapped data palrts;). This restricts the search
space to linear combinations of tléx;) such thatW (¢) can be expressed as

W(t) = A(t)® (8)

with anr x I matrix A(t) = (a;(t)",...,a.(t)7) " of expansion coefficients. Theh rowa; = (a1, ..., a;) of
A(t) corresponds to the expansion coefficients ofitheeigenvector oK in the ®(x;), i.e., w;(t) = ® a;(t).
Using this representation, the update rule becomes

A(t+ 1)@ = A0)@ +1(t) (y(OR(x(0)T — LT[y (0)y()TTA(1)®). ©)
The mapped data points(x(t)) can be represented @$x(¢)) = ® "b(¢) with a canonical unit vectob(t) =
0,...,1,...,0) T in R! (only the.J(¢)-th element is 1). Using this notation, the update rule can be written solely
in terms of the expansion coefficients as
A(t+1) = A1) +n(t) (yt)b(t)T —LT[y(t)y(t) TJA(D)) - (10)
Representing (10) in component-wise form gives
i (8) + nyi(8) = () S ey ang (Dye(t) if T (8) = j
ai(t+1 :{aJ( k=1 k] / (11)
D= g 0) = mnt) by a0 otherwise,
where z
t) = Z aik(t)q)(xk Zam (xp,x )) . (12)
k=1

This does not requir@(x) in explicit form and accordingly prowdes a practical implementation of the GHA.in

During the derivation of (10), it was assumed that the data are centerEdwhich is not true in general
unless explicit centering is performed. Centering can be done by subtracting the mean of the data from each
pattern. Then each pattefi(x(t)) is replaced byb(x(t)) = ®(x(t)) — ®(x), where®(x) is the sample mean
P(x) = % 22:1 ®(xy). The centered algorithm remains the same as in (11) except that Eq. (12) has to be replaced
by the more complicated expression

l l
= a(t)(k(x(t), xx) — —ai(t) Y (k(x + k(xx))- (13)
k=1

k=1

with k(xg) = 1320 k(xpm, xx) anda;(t) = 232! ain(t). It should be noted that not only in training but
also in testing, each pattern should be centered, using the training mean.
Now we state the convergence properties of the KHA (Eq. 7) as a theorem:

Theorem 1 For a finite set of centered data (presented infinitely often) Aninitially in general positiortt (7)
(and equivalently (10)) will converge with probability’ 5nd the rows oW will approach the first r normalized
eigenvectors of the correlation matrixin the RKHS, ordered by decreasing eigenvalue.

The proof of theorem 1 is straightforward if we note that for a finite set of {ata. .., x;}, we can induce
from a given kernek, ankernel PCA may2])

(I)l X = Ki%(k(xvxl)a R k(X, Xl))

satisfying
Dy(x;) - Pu(x5) = k(xi, x5).
By applying the GHA in the space spanned by the kernel PCA map, (i.e., replacing each occurréfxg of
with ®;(x) in Eq. 7, and noting that this timaV lies inR! rather than in"), we obtain an algorithm ik which
is exactly equivalent to the KHA i". The convergence of the KHA then follows from the convergence of the
GHA in R. It should be noted that, in practice, this approach cannot be taken to construct an iterative algorithm
since it involves the computation B

“4.e., A is neither the zero vector nor orthogonal to the eigenvectors.
SAssuming that the input data is not always orthogonal to the initializatioh.of
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Figure 1: Two dimensional examples, with data generated in the following #+aglues have uniform distribution ir-1, 1],
y-values are generated frogp = —z2 + £, where¢ is normal noise with standard deviation 0.2. From left to right, contour
lines of constant value of the first three PCs obtained from KPCA and KHA with degree-2 polynomial kernel.

4 Experiments

4.1 Toy example

Figure 1 shows the first three PCs of a toy data set, extracted by KPCA and KHA with a polynomial kernel. Visual
similarity of PCs from both algorithms show the approximation capability of KHA to KPCA.

4.2 Image hyperresolution

The problem of image hyperresolution is to reconstruct a high resolution image based on one or several low
resolution images. The former case, which we are interested in, requires prior knowledge about the image class
to be reconstructed. In our case, we encode the prior knowledge in the kernel principal components of a large
image database. In contrast to linear PCA, KPCA is capable of capturing part of the higher-order statistics which
are particularly important for encoding image structure [8]. Capturing these higher-order statistics, however, can
require a large number of training examples, particularly for larger image sizes and complex image classes such as
patches taken from natural images. This causes problems for KPCA, since KPCA requires to store and manipulate
the kernel matrix the size of which is the square of the number of examples, and necessitates the KHA.

To reconstruct a hyperresolution image from a low-resolution image whicmat@entained in the training set,
we first scale up the image to the same size as the training images, then map the image)(o#b ithe RKHS
F using ®, and project it into the KPCA subspace corresponding to a limited number of principal components
to get P®(x). Via the projectionP, the image is mapped to an image which is consistent with the statistics of
the high-resolution training images. However, at that point, the projection still livés imhich can be infinite-
dimensional. We thus need to find a corresponding poift’th— this is a preimage problem. To solve it, we
minimize || P®(x) — ®(z)||?> overz € RY. Note that this objective function can be computed in terms of inner
products and thus in terms of the kernel (2). For the minimization, we use gradient descent [9] with starting
points obtained using the method of [10]. There is a large number of surveys and detailed treatments of image
hyperresolution; we exemplarily refer the reader to [11].

Hyperresolution of face images. Here we consider a large database of detailed face images. The direct compu-
tation of KPCA for this dataset is not practical on standard hardware. The Yale Face Database B contains 5760
images of 10 persons [12]. 5,000 images were used for training while 10 randomly selected images which are dis-
joint from the training set were used to test the method (note, however, as there are only 10 persons in the database,
the same person, in different views, is likely to occur in training and test set). For traifiing, €0)-sized face

images were fed into linear PCA and KHA. Then, the test images were subsampled to20 grid and scaled
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Figure 2: Face reconstruction based on PCA and KHA using a Gaussian k&tsely) = exp(—|x — y|*/(202)))
with ¢ = 1 for varying numbers of principal components. The images can be examined in detail at
http://www.kyb.tuebingen.mpg.dekimki

up to the original scale6() x 60) by turning each pixel into 8 x 3 square of identical pixels, before doing the
reconstruction. Figure 2 shows reconstruction examples obtained using different numbers of components. While
the images obtained from linear PCA look like somewhat uncontrolled superpositions of different face images, the
images obtained from its nonlinear counterpart (KHA) are more face-like. In spite of its less realistic results, linear
PCA was slightly better than the KHA in terms of the mean squared error (average 9.20 and 8.48 for KHA and
PCA, respectively for 100 principal components). This stems from the characteristics of PCA which is constructed
to minimize the MSE, while KHA is not concerned with MSE in the input space. Instead, it seems to force the
images to be contained in the manifold of face images. Similar observations have been reported by [13].
Interestingly, when the number of examples is small and the sampling of this manifold is sparse, this can have
the consequence that the optimal KPCA (or KHA) reconstruction is an image that looks like the face of a wrong
person. In a sense, this means that the errors performed by KPCA areadorayshe manifold of faces. Figure
3 demonstrates this effect by comparing results from KPCA on 1000 example images (corresponding to a sparse
sampling of the face manifold) and KHA on 5000 training images (denser sampling). As the examples shows,
some of the misreconstructions that are made by KPCA due to the lack of training examples were corrected by the
KHA using a large training set.

Hyperresolution of natural images. Figure 4 shows the first 40 principal components of 40,000 natural image
patches obtained from the KHA using a Gaussian kernel. The image database was obtained from [14]. Again,
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Figure 3: Face reconstruction examples (frddnx 30 resolution) obtained from KPCA and KHA trained on 1,000 and 5,000
examples, respectively. Occasional erroneous reconstruction of images indicates that KPCA requires a large amount of data to
properly sample the underlying structure.
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Figure 4: The first 40 kernel principal components of 40,000X 14)-sized patches of natural images obtained from the KHA
using a Gaussian kernel with= 40.

a direct application of KPCA is not feasible for this large dataset. The plausibility of the obtained principal
components can be demonstrated by increasing the size of the Gaussian kernel such that the distance metric of
the corresponding RKHS becomes more and more similar to that of input space [2]. As can be seen in Fig. 4, the
principal components approach those of linear PCA [4] as expected.

To hyperresolution for larger images, 7,00@ x 14)-sized image patches are used for training the KHA. This
time, theo parameter is set to a rather small value (0.5) to capture the nonlinear structure of the images. The low
resolution input image is then divided into a set bf « 14)-sized windows each of which is reconstructed based
on 300 principal components. The problem of this approach is that the resulting image as a whole shows a block
structure since each window is reconstructed independent of its neighborhood (Fig. 5.f). To reduce this effect, the
windows are configured to slightly overlap into their neighboring windows (Fig. 5.€). In the final reconstruction,
the overlapping regions are averaged. PCA completely fails to get a hyperresolution image (Fig. 5.c). With a
larger number of principal components, it reconstructs the original low resolution image, while a smaller number
of components simply resulted in a smoothed image. Bilinear interpolation (Fig. 5.d) produces better results but,
of course, fails to recover the complex local structure, especially in the leaves. In this respect, the reconstruction
from KHA appears to be much better than the other two methods. This becomes apparent in the simple block-wise
reconstruction (Fig. 5.f) where each block, although not consistent with other blocks, shows a natural representation
of a patch of a natural scene.
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Figure 5. Example of natural image hyperresolution: a. 7original image of resol@®nx 400 , b. low resolution image
(100 x 100) stretched tal00 x 400, c. PCA reconstruction, d. bilinear interpolation, e. KPCA reconstruction with overlapping
windows, and f. block-wise KPCA reconstruction.



5 Discussion

This paper formulates the KHA, a method for the efficient estimation of the principal components in an RKHS.
As a kernelization of the GHA, the KHA allows for performing KPCA without storing the kernel matrix, such
that large datasets of high dimensionality can be processed. This property makes the KHA particularly suitable
for applications in statistical image hyperresolution. The images reconstructed by the KHA appear to be more
realistic than those obtained by using linear PCA since the nonlinear principal components capture also part of the
higher-order statistics of the input.

The time and memory complexity for each iteration of KHAO$r x [ x N) andO(r x [+1 x N), respectively,
wherer, [, and N are the number of principal components to be computed, the number of examples, and the
dimensionality of input space, respectivelyhis rather high time complexity can be lowered by precomputing
and storing the whole or part of the kernel matrix. When we store the entire kernel matrix, as KPCA does, the time
complexity reduces t®(r x [). The number of iterations for the convergence of KHA depends on the number and
characteristic of data. For superresolution experiments, iteration finishes when the squared distance between two
solutions from consecutive iterations is larger than a given threshold. It took around 40 and 120 iterations for face
and natural image hyperresolution experiments, respectively.

Since KHA assumes a finite number of examples, it is not a true online algorithm. However, many practical
problems can be processed in batch mode (i.e., all the patterns are known in advance and the number of them
is finite), but, it might be still useful to have an algorithm for applications where the patterns are not known in
advance and are time-varying such that KPCA cannot be applied. Some issues regarding online applications are
discussed in appendix.

A Appendix: online kernel Hebbian algorithm

The proof in Section 3.2 does not draw any conclusion on the convergence properties of KHA when the number
of independent samples ifi is infinite. Naturally, this property depends not only on the characteristics of the
underlying data but also on the RKHS concerned. A representative example of these spaces is the one induced by
a Gaussian kernel where all different patterns are independent. Convergence of an algorithm in this true online
problem might be of more theoretical interest, however, it is simply computationally infeasible as in this case
the solutions are represented only based on an infinite number of samples. Still, much practical concern lies in
applications where the sample set is not known in advance or the environment is not stationary.

This section present a modification of the batch type algorithm forstisi-onlingproblem where the number
of data points are finite but they are not known in advance or nonstationary. Two issues arise from this online
setting: 1. To guarantee the nonorthogonalitya@¥) andq (Section. 3.3.3); 2. To estimate the center of data in
online;

A.1 On the nonorthogonality condition of the initial solution

It should be noted from the original formulation of GHA in RKHS (7) that when the pattern presented at time
is orthogonal to the solutiow;(t), the outputy; becomes zero, and accordingly: will not change. In general,
according to the rule (7);(¢) cannot move into the direction orthogonal to itself. This implies that if the eigen-
vectorv; happens to be orthogonal+e;(t) at¢, w;(¢) will not be updated in the direction of; . If this is true for

all timet, (i.e., all patterns contained in the training set are orthogonal either to; theto thew;), then clearly

w; (t) will not converge tov;. As a consequence, it is a prerequisite for the convergencevttigit should not be
orthogonal tov; for all timest¢. Actually, this condition is equivalent to the nonorthogonalityypfinda; (¢) in the

dual space since

Wi-Vi = a;rq)‘I)TQi
= a/Kgq;

I
= O i) a
k=1

= AiXis
where the third equality comes from (23). This is exactly why it is assumeg(that0 during the stability analysis
of (20). From this dual representation, it is evident that for the batch problem, this condition can be satisfied with

®k(xy) anda; () in (13) for eachk, i = 1,...,1 are calculated only once at the beginning of each iteration.



probability 1 by simply initializinga;(0) randomly. However, this cannot be guaranteed for online learning since
the examples are not known in advance and accordiaglg, will in general not be contained in the span of the
training sample. Furthermore we do not have any method to directly manipujéte in 7. Accordingly, we
cannot guarantee this condition in general RKHSs.

Instead we will provide a practical way to satisfy the condition for the most commonly used three kernels
(Gaussian kernels, polynomial kernels, and tangent hyperbolic kernels). If we randomly choose & yetiar
RY and initializew; (0) with ®(x;(0)), then

= ®(x,(0)® " q

Z Qikk(xi(0)7 Xk).
k=1

Accordingly, in this case the orthogonality depends on the type of the kernel and is not always satisfied. However,
for the Gaussian, polynomial, and tangent hyperbolic kernels, this initialization method is enough to ensure that
w;(0) - v; # 0 since

1. The output of an even polynomial kernélk,y) = (x - y)?) is zero if and only if the inner product of two
inputx andy in the input space is zero. For odd polynomial kerng(s(y) = (x -y + ¢)P), the zero output
occursonly ifx - y = —¢;

2. The output of a Gaussian kernélx,y) = exp(—51z||x — y||?)) is not zero for a fixedr and boundeck
andy in the input space;

3. Similar to the case of odd polynomial kernel, the output of a tangent hyperbolic kéfrel( = tanh(x -
y —b))iszeroifand only ifx - y = b.

For the case of 1 and 3, random selectios ) in the input space yields(x(0), xx) # 0 in F with probability
1. Restricting the input data in a bounded domain guarantees this for the second case. Furthermore for each
kernel type, ifx(0) is chosen at random, eaéfix(0), x;) is also random. this assures the nonorthogonality with
probability 1.

Actually, for Gaussian kernels with very small this initialization method does not guarantee the nonorthogo-
nality in the real world (e.qg., digital computers with limited precision). In this case, two arbitrary mapped patterns
in F', which are far from each other in the input space would be regarded as orthogonal. This implies that there
is a possibility that(x;(0),x;) = 0, for all & (Figure 6). Furthermore, since all patterns are independent, the
eigenvector generally has to be expanded in all the examples. This implieg;tiiatshould be nonorthogonal to
all the data points in order to guarantee convergence. However, if all the patterns in input space are bounded in a
ball S which is the case in many practical applications, we can still satisfy this condition by constrgtingas
a linear combination of the mapped patterns, e,g., sampl&diira small enough interval (Figure 7).

It should be noted that the above discussion is still valid for non-stationary environments; i€a time-
varying vector. In this case, the orthogonality condition ensures not the convergence but the tracking capability of
the algorithm with the additional condition that the presentation of the patterns is fast enough to keep track of the
change in the environment. In this casé;) should not tend to zero but to a small constant.

A.2 Kernelized update rule
The basic algorithm is the same as in (11), except #hdd) = ®(x;(0)) with randomly choserx;(0) (i.e.,
a(0);0 = 1 anda(0);; = 0 for j > 0) anda(t);; = 0 for all j > ¢. Then, we get the component-wise update rule:
nyi(t) it J({t)=j
i(t+1)= i .
wi(t 1) { aij (t) = nyi(t) X j—1 ar;(H)yx(t) - otherwise,
where

t—1 t—1
yi(t) = Y ai(t)@(x(k) T B(x(1)) = Y awm(O)k(x(k),x(1)).
k=1 k=1

It should be noted that for online cadét) = ¢ and accordingly, the dimensionality of solution vecidncreases
proportionally tot.
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Figure 6: Example of non-convergence of the online algorithm for a Gaussian kernel: Small black circles represent the locations
of patterns in the input space while the large circles around them show the non-orthogonal regions. Gray circles show the region
covered byv;. The white circle is the region covered k; (0). If two regions covered by;(0) andv; do not overlap each

other, then they are orthogonal.

A.3 Centering data

Centering can be done by subtracting the sample mean from all patterns. Since this sample mean is not available
for the online problem, we estimate at each time step the mean based only on the available data. In this case a
pattern presented at timd®(x(t))) is replaced by

O(x(t) = (x(t)) — D(x(t)), (14)

where®(x(t)) is the estimated mean at time- 1: ®(x(t)) = %22;11 ®(x(k)). Now, w andy are represented
based on the new centered expansions as

wilt) = 3 an(Bx(k)
k=1

- iaik(t) (@(x(kz)) — % i <I>(x(l)))> ;
k=1

"All the patterngb(x(k)) (k < t) in w andy have to be re-centered based on the new estimation of the mean.

10



Figure 7: Example of initializingw;(0) for a Gaussian kernel: Sampling points are not depicted. Instead, non-orthogonal
regions are marked with dotted circles. If the sampling interval is small enough so that these regions, ¢beerw; (0)
cannot be not orthogonal to all the data points witfiin

wherew;(0) = ®(x;(0)) and

w(t) = B(x()- 3 an()B(x(k))
k=1
= z_:aik(t)k(x( - = [Zam (ik‘ x(1), X(k)))]
k=0

=0

_% (2_: k(x(t)7x(/€))> (2_: ail(t)> +tl2 (2_: k(x(k),x(l))) <X_: am(t)> . (15)
k=0 1=0 k,1=0 0

Then, a new update rule (in component-wise form) based on (27)-(28) is obtained as

St 1) (w1 3 w0x0)|
) Kk nyi<t>zalk<t>yz<t>> (@(x(k))—izmxanﬂ
=1

k=0 1=0
t—1
+nyi(t) (‘I’(X(t)) - % cI)(x(l))) ; (16)
=0
the solution of which can be obtained from
a(t+1) = { nyi(t) + ¢ [Z o (@in(t) = nyi(t) 2oy am(O)m(?)) + nyr(t)] k=t 9
aik(t) — Uyz( ) iy @k (t)yi(t) otherwise.
For the computation af(t), YL, k(x(k), x(1)) and ", _ k(x(k), x(i)) are updated only for— 1. Accord-

ingly the time complexity of each step@(r x t x N).

11
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