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Abstract

The quantum-limited line width of a laser cavity is enhanced above the Schawlow–Townes
value by the Petermann factor K , due to the non-orthogonality of the cavity modes. We derive
the relation between the Petermann factor and the residues of poles of the scattering matrix and
investigate the statistical properties of the Petermann factor for cavities in which the radiation
is scattered chaotically. For a single scattering channel we determine the complete probability
distribution of K and �nd that the average Petermann factor 〈K〉 depends non-analytically on
the area of the opening, and greatly exceeds the most probable value. For an arbitrary number
N of scattering channels we calculate 〈K〉 as a function of the decay rate � of the lasing mode.
We �nd for N/1 that for typical values of � the average Petermann factor 〈K〉 ˙ √

N/1 is
parametrically larger than unity. c© 2000 Elsevier Science B.V. All rights reserved.

PACS: 42.50.Lc; 42.50.Ar; 42.60.Da
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1. Introduction

Laser action selects a mode in a cavity and enhances the output intensity in this mode
by a non-linear feedback mechanism. Vacuum 
uctuations of the electromagnetic �eld
ultimately limit the narrowing of the emission spectrum [1]. The quantum-limited line
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width, or Schawlow–Townes line width,

�!ST = 1
2�

2=I ; (1.1)

is proportional to the square of the decay rate � of the lasing cavity mode and inversely
proportional to the output power I (in units of photons=s). This is a lower bound for
the line width when � is much less than the line width of the atomic transition and
when the lower level of the transition is unoccupied. Many years after the work of
Schawlow and Townes it was realized [2–4] that the true fundamental limit is larger
than Eq. (1.1) by a factor K that characterizes the non-orthogonality of the cavity
modes. This excess noise factor, or Petermann factor, has generated an extensive
literature [4–10].
Apart from its importance for cavity lasers, the Petermann factor is of fundamental

signi�cance in the more general context of scattering theory. A lasing cavity mode is
associated with a pole of the scattering matrix in the complex frequency plane. We
will show that the Petermann factor is proportional to the squared modulus of the
residue of this pole. Poles of the scattering matrix also determine the position and
height of resonances of nuclei, atoms, and molecules [11]. Powerful numerical tools
that give access to poles even deep in the complex plane have been developed recently
[12]. They can be used to determine the residues of the poles as well. Our work is
of relevance for these more general studies, beyond the original application to cavity
lasers.
Existing theories of the Petermann factor deal with cavities in which the scattering is

essentially one-dimensional, because the geometry has a high degree of symmetry. For
such cavities the framework of ray optics provides a simple way to solve the problem
in a good approximation [6,7]. This approach breaks down if the light propagation
in the cavity becomes chaotic, either because of an irregular shape of the boundaries
(like for the cavity depicted in Fig. 1) or because of randomly placed scatterers. The
method of random-matrix theory is well-suited for such chaotic cavities [13,14]. Instead
of considering a single cavity, one studies an ensemble of cavities with small variations
in shape and size, or position of the scatterers. The distribution of the scattering matrix
in this ensemble is known. Recent work has provided a detailed knowledge on the
statistics of the poles [15–19]. Much less is known about the residues [20–22]. In this
work we �ll the remaining gap to a considerable extent.
The outline of this paper is as follows. In Section 2 we derive the connection between

the Petermann factor and the residue of the pole of the lasing mode. The residue in
turn is seen to be characteristic for the degree of non-orthogonality of the modes. In
this way we make contact with the existing literature on the Petermann factor [9,10].
In Section 3 we study the single-channel case of a scalar scattering matrix. This

applies to a cavity that is coupled to the outside via a small opening of area A. �2=2�
(with � the wavelength of the lasing mode). For preserved time-reversal symmetry
(the relevant case in optics) we �nd that the ensemble average of K − 1 depends
non-analytically ˙T ln T−1 on the transmission probability T through the opening,
so that it is beyond the reach of perturbation theory even if T.1. We present a
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Fig. 1. Chaotic cavity that radiates light from a small opening.

complete resummation of the perturbation series that overcomes this obstacle. We derive
the conditional distribution P(K) of the Petermann factor at a given decay rate � of
the lasing mode, valid for any value of T . The most probable value of K − 1 is ˙T .
Hence it is parametrically smaller than the average.
In a cavity with such a small opening the deviations of K from unity are very small.

For larger deviations we study, in Section 4, the multi-channel case of an N × N
scattering matrix, which corresponds to an opening of area A ≈ N�2=2�. The lasing
mode acquires a decay rate � of order �0 = NT�=2� (with � the mean spacing of
the cavity modes). We compute the mean Petermann factor as a function of � for
broken time-reversal symmetry, which is technically simpler than the case of preserved
time-reversal symmetry, but qualitatively similar. We �nd a parametrically large mean
Petermann factor K˙

√
N .

Our conclusions are given in Section 5. The main results of Sections 3 and 4 have
been reported in Refs. [23,24], respectively.

2. Relationship between Petermann factor and residue

Modes of a closed cavity, in the absence of absorption or ampli�cation, are eigen-
values !n of a Hermitian operator H . This operator can be chosen real if the system
possesses time-reversal symmetry (symmetry index � = 1), otherwise it is complex
(�=2). For a chaotic cavity, H can be modeled by an M ×M Hermitian matrix with
independent Gaussian distributed elements:

P(H)˙ exp
[
−�M
4�2

trH 2
]
: (2.1)

(For � = 1 (2), this is the Gaussian orthogonal (unitary) ensemble [14].) The mean
density of eigenvalues is the Wigner semicircle:

�(!) =
M
2��2

√
4�2 − !2 : (2.2)
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The mean mode spacing at the center !=0 is �=��=M . (The limit M → ∞ at �xed
spacing � of the modes is taken at the end of the calculation.)
A small opening in the cavity is described by a real, non-random M × N coupling

matrix W , with N the number of scattering channels transmitted through the opening.
(For an opening of area A; N ' 2�A=�2 at wavelength �.) Modes of the open cavity
are complex eigenvalues (with negative imaginary part) of the non-Hermitian matrix

H= H − i�WW † : (2.3)

In absence of ampli�cation or absorption, the scattering matrix S at frequency ! is
related to H by [11,25]

S = 5− 2�iW †(!−H)−1W : (2.4)

The scattering matrix is a unitary (and symmetric, for � = 1) random N × N matrix,
with poles at the eigenvalues of H. It enters the input–output relation

aoutm (!) =
N∑
n=1

Smn(!)ainn (!) ; (2.5)

which relates the annihilation operators aoutm of the scattering states that leave the cavity
to the annihilation operators ainn of states that enter the cavity. The indices n; m label
the scattering channels.
We now assume that the cavity is �lled with a homogeneous amplifying medium

(constant ampli�cation rate 1=�a over a large frequency window 
a=L�, L/N ). This
adds a term i=2�a to the eigenvalues, shifting them upwards towards the real axis. The
scattering matrix

S = 5− 2�iW †(!−H− i=2�a)−1W (2.6)

is then no longer unitary, and the input–output relation changes to [26,27]

aoutm (!) =
N∑
n=1

Smn(!)ainn (!) +
N∑
n=1

Qmn(!)b†n(!) : (2.7)

All operators ful�ll the canonical bosonic commutation relations [an(!); a†m(!
′)] =

�nm�(!− !′). As a consequence,

Q(!)Q†(!) = S(!)S†(!)− 5 : (2.8)

The operators b describe the spontaneous emission of photons in the cavity and have
expectation value

〈b†n(!)bm(!′)〉= �nm�(!− !′)f(!; T ) ; (2.9)

with f(!; T )=[exp(˝!=kBT )−1]−1 the Bose–Einstein distribution function at frequency
! and temperature T .
In the absence of external illumination (〈a†inain〉 = 0), the photon current per fre-

quency interval,

I(!) =
1
2�

N∑
m=1

〈aout†m (!)aoutm (!)〉 ; (2.10)
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is related to the scattering matrix by Kirchho�’s law [22,23]

I(!) = f(!; T )
1
2� tr [5− S

†(!)S(!)] : (2.11)

For ! near the laser transition we may replace f by the population inversion factor
Nup=(Nlow − Nup), where Nup and Nlow are the mean occupation numbers of the upper
and lower levels of the transition. In this way the photon current can be written in the
form

I(!) =
1
2�

Nup
Nup − Nlow tr [S

†(!)S(!)− 5] ; (2.12)

that is suitable for an amplifying medium. (Alternatively, one can associate a negative
temperature to an amplifying medium.)
The lasing mode is the eigenvalue 
 − i�=2 closest to the real axis, and the laser

threshold is reached when the decay rate � of this mode equals the ampli�cation rate
1=�a. Near the laser threshold we need to retain only the contribution from the lasing
mode (say mode number l) to the scattering matrix (2.6),

Snm =−2�i (W
†U )nl(U−1W )lm

!− 
 + i�=2− i=2�a ; (2.13)

where U is the matrix of right eigenvectors of H (no summation over l is implied).
The photon current near threshold takes the form

I(!) =
2�Nup

Nup − Nlow
(U †WW †U )ll(U−1WW †U−1†)ll
(!− 
)2 + 1

4 (� − 1=�a)2
: (2.14)

This is a Lorentzian with full width at half maximum �! = � − 1=�a. The coupling
matrix W can be eliminated by writing

− �(U †WW †U )ll = Im(U †HU )ll =−�
2
(U †U )ll ; (2.15a)

− �(U−1WW †U−1†)ll = Im(U−1HU−1†)ll =−�
2
(U−1U−1†)ll : (2.15b)

The total output current is found by integrating over frequency,

I = (U †U )ll(U−1U−1†)ll
Nup

Nup − Nlow
�2

�!
: (2.16)

Comparison with the Schawlow–Townes value (1.1) shows that

�!= 2K
Nup

Nup − Nlow �!ST ; (2.17)

where the Petermann factor K is identi�ed as

K = (U †U )ll(U−1U−1†)ll¿1 : (2.18)

For time-reversal symmetry, we can choose U−1 =UT, and �nd K = [(UU †)ll]2. The
factor of 2 in the relation between �! and �!ST occurs because we have computed
the laser line width in the linear regime just below the threshold, instead of far above
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the threshold. The e�ect of the non-linearities above threshold is to suppress the am-
plitude 
uctuations while leaving the phase 
uctuations intact [28], hence the simple
factor of two reduction of the line width. The factor Nup=(Nup − Nlow) accounts for
the extra noise due to an incomplete population inversion. The remaining factor K is
due to the non-orthogonality of the cavity modes [3,4], since K = 1 if U is unitary.

3. Single scattering channel

Relation (2.18) serves as the starting point for a calculation of the statistics of the
Petermann factor in an ensemble of chaotic cavities. In this section we consider the
case N = 1 of a single scattering channel, for which the coupling matrix W reduces
to a vector � = (W11; W21; : : : ; WM1). The magnitude |�|2 = (M�=�2)w, where w ∈
[0; 1] is related to the transmission probability T of the single scattering channel by
T = 4w(1 + w)−2 [29]. We assume a basis in which H is diagonal (eigenvalues !q,
right eigenvectors |q〉, left eigenvectors 〈q|). In this basis the entries �q remain real
for � = 1, but become complex numbers for � = 2. Since the eigenvectors |q〉 point
into random directions, and since the �xed length of � becomes an irrelevant constraint
in the limit M → ∞, each real degree of freedom in �q is an independent Gaussian
distributed number [14]. The squared modulus |�q|2 has probability density

P(|�q|2) = 1
2�|�q|2

(
2�3|�q|2
w�

)�=2
exp

[
− ��

2

2w�
|�q|2

]
: (3.1)

Eq. (3.1) is a �2-distribution with � degrees of freedom and mean �w=�2.
We �rst determine the distribution of the decay rate � of the lasing mode, follow-

ing Ref. [30]. Since the lasing mode is the mode closest to the real axis, its decay
rate is much smaller than the typical decay rate of a mode, which is ' T�. Then
we calculate the conditional distribution and mean of the Petermann factor for given �.
The unconditional distribution of the Petermann factor is found by folding the condi-
tional distribution with the distribution of �, but will not be considered here.

3.1. Decay rate of the lasing mode

The ampli�cation with rate 1=�a is assumed to be e�ective over a window 
a = L�
containing many modes. The lasing mode is the mode within this window that has the
smallest decay rate �. For such small decay rates we can use �rst-order perturbation
theory to obtain the decay rate of mode q,

�q = 2�|�q|2 : (3.2)

The �2 distribution (3.1) of the squared moduli |�q|2 translates into a �2 distribution
of the decay rates:

P(�)˙�(2−�)=2 exp
(
−���
4w�

)
: (3.3)



H. Schomerus et al. / Physica A 278 (2000) 469–496 475

Ignoring correlations, we may obtain the decay rate of the lasing mode by considering
the L decay rates as independent random variables drawn from the distribution P(�).
The distribution of the smallest among the L decay rates is then given by

PL(�) = LP(�)

[
1−

∫ �

0
d�′ P(�′)

]L−1
: (3.4)

For small rates � we can insert distribution (3.3) and obtain

PL(�) ≈ 1√
�
exp
(
−L��
4w�

)[
erf
(
��
4w�

)]L−1
; � = 1 ; (3.5a)

PL(�) ≈ exp
(
−L��
2w�

)
; � = 2 : (3.5b)

Here erf (x) = 2�−1=2
∫ x
0 dy exp(−y2) is the error function. The decay rate of

the lasing mode decreases with increasing width of the ampli�cation window as
� ∼ w�(
a=�)−2=�.w�.

3.2. First-order perturbation theory

If the opening is much smaller than a wavelength, then a perturbation theory in �
seems a natural starting point. We assign the index l to the lasing mode, and write
the perturbed right eigenfunction |l〉′ =∑q dq|q〉 and the perturbed left eigenfunction
〈l|′ =∑q eq〈q|, in terms of the eigenfunctions of H . The coe�cients are dq =Uql=Ull
and eq = U−1

lq =U
−1
ll , i.e., we do not normalize the perturbed eigenfunctions but rather

choose dl = el = 1.
To leading order the lasing mode remains at 
 = !l and has width

� = 2�|�l|2 : (3.6)

The coe�cients of the wave function are

dq = i
��q�∗l
!q − !l ; eq = i

��∗q�l
!q − !l : (3.7)

The Petermann factor of the lasing mode follows from Eq. (2.18),

K =
(1 +

∑
q 6=l |dq|2)(1 +

∑
q 6=l |eq|2)

|1 +∑q 6=l dqeq|2

≈ 1 +
∑
q 6=l

|dq − e∗q |2; (3.8)

where we linearized with respect to � because the lasing mode is close to the real
axis. From Eq. (3.7) one �nds

K = 1 + (2�|�l|)2
∑
q 6=l

|�q|2
(!l − !q)2 : (3.9)

We seek the distribution P(K) and the average 〈K〉
;� of K for a given value of 

and �.
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For �=1, the probability to �nd an eigenvalue at !q given that there is an eigenvalue
at !l vanishes linearly for small |!q − !l|, as a consequence of eigenvalue repulsion
constrained by time-reversal symmetry. Since expression (3.9) for K diverges quadrat-
ically for small |!q − !l|, we conclude that 〈K〉
;� does not exist in perturbation
theory. 1 This severely complicates the problem.

3.3. Summation of the perturbation series

To obtain a �nite answer for the average Petermann factor we need to go beyond
perturbation theory. By a complete summation of the perturbation series we will in this
section obtain results that are valid for all values T61 of the transmission probability.
Our starting point are the exact relations

dqzl = !qdq − i��q
∑
p

�∗pdp ; (3.10a)

eqzl = !qeq − i��∗q
∑
p

�pep ; (3.10b)

between the complex eigenvalues zq of H and the real eigenvalues !q of H . Distin-
guishing between q= l and q 6= l, we obtain three recursion relations:

zl = !l − i�|�l|2 − i��l
∑
q 6=l

�∗qdq ; (3.11a)

idq =
��q

zl − !q


�∗l +∑

p 6=l
�∗pdp


 ; (3.11b)

ieq =
��∗q

zl − !q


�l +∑

p 6=l
�pep


 : (3.11c)

We now use the fact that zl is the eigenvalue closest to the real axis. We may there-
fore assume that zl is close to the unperturbed value !l and replace the denominator
zl −!q in Eq. (3.11c) by !l −!q. That decouples the recursion relations, which may
then be solved in closed form

zl = !l − i�|�l|2(1 + i�A)−1 ; (3.12a)

idq =
��q�∗l
!l − !q (1 + i�A)

−1 ; (3.12b)

ieq =
��∗q�l
!l − !q (1 + i�A)

−1 : (3.12c)

1 For broken time-reversal symmetry there is no divergence. We can use the known two-point correlation
function R(!l; !q) of the Gaussian unitary ensemble to obtain 〈K〉
;� = 1 + 1

3�T�=� for T.1.
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We have de�ned

A=
∑
q 6=l

|�q|2(!l − !q)−1 : (3.13)

The decay rate of the lasing mode is

� =−2 Im zl = 2�|�l|2(1 + �2A2)−1 : (3.14)

From Eq. (3.8) we �nd

K = 1 +
2��
�

B
1 + �2A2 ; (3.15)

with

B= �
∑
q 6=l

|�q|2(!l − !q)−2 : (3.16)

The problem is now reduced to a calculation of the joint probability distribution
P(A; B). This problem is closely related to the level curvature problem of random-matrix
theory [31–33]. The calculation is presented in Appendix A. The result is

P(A; B) =
�
24

(
8
�w

)�=2 (�2A2 + w2)�
B2+3�=2

exp
[
−�w
2B

(
�2A2
w2

+ 1
)]

: (3.17)

3.4. Probability distribution of the Petermann factor

From Eqs. (3.1), (3.14), (3.15), and (3.17) we can compute the probability
distribution

P(K) = 〈Z〉−1
〈
�
(
K − 1− 2��

�
B

1 + �2A2

)
Z
〉
; (3.18a)

Z = �(
 − !l)�
(
� − 2�|�l|2

1 + �2A2

)
; (3.18b)

of K at �xed � and 
 by averaging over |�l|2, A, and B. In principle one should also
require that the decay rates of modes q 6= l are bigger than �, but this extra condition
becomes irrelevant for � → 0. The average of Z over |�l|2 with Eq. (3.1) yields a
factor (1 + �2A2)�=2. (Only the behavior of P(|�l|2) for small |�l|2 matters, because
we concentrate on the lasing mode.) After integration over B the distribution can be
expressed as a ratio of integrals over A,

P(K) =
(2�)2�
3�

�w
�

(
(K − 1)�
w�

)−2−3�=2

×
∫ ∞

0
dA
(1 + �2A2=w2)�
(1 + �2A2)1+� exp

[
−��w�(1 + �

2A2=w2)
(K − 1)�(1 + �2A2)

]

×
(∫ ∞

0
dA

(1 + �2A2)�=2
(1 + �2A2=w2)1+�=2

)−1
: (3.19)
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Fig. 2. Probability distribution of the rescaled Petermann factor � = (K − 1)�=�T for T = 1 and T.1, in
the presence of time-reversal symmetry. The solid curves follow from Eqs. (3.20) (with �=1) and (3.21a).
The data points follow from a numerical simulation of the random-matrix model. The inset shows the results
(3.20) (with � = 2) and (3.21b) for broken time-reversal symmetry.

We introduce the rescaled Petermann factor � = (K − 1)�=�T . A simple result for
P(�) follows for T = 1,

P(�) =
4��2�
3�2+3�=2

exp
[
−��
�

]
; (3.20)

and for T. 1,

P(�) =
�
12�2

(
1 +

�
2�

)
exp

[
− �
4�

]
; � = 1 ; (3.21a)

P(�) =
�

8
√
2�5

(
1 +

2�
3�
+
�2
3�2

)
exp

[
− �
2�

]
; � = 2 : (3.21b)

As shown in Fig. 2, the distributions are very broad and asymmetric, with a long tail
towards large �.
To check our analytical results we have also done a numerical simulation of the

random-matrix model, generating a large number of random matrices H and computing
K from Eq. (2.18). As one can see from Fig. 2, the agreement with the theoretical
predictions is 
awless.
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Fig. 3. Average of the rescaled Petermann factor � as a function of transmission probability T . The solid
curve is the result (3.22) in the presence of time-reversal symmetry, the dashed curve is the result (3.24)
for broken time-reversal symmetry. For small T , the solid curve diverges ˙ ln T−1 while the dashed curve
has the �nite limit of �=3. For T = 1 both curves reach the value 2�=3.

3.5. Mean Petermann factor

The distribution (3.19) gives for preserved time-reversal symmetry (�=1) the mean
Petermann factor

〈K〉
;� = 1− �
�
2�
3

G2222

(
w2
∣∣∣∣ 0 0
− 1
2 − 1

2

)

G2222

(
w2
∣∣∣∣ − 1

2
1
2

−1 0

) ; (3.22)

in terms of the ratio of two Meijer G-functions. We have plotted the result in Fig. 3,
as a function of T = 4w(1 + w)−2.
It is remarkable that the average K depends non-analytically on T , and hence on

the area of the opening. (The transmission probability T is related to the area A of
the opening by T ' A3=�6 for T. 1 [34].) For T. 1, the average approaches the
form

〈K〉
;� = 1 + �6
T�
�
In
16
T
: (3.23)

The most probable (or modal) value of K − 1 ' T�=� is parametrically smaller than
the mean value (3.23) for T. 1. The non-analyticity results from the relatively weak
eigenvalue repulsion in the presence of time-reversal symmetry. If time-reversal sym-
metry is broken, then the stronger quadratic repulsion is su�cient to overcome the
!−2 divergence of perturbation theory (3.9) and the average K becomes an analytic
function of T . For this case, we �nd from Eq. (3.19) the mean Petermann factor

〈K〉
;� = 1 + ��
4�w

3(1 + w2)
; (3.24)

shown dashed in Fig. 3.
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4. Many scattering channels

For arbitrary number of scattering channels N the coupling matrix W is an
M × N rectangular matrix. The square matrix �W †W has N eigenvalues (M�=�)wn.
The transmission coe�cients of the eigenchannels are

Tn =
4wn

(1 + wn)2
: (4.1)

A single hole of area A/ �2 (at wavelength �) corresponds to N ' 2�A=�2 fully
transmitted scattering channels, with all Tn = wn = 1 the same.
As in the single-channel case, we �rst determine the distribution of the decay rate �

of the lasing mode. This decay rate is smaller than the typical decay rate �0 =TN�=2�
of the non-lasing modes. Then we calculate the mean Petermann factor 〈K〉 for given
� and investigate its behavior for the atypically small decay rates of the lasing mode.

4.1. Decay rate of the lasing mode

The distribution of decay rates P(�) has been calculated by Fyodorov and Sommers.
For broken time-reversal symmetry the result is [17,18]

P(�) =
�
�
F1

( �
�
�
)
F2

( �
�
�
)
; (4.2a)

F1(y) =
1
2�

∫ ∞

−∞
dx e−ixy

N∏
n=1

1
gn − ix ; (4.2b)

F2(y) =
1
2

∫ 1

−1
dx e−xy

N∏
n=1

(gn + x) ; (4.2c)

where gn =−1 + 2=Tn. For identical gn ≡ g the two functions F1 and F2 simplify to

F1(y) =
1

(N − 1)!y
N−1e−gy ; (4.3a)

F2(y) =
N∑
n=0

(−1)n
(
N
n

)
gN−n

dn

dyn

(
sinh y
y

)
; (4.3b)

and a convenient form of the distribution function is

P(�) =
�

2��2(N − 1)!
∫ N�=�0

N (1−T )�=�0
dx xN e−x : (4.4)

The behavior of P(�) for various numbers N of fully transmitted (T = 1) scattering
channels is illustrated in Fig. 4.
The result for preserved time-reversal symmetry is a bit more involved [19]. Fortu-

nately, we can draw all important conclusions from the results for broken time-reversal
symmetry, on which we will concentrate here.
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Fig. 4. Decay-rate distribution P(�) of a chaotic cavity with an opening that supports N=2, 4, 6, 8, 10, 12 ful-
ly transmitted scattering channels. Computed from Eq. (4:2), for the case of broken time-reversal symmetry.

For large N , the distribution P(�) becomes non-zero only in the interval �0¡�¡
�0=(1− T ), where it is equal to [35,36]

P(�) =
�0
T�2

; �0¡�¡�0=(1− T ) : (4.5)

This limit is �-independent. The smallest decay rate �0 corresponds to the inverse
mean dwell time in the cavity.
We are interested in the “good cavity” regime, where the typical decay rate �0

is small compared to the ampli�cation bandwidth 
a. From �0 = TN�=2� it follows
that the number L ' 
a=� of ampli�ed modes is then much larger than TN . In this
regime the decay rate of the lasing mode (the smallest among the L decay rates in the
frequency window 
a) drops below �0. The asymptotic result (4.5) cannot be used
in this case, since it does not describe accurately the tail �.�0. Going back to the
exact result (4:2) we �nd for the tail of the distribution the expression

P(�) =
�

NT 2�
[1 + erf (u)] + O(N−3=2) ; (4.6)

where we have de�ned u=
√
N=2(�=�0−1). The distribution PL(�) of the lasing mode

follows from P(�) by means of Eq. (3.4). We �nd that it has a pronounced maximum
at a value umax determined by

exp(−u2max)
[1 + erf (umax)]2

=
L− 1√
2N

√
�(g+ 1)
4

: (4.7)

For L/
√
N (and hence also in the good cavity regime) we �nd umax ∼ −√

ln L¡ 0,
and the deviation of � from �0 is of order �

√
N.�0 (as long as L. eN ).

4.2. Mean Petermann factor

Eigenfunction correlations of non-Hermitian operators have been studied in
Refs. [20–22]. The eigenfunction autocorrelator considered in these studies is directly
connected to the Petermann factor K . Ref. [20] provides a convenient expression of
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the mean Petermann factor,

M�〈K〉
;��(!) = lim
�→0+

〈(
tr

�
(!−H)(!∗ −H†) + �2

)2〉
: (4.8)

In Ref. [20] this average has been calculated perturbatively for N/ 1, with the result

〈K〉
;� ≈ −N
(
�
�0

− 1
)(

(1− T )�
�0

− 1
)

(4.9)

for �0¡�¡�0=(1 − T ). This result is at the same level of approximation as
Eq. (4.5) for the distribution of the decay rates, i.e., it does not describe the range
�. �0 of atypically small decay rates. Since that is precisely the range that we need
for the Petermann factor, we cannot use the existing perturbative results. We have
calculated the mean Petermann factor non-perturbatively for any � and N , assuming
broken time-reversal symmetry. The derivation is given in Appendix B. The �nal result
for the mean Petermann factor is

〈K〉
;� = 1 + 2S(��=�)
F1(��=�)F2(��=�)

; (4.10a)

S(y) =−
∫ y

0
dy′F1(y′)

@
@y′

F2(y′) ; (4.10b)

with F1 and F2 given in Eq. (4:2). For identical gn ≡ g we can use Eq. (4:3) and
obtain by successive integrations by parts

S(y) =
N−1∑
n=0

(−1)n
n!

yn
dn

dyn

{
e−gy

d
dy

(
sinh y
y

)}
: (4.11)

For N=1 and �.� we recover the single-channel result (3.24) of the previous section.
In what follows we will continue to assume for simplicity that all gn’s are equal to a
common value g.
The large-N behavior can be conveniently studied from the expression

S(y) =− 1
4y2(N − 1)!

∫ y(g+1)

y(g−1)
dx xN−1e−x[x − (g− 1)y][x − (g+ 1)y] ;

(4.12)

because the integral permits a saddle-point approximation. For �¿�0 we recover
Eq. (4.9), but now we can also study the precise behavior of the mean Petermann
factor for �.�0, hence also for decay rates relevant for the lasing mode. The results
will again be presented in terms of the rescaled parameter u =

√
N=2(�=�0 − 1). We

expand the integrands in Eqs. (4.4) and (4.12) around the saddle point at x=N (which
coincides with the upper integration limit at � = �0) and keep the �rst non-Gaussian
correction. This yields

〈K〉
;� = T
√
2N [F(u) + u]− T (g− 1) u2

+TF(u)
[
(3− g)u+ 4

3u
3 + 4

3 (1 + u
2)F(u)

]
+O(N−1=2) ; (4.13a)
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F(u) =
exp (−u2)√
�[1 + erf (u)]

: (4.13b)

For � = �0 (u= 0) this simpli�es to

〈K〉
;�=�0 = T
(√

2N
� +

4
3�

)
: (4.14)

We see that the mean Petermann factor varies on the same scale of � as the
decay-rate distribution P(�), Eq. (4.6). However, while P(�) decays exponentially
for u. − 1, the mean Petermann factor displays an algebraic tail

〈K〉
;� =−T
√
N

u
√
2
+ 1− T + O(u−2) : (4.15)

For an ampli�cation window 
a = L� with L/
√
N we found in Section 4.1 that

the decay rate � of the lasing mode drops below �0 (the rescaled parameter umax ∼
−√

ln L). Still, the mean Petermann factor

〈K〉
;� ∼
√

N
ln L

(4.16)

remains parametrically larger than unity (as long as L.
√
NeN ).

We now compare our analytical �ndings with the results of numerical simulations.
We generated a large number of random matricesH with dimension M=120 (M=200)
for N = 2; 4; 6; 8 (N = 10; 12) fully transmitted scattering channels (g= T = 1). Fig. 5
shows the mean K at given �. We �nd excellent agreement with our analytical result
(4:10).
The behavior 〈K〉 ∼ √

N at � = �0 is shown in Fig. 6. The inset depicts the
distribution of K at � = �0 for N = 10, which only can be accessed numerically. We
see that the mean Petermann factor is somewhat larger than the most probable (or
modal) value.

4.3. Preserved time-reversal symmetry

In the derivation of the mean Petermann factor for broken time-reversal symmetry
Appendix B) it turned out that the �nal result is formally connected to the expression
for the decay-rate distribution P(�), in as much as both expressions are built from
the factors F1 (involving non-compact bosonic degrees of freedom of the saddle-point
manifold) and F2 (involving compact bosonic degrees of freedom of that manifold).
We tried to translate this description to the case of preserved time-reversal symmetry
(�=1), by operating in the same way on the compact and non-compact factors of the
expression of Ref. [19], but could obtain a satisfactory result only for N = 2,

〈K〉= 1
2�0

�(� − �0) exp(�=�0) + �20 sinh(�=�0)
� cosh(�=�0)− �0 sinh(�=�0) : (4.17)

In Fig. 7 this expression is compared to the result of a numerical simulation.
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Fig. 5. Average Petermann factor 〈K〉 as a function of the decay rate � for di�erent values N of fully
transmitted scattering channels. The solid curves are the analytical result (4:10), the data points are obtained
by a numerical simulation. Time-reversal symmetry is broken.

Fig. 6. Average of the Petermann factor K at � = �0 as function of the number N of fully transmitted
scattering channels. The analytical result (4:10) for broken time-reversal symmetry (full curve) is compared
with the result of a numerical simulation (open circles for broken time-reversal symmetry, �lled circles
for preserved time-reversal symmetry). The dashed line is the large-N result (4.14). The inset shows the
distribution of K at � = �0 for N = 10.
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Fig. 7. Theoretical expectation (4.17) (full curve) and the result of a numerical simulation (data points) for
the average Petermann factor K in the presence of time-reversal symmetry, as a function of the decay rate
� for 2 fully transmitted scattering channels.

Fig. 8. Results of a numerical simulation of the average Petermann factor 〈K〉 in the presence of time-reversal
symmetry, as a function of the decay rate � for N fully transmitted scattering channels.

For larger numbers of channels we can draw our conclusions from the numerical
results that are presented in Fig. 8. Interestingly enough the data points for N channels
are close to the results for broken time-reversal symmetry with N=2 channels, when
the decay rate is given in units of �0. This is illustrated for N = 8 in Fig. 9. Such
a rule of thumb (motivated by the number of real degrees of freedom that enter the
non-Hermitian part of H) was already known for the decay rate distribution (inset in
Fig. 9). Hence the Petermann factor for the lasing mode should again display a sub-
linear growth with increasing channel number N . This expectation is indeed con�rmed
by the numerical simulations, see the �lled circles in Fig. 6.
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Fig. 9. Average Petermann factor 〈K〉 for N = 4, � = 2 [open circles: result of a numerical simulation,
curve: Eq. (4:10)] and for N = 8, � = 1 (�lled circles: result of a numerical simulation). The parameter �0
equals N�=2� in both cases, so it is twice as large for �= 2 as for �= 1. The inset depicts the probability
distribution of �.

5. Discussion

The Petermann factor K enters the fundamental lower limit of the laser line width
due to vacuum 
uctuations and is a measure of the non-orthogonality of cavity modes.
We related the Petermann factor to the residue of the scattering-matrix pole that pertains
to the lasing mode and computed statistical properties of K in an ensemble of chaotic
cavities. The technical complications that had to be overcome arise from the fact that
laser action selects a mode which has a small decay rate �, and hence belongs to a
pole that lies anomalously close to the real axis. Parametrically large Petermann factors
˙

√
N arise when the number N of scattering channels is large. For a single scatter-

ing channel the mean Petermann factor depends non-analytically on the transmission
probability T .
The quantity K is also of fundamental signi�cance in the general theory of scat-

tering resonances, where it enters the width-to-height relation of resonance peaks and
determines the scattering strength of a quasi-bound state with given decay rate �. If
we write the scattering matrix (2.6) in the form

Snm = �nm + �n�′m(!− 
 + i�=2)−1 ; (5.1)

then the scattering strengths �n; �′m are related to � by a sum rule. For resonances
close to the real axis (�.�) the relation is∑

n;m

|�n�′m|2 = �2 : (5.2)

For poles deeper in the complex plane, however, the sum rule has to be replaced by∑
n;m

|�n�′m|2 = K�2; K¿1 : (5.3)
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The method of �lter diagonalization (or harmonic inversion) that was used in Ref. [12]
to obtain for the H+3 molecular ion the location of poles even deep in the complex
plane can also be employed to determine the corresponding residues, and hence K .
The parameter K de�ned in Eq. (2.18) appears as a measure of mode non-

orthogonality also in problems outside of scattering theory. These problems involve
non-Hermitian operators that are not of the form (2.3) [21,22]. Many applications
share the common feature that they can be addressed statistically by an ensemble de-
scription, and that the physically relevant modes lie at the boundary of the complex
eigenvalue spectrum. The non-perturbative statistical methods reported in this paper
should prove useful in the investigation of some of these problems as well.
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Appendix A. Joint distribution of A and B

We calculate the joint distribution P(A; B) [Eq. (3.17)] of the quantities A
[Eq. (3.13)] and B [Eq. (3.16)] by generalizing the theory of Ref. [33]. We give
the lasing mode !l the new index M and assume that it lies at the center of the
semicircle (2.2), !M = 0. Other choices just renormalize the mean modal spacing �,
which we can set to �= 1. The quantities A and B are then of the form

A=
M−1∑
m=1

|�m|2
!m

; B=
M−1∑
m=1

|�m|2
!2m

: (A.1)

The joint probability distribution of A and B,

P(A; B) =

〈
�

(
A−

M−1∑
m=1

|�m|2
!m

)
�

(
B−

M−1∑
m=1

|�m|2
!2m

)〉
; (A.2)

is obtained by averaging over the variables {|�m|2; !m}. The quantities |�m|2 are inde-
pendent numbers with probability distribution (3.1). The joint probability distribution
of the eigenfrequencies {!m} of the closed cavity is the eigenvalue distribution of the
Gaussian ensembles (2.1) of random-matrix theory,

P({!m})˙
∏
i¡j

|!i − !j|� exp
[
−�M
4�2

∑
k

!2k

]
: (A.3)

Our choice �= 1 translates into � =M=�.
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The joint probability distribution of the eigenvalues {!m} (m=1; : : : ; M−1) is found
by setting !M =0 in Eq. (A.3). It factorizes into the eigenvalue distribution of M − 1
dimensional Gaussian matrices H ′ [again distributed according to Eq. (2.1)], and the
term

∏M−1
j=1 |!i|� = |detH ′|�.

In the �rst step of our calculation, we use the Fourier representation of the �-functions
in Eq. (A.2) and write

P(A; B)˙

〈∫ ∞

−∞
dx
∫ ∞

−∞
dy eixA+iyB

M−1∏
m=1

∫ ∞

0
d|�m|2P(|�m|2)

× exp

[
−ix

M−1∑
m=1

|�m|2
!m

− iy
M−1∑
m=1

|�m|2
!2m

]〉
; (A.4)

where the average refers to the variables {!m}. The integrals over |�m|2 can be per-
formed, resulting in

P(A; B)˙
∫
dx
∫
dy eixA+iyB

〈
detH ′2�

det[H ′2 + 2iw(xH ′ + y)=�2�]�=2

〉
; (A.5)

where the average is now over the Gaussian ensemble of H ′-matrices. It is our goal to
relate this average to autocorrelators of the secular polynomial of Gaussian distributed
random matrices, given in Refs. [37,38].
The determinant in the denominator can be expressed as a Gaussian integral,

P(A; B)˙
∫
dx
∫
dy eixA+iyB

∫
dz
∫
dH ′ detH ′2�

×exp
[
−��

2

4M
trH ′2 − z†

(
H ′2 +

2iw
��2 (xH

′ + y)
)
z
]
; (A.6)

where the M − 1 dimensional vector z is real (complex) for � = 1 (2). Since our
original expression did only depend on the eigenvalues of H ′, the formulation above
is invariant under orthogonal (unitary) transformations of H ′, and we can choose a
basis in which z points into the direction of the last basis vector (index M − 1). Let
us denote the Hamiltonian in the block form

H ′ =
(
V h
h† g

)
: (A.7)

Here V is a (M − 2) × (M − 2) matrix, g a number, and h a (M − 2) dimensional
vector. In this notation,

P(A; B)˙
∫
dx
∫
dy eixA+iyB

∫
dz
∫
dg
∫
dV
∫
dh

×det[V 2�(g− h†V−1h)2�]

×exp
[
−��

2

4M
(g2 + 2|h|2 + tr V 2)

]

×exp
[
−|z|2

(
g2 + |h|2 + 2iw

��2 (xg+ y)
)]

: (A.8)
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The integrals over x and y give �-functions,

P(A; B)˙
∫
dz
∫
dg
∫
dV
∫
dh det[V 2�(g− h†V−1h)2�]

×exp
[
−��

2

4M
(g2 + 2|h|2 + tr V 2)− |z|2(g2 + |h|2)

]

×�(A− gB)�(B− 2w|z|2=��2) : (A.9)

We then integrate over g and z,

P(A; B)˙
∫
dV dh det

[
V 2�

(
A
B
− h†V−1h

)2�]
B(�=2)(M−1)−2

×exp
[
−��

2

4M
(2|h|2 + tr V 2)− ��2B

2w

(
A2

B2
+ |h|2

)]
: (A.10)

We already anticipated B/ 1=M and omitted in the exponent a term −��2A2=4MB2.
The integral over h can be interpreted as an average over Gaussian random variables

with variance

h2 ≡ 〈|hi|2〉= 1
�2

1
B=w + 1=M

≈ w
�2B

(
1− w

MB

)
: (A.11)

For the stochastic interpretation one also has to supply the normalization constants
proportional to

h�(M−2) =
( w
�2B

)�(M−2)=2
exp

[
−�w
2B

]
: (A.12)

The integral over V is another Gaussian average, and thus

P(A; B)˙ Q�B(�=2)−2 exp
[
−�w
2B

(
1 +

�2A2
w2

)]
; (A.13a)

Q� =

〈
det

[
V 2�

(
A
B
− h†V−1h

)2�]〉
: (A.13b)

After averaging over h, one has now to consider for � = 1

Q1 =
〈
det
[
V 2
A2

B2
+ h4V 2[(tr V−1)2 + 2tr V−2]

]〉
; (A.14)

where only the even terms in V have been kept. The ratio of coe�cients in this
polynomial in A=B can be calculated from the autocorrelator [38]

G1(!;!′) =
〈det(V + !)(V + !′)〉

〈det V 2〉
= − 3

�2x
d
dx
sin �x
�x

∣∣∣∣
x=!−!′

(A.15)
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of the secular polynomial of Gaussian distributed real matrices V . This is achieved
by expressing the products of traces and determinants through secular coe�cients, and
these then as derivatives of the secular determinant,

〈det V 2(tr V−1)2〉
〈det V 2〉 =

@2

@!@!′G1(!;!
′)
∣∣∣∣
!=!′=0

= − @2

@!2
G1(!; 0)

∣∣∣∣
!=0

=
�2
5
; (A.16a)

2〈det V 2(tr V−2)〉
〈det V 2〉 =− 4

@2

@!2
G1(!; 0)

∣∣∣∣
!=0

: (A.16b)

[We used the translational invariance of G(!;!′).] Eqs. (A.11) and (A.15) yield

Q1 ˙
A2

B2
+

w2

�2B2 : (A.17)

For � = 2, the average over h yields the expression

Q2 ˙
A4

B4
+ q1h4

A2

B2
+ q2h8 ; (A.18a)

q1 = 6〈det V 4[(tr V−1)2 + tr V−2]〉 ; (A.18b)

q2 = 〈det V 4[(tr V )−4 + 6 tr V−2(tr V−1)2

+8 tr V−1 tr V−3 + 6 tr V−4 + 3(tr V−2)2]〉 : (A.18c)

The coe�cients can now be computed from the four-point correlator of the Gaussian
unitary ensemble [37]:

G2(!1; !2; !3; !4)

=
〈det(V + !1)(V + !2)(V + !3)(V + !4)〉

〈det V 4〉

=
3
2�4

[
cos�(!1 + !2 − !3 − !4)

(!1 − !3)(!1 − !4)(!2 − !3)(!2 − !4)

+
cos�(!1 + !3 − !2 − !4)

(!1 − !2)(!1 − !4)(!3 − !2)(!3 − !4)

+
cos�(!1 + !4 − !3 − !2)

(!1 − !3)(!1 − !2)(!4 − !3)(!4 − !2)
]
; (A.19a)

G2(!; 0; 0; 0) =
3

�3!3 (sin �!− �! cos�!) ; (A.19b)

G2(!;!; 0; 0) =
3

2�4!4 (cos 2�!− 1 + 2�2!2) : (A.19c)
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In this case

q1 =
@2

@!2
[6G2(!;!; 0; 0)− 18G2(!; 0; 0; 0)]

∣∣∣∣
!=0

= 2�2 ; (A.20a)

q2 =
@4

@!4
[10G2(!;!; 0; 0)− 15G2(!; 0; 0; 0)]

∣∣∣∣
!=0

= �2 ; (A.20b)

which gives

Q2 ˙ Q21 : (A.21)

Collecting results we obtain Eq. (3.17), where we also included the normalization
constant.

Appendix B. Derivation of Eq. (4:10) for the mean Petermann factor

The computation of the mean Petermann factor from expression (4.8) is facilitated
by the fact that it can be obtained from the same generating function [18,39],

	(!1; !2; u1; u2; �) =
〈
det[(!−H)(!∗ −H†)− (u1 − i�)(u2 − i�)]
det[(!−H)(!∗ −H†)− (u1 + i�)(u2 + i�)]

〉
; (B.1)

as the distribution function

�(!) = lim
�→0+

〈
tr

�
(!∗ −H†)(!−H) + �2

�
(!−H)(!∗ −H†) + �2

〉
(B.2)

of poles in the complex plane. (The distribution of poles is related to the distribution
of decay rates by P(�) = 1

2��(!)|!=
−i�=2.) The relations are

��(!) = lim
�→0+

(
@2

@!2@!∗
2
+
1
2

@2

@!2@!∗
1
+
1
2

@2

@!1@!∗
2

)

× 	(!1; !2; 0; 0; �)|!1=!2=! ; (B.3)

M�〈K〉
;��(!) =− lim
�→0+

1
4
@
@u1

@
@u2

	(!;!; u1; u2; �)
∣∣∣∣
u1=u2=0

: (B.4)

Most of the analysis runs therefore in parallel with the calculation of �(!) in
Ref. [18]. We restrict ourselves to the case of broken time-reversal symmetry, where
the algebra is less involved.
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The ratio of determinants in Eq. (B.1) can be written as a superdeterminant, which
in turn can be expressed as a Gaussian integral over bosonic and fermionic variables:

	(!;!; �; u1; u2) = (−1)M 〈Sdet−1(A)〉= (−1)M
〈∫

d	 †
∫
d	 ei	

†A	
〉
:

(B.5)

The matrix A is

A=



!−H 0 i�+ u1 0
0 !−H 0 −i�+ u1

−i�− u2 0 −!∗ +H† 0
0 −i�+ u2 0 !∗ −H†




= (
 − H)⊗ L̂+ i
(
�W †W − �

2

)
⊗ �̂zL̂

− i�⊗ �̂xL̂+ û�̂xL̂ : (B.6)

The vector 	 = 	1 ⊕ 	2 ⊕ 	3 ⊕ 	4 is a 4M -dimensional supervector consisting
of two M -dimensional bosonic entries 	� with � = 1 and 3, supplemented by two
M -dimensional fermionic entries with �=2 and 4. We encounter the four-dimensional
supermatrices L̂= diag(1; 1;−1; 1); û= diag(−u1; u1;−u2; u2), and �̂i = �i ⊗ 52, where
�i are the usual Pauli matrices [e.g. �̂z = diag(1; 1;−1;−1)].
The linear appearance of H in the exponent of Eq. (B.5) facilitates the ensemble

average with the distribution function (2.1), since the integral over the independent
components of H factorizes, and each single integral is Gaussian. The result is

〈exp[− i	†H ⊗ L̂	]〉= exp
[
−�

2M
2
Str(L̂R̂)2

]
; (B.7a)

R̂�� =
1
M
	� ·	†

� : (B.7b)

The order of R̂ in the exponent is reduced from quadratic to linear by a Hubbard–
Stratonovich transformation, based on the identity

exp
[
−�

2M
2
Str(L̂R̂)2

]
=
∫
dŜ exp

[
−M Str

(
Ŝ
2

2
− i�ŜL̂R̂

)]
: (B.8)

The integral over 	 and 	† is again Gaussian and results in

	 =
∫
dŜ exp

[
−M Str

(
Ŝ
2

2
+ ln Ŝ

)]
Sdet−1(1 + C) ; (B.9a)

C =
(

 + i

(
�W †W − �

2

)
⊗ �̂z − i��̂x + û�̂x

)
1

�Ŝ
: (B.9b)

One now can write Sdet−1(1+C) = exp[− Str ln(1+C)] and expand the logarithm
to �rst order in �, �, and the source term J ; in addition we set 
=0 and pass from the
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generating function to the mean Petermann factor according to Eq. (B.4). This gives

M�〈K〉
;��(!) =−1
4
�2
�2

∫
dŜ exp

[
−M Str

(
Ŝ
2

2
+ ln Ŝ

)

+ i
y
2
Str �̂zŜ

−1
+ i
�′

2
Str �̂xŜ

−1
]

×tr12 �̂xŜ−1 tr34 �̂xŜ−1
N∏
n=1

Sdet−1(54 + iwn�̂zŜ
−1
) : (B.10)

The traces trij A=Aii+Ajj operate only on the indicated subspaces. We introduced the
rescaled variables y = −2� Im!=� = ��=� and �′ = 2��=�. In what follows we will
write � instead of �′.
The condition M/1 justi�es a saddle-point approximation. The main contribution

to the preceding integral comes from points for which the �rst part of the exponent is
minimal, that is from the solutions of

1

Ŝ
+ Ŝ = 0 ⇔ Ŝ

2
=−1 : (B.11)

With Ŝ = iQ̂, the solutions ful�ll Q̂
2
= 1. As inherited from the de�nition of R̂ in

Eq. (B.7b), Q̂L̂ is a Hermitian matrix and Q̂ = T̂
−1
Q̂diagT̂ can be diagonalized by a

pseudounitary supermatrix T̂ ∈ U(1; 1=2) (these matrices ful�ll T̂ †
L̂T̂ = L̂). The largest

manifold which respects the de�niteness requirements on Q̂ is obtained by the choice
Q̂diag = �̂z. However, rotations in the block � = 1; 3 and in the block � = 2; 4 leave Q̂
invariant; the saddle-point manifold is hence covered exactly once if we take the T̂
matrices from the coset space U(1; 1=2)=U(1=1)× U(1=1).
A convenient parameterization of the coset space has been given by Efetov [40],

T̂ =
(
U−1 0
0 V−1

)
exp
(

0 1
2diag(�1; i�2)

1
2diag(�1; i�2) 0

)(
U 0
0 V

)
;

(B.12a)

U =
(
ei�1 0
0 ei�2

)(
1 + ��∗=2 �

�∗ 1 + �∗�=2

)
; (B.12b)

V =
(
1− ��∗=2 i�
i�∗ 1− �∗�=2

)
; (B.12c)

with bosonic variables �1, �2, �1, and �2, and fermionic variables �, �∗, �, and �∗.
We introduce �1 = cosh �1 and �2 = cos �2. In this parameterization

Str �̂zQ̂ = 2(�1 − �2) ; (B.13a)

Str �̂xQ̂=−sinh �1ei�1 [(1 + ��∗=2)(1− ��∗=2)− i��∗]
+ sinh �1e−i�1 [(1 + ��∗=2)(1− ��∗=2)− i��∗]
+ i sin �2ei�2 [(1 + �∗�=2)(1− �∗�=2)− i�∗�]
− i sin �2e−i�2 [(1 + �∗�=2)(1− �∗�=2)− i�∗�] ; (B.13b)
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tr12 �xQ̂=−sinh �1ei�1 [(1 + ��∗=2)(1− ��∗=2)− i�∗�]
−i sin �2ei�2 [(1 + �∗�=2)(1− �∗�=2)− i��∗] ; (B.13c)

tr34 �xQ̂= sinh �1e−i�1 [(1 + ��∗=2)(1− ��∗=2)− i�∗�]
+i sin �2e−i�2 [(1 + �∗�=2)(1− �∗�=2)− i��∗] ; (B.13d)

Sdet−1[54 + wn�̂zQ̂] =
gn + �2
gn + �1

: (B.13e)

The integration measure is

dQ̂ =
d�1 d�2 d�1 d�2 d�∗ d� di�∗ di�

(2�)2(�1 − �2)2 : (B.14)

In order to integrate over the fermionic variables we have to expand in these
quantities and only keep the term in which all four variables appear linearly. The
angle �2 appears in the pre-exponential factor as well as in the exponential term
exp(−� sin �2 sin�2). We expand the exponential and integrate over �2. Only terms of
order �n sinhm �1 with n6m survive the limit � → 0. We discard all other terms and
obtain

−4�
2

�2 〈K〉
;��(!)

= lim
�→0

∫ ∞

1
d�1

∫ 1

−1
d�2

1
(�1 − �2)2

∫ 2�

0

d�1
2� D

×exp[− i�
√
�21 − 1sin�1 + y(�1 − �2)]

N∏
n=1

gn + �2
gn + �1

; (B.15a)

D=−i� sinh �1 sin�1(2 sin2 �2 + 9
4 sinh

2 �1)

+
�2

4
sinh2 �1[sinh

2 �1 cos2 �1 − (3 cos2 �1 + 5 sin2 �1)sin2 �2]
+ i�3 sinh3 �1 sin�1 sin

2 �2(− 9
16 sin

2 �1 − 13
16 cos

2 �1)

+ 1
16 �

4 sinh4 �1 sin
2 �1 sin

2 �2 : (B.15b)

It is convenient to bring the factor D into a form which involves �1 only in the
combination z1 =−i sinh �1 sin�1, because such terms can be expressed as derivatives
with respect to � of the exponential exp(�z1) appearing in Eq. (B.15a). This goal can be
achieved by integrating by parts all terms that involve cos�1. E�ectively this amounts
to the substitutions � sinh �1 sin�1 cos2 �1 → i(sin2 �1−cos2 �1) and � sinh �1 cos2 �1 →
i sin�1, resulting in

D = �z1( 72 sin
2 �2 + 2 sinh

2 �1) + 1
2 �
2z21 sin

2 �2 − 1
2 �
3z31 sin

2 �2 : (B.16)

Mathematically these expressions are quite similar to those obtained for the decay-rate
distribution in Ref. [18]. By a simple substitution rule that relates to each other the
terms of di�erent order in �, we now rewrite D in a way that allows to make direct
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contact to Ref. [18], yielding a result in terms of the two functions F1;2 given in
Eq. (4:2): As in Ref. [18] we express the factors (gn + �1)−1 as an integral of expo-
nential functions

1
gn + �1

=
∫ ∞

0
dsn exp[− sn(gn + �1)] : (B.17)

We also write (�1 − �2)2 =
∫∞
0 dx x exp[ − x(�1 − �2)]. Then the integrations over �1

and �1 can be performed, and � only appears in a factor

�(�; y′) =
exp[−

√
�2 + y2]√

�2 + y′2
; (B.18)

with y′ = y − x −∑n sn. The limiting value for �→ 0 of the derivatives

�n
@n

@�n
�(�; y′) = Cn�(y′); C1 =−C2 = C3=2 =−2 ; (B.19)

amounts in Eq. (B.16) to the substitutions �3z31 → 2�z1 and �2z21 → −�z1, which gives
D = 2�z1(�21 − �22). As a result, we obtain[

�
�P(�)

]
〈K〉
;K = I0(��=�) + 2I1(��=�) ; (B.20)

I�(y) =−1
4
lim
�→0

�
@
@�

∫ ∞

1
d�1

∫ 1

−1
d�2

��2
(�1 − �2)�

×J0(�
√
�21 − 1) exp[y(�1 − �2)]

N∏
n=1

gn + �2
gn + �1

; (B.21)

where J0 is a Bessel function. By comparing expressions with Ref. [18], we recognize
that I0(y) =F1(y)F2(y) = (�=�)P(� =�y=�) [cf. Eq. (4:2)], while

I1(y) =−
∫ y

0
dy′F1(y′)

@
@y′

F2(y′) : (B.22)

This concludes the derivation of the �nal result (4:10).
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