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Conductance enhancement in quantum-point-contact semiconductor-superconductor devices
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We present numerical calculations of the conductance of an interface between a phase-coherent two-
dimensional electron gas and a superconductor with a quantum point contact in the normal region. Using a
scattering matrix approach we reconsider the geometry of De Raedt, Michielsen, and Klapwijk@Phys. Rev. B
50, 631~1994!# which was studied within the time-dependent Bogoliubov–de Gennes formalism. We find that
the factor-of-2 enhancement of the conductanceGNS compared to the normal state conductanceGN for ideal
interfaces may be suppressed for interfaces with a quantum point contact with only a few propagating modes.
The suppression is found to depend strongly on the position of the Fermi level. We also study the suppression
due to a barrier at the interface and find an anomalous behavior caused by quasiparticle interference. Finally,
we consider the limit of sequential tunneling and find a suppression of the factor-of-2 enhancement which may
explain the absence of conductance enhancement in experiments on metal-superconductor structures.
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I. INTRODUCTION

Charge transport through a normal-conducto
superconductor~NS! interface is accompanied by a conve
sion of quasiparticle current to a supercurrent. In the A
dreev reflection, by which the conversion occurs,
electronlike quasiparticle in the normal conductor~with an
excitation energy lower than the energy gap of the superc
ductor! incident on the NS interface is retroreflected into
holelike quasiparticle~with reversal of its momentum and it
energy relative to the Fermi level! and a Cooper pair is adde
to the condensate of the superconductor.1 For an ideal NS
interface, the signature of Cooper pair transport and the
dreev scattering is a doubling of the conductance compa
to the normal state conductance.

A theoretical framework for studies of the scattering
NS interfaces is provided by the Bogoliubov–de Genn
~BdG! formalism,2 where the scattering states are eigenfu
tions of the BdG equation

S Ĥ~r ! D~r !

D* ~r ! 2Ĥ* ~r !
D S u~r !

v~r !
D 5ES u~r !

v~r !
D , ~1!

which is a Schro¨dinger-like equation in electron-hole spa
~Nambu space!. Here Ĥ(r ) is the single-particle Hamil-
tonian,D(r ) is the pairing potential of the superconductor,E
is the excitation energy, andu(r ) and v(r ) are wave func-
tions of electronlike and holelike quasiparticles.

The technological possibility of studying the interface b
tween a two-dimensional electron gas~2DEG! in a semicon-
ductor heterostructure and a superconductor experiment
has provided a playground for investigating the interplay
PRB 600163-1829/99/60~19!/13762~8!/$15.00
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tween the Andreev reflection and the mesoscopic effects s
in mesoscopic semiconductor structures.3,4 In recent years
the technological efforts have revealed a variety of new m
soscopic phenomena, see Refs. 4–7, and references th
One class of the studied devices are the quantum point
tact ~QPC! 2DEG-S and S-2DEG-S devices with the QPC
the normal region. The dc Josephson effect and the qua
zation of the critical current in QPC S-2DEG-S junctio
have been studied extensively both experimentally by, e
Takayanagi and co-workers8 and theoretically by, e.g.
Beenakker and van Houten,9,10 Beenakker,11 and Furusaki,
Takayanagi, and Tsukada.12

The linear-response conducting properties of Q
2DEG-S structures have been studied by several group
the analytical work of Beenakker13 a ballistic normal region
with a QPC modeled by a saddle-point potential was con
ered. The effect of elastic impurity scattering was conside
numerically by Takagaki and Takayanagi14 who considered a
disordered region between a narrow-wide~NW! constriction
and the superconductor. Both of these studies of the con
tance were based on a scattering matrix (S-matrix! approach
and the BdG formalism. In the numerical simulations of D
Raedt, Michielsen, and Klapwijk,15 based on the time-
dependent BdG equation, a wide-narrow-wide~WNW! con-
striction was considered. Here, the aim was to study
electron-hole conversion efficiency and the robustness of
back-focusing phenomena of the Andreev reflection.

One of the properties of the QPC is that most transmiss
eigenvalues are either close to zero or unity. For an id
QPC 2DEG-S interface, the Andreev reflection will therefo
give rise to a factor-of-2 enhancement of the conducta
GNS compared to the normal state conductanceGN ,10,13

which is quantized in units of 2e2/h.16 However, as pointed
13 762 ©1999 The American Physical Society
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out by van Houten and Beenakker,10 deviations from the
simple factor-of-2 enhancement should be expected when
position of the Fermi level does not correspond to a cond
tance plateau. The presence of impurity scattering in the
mal region and/or interface roughness will also suppress
doubling of the conductance.14

Using anS-matrix approach, we study the linear-respon
regime of a phase-coherent ballistic QPC 2DEG-S sys
where the QPC is modeled by a WNW constrictions with
hard-wall confining potential, see Fig. 1. We report new
sults for the device studied by De Raedtet al.15 which had a
relative width W/W851.7 mm/(1.63335 Å).31.72, an
aspect ratioL1 /W855/1.6, and a relative lengthL2 /W8
520/1.6. Applying theS-matrix formalism instead of the
computationally more complicated time-dependent BdG f
malism, we are able to study a larger part of the param
space where we also consider a barrier~with a normalized
barrier strengthZ) at the NS interface. We focus on th
regime with only a few propagating modes in the QPC.
this regime the transmission eigenvalues of the QPC dep
strongly on the actual position of the Fermi level. Even
an ideal interface this gives rise to a strong suppressio
the conductance for certain positions of the Fermi level
predicted by van Houten and Beenakker10 and subsequently
seen in the work of Beenakker.13 In the presence of a barrie
at the interface, the QPC gives rise to an enhanced tunne
through the barrier~compared to the case without a QPC! as
in the case of reflectionless tunneling effect of diffusi
junctions.13,17

In the sequential tunneling limit the conductance can
found by considering the QPC and the interface as
series-connected resistive regions and in the limitW@W8
the enhancement of the conductance compared to the no
state conductance vanishes even for ideal NS interfaces.
may be an explanation for the unexpectedly low conducta
enhancement in the experimental results of Benistantet al.18

on Ag-Pb interfaces where the current is injected into the
crystal through a point contact.

The text is organized as follows. In Sec. II theS-matrix
formalism is introduced, in Sec. III we formulate our mod
in Sec. IV the scattering scheme of the considered geom
is presented, and in Sec. V we present results of sev
applications of our scattering scheme. Finally, in Sec.
discussion and conclusions are given.

FIG. 1. Geometry of a WNW 2DEG-S junction with a hard-wall co
fining potential and a barrier at the 2DEG-S interface.
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II. SCATTERING MATRIX FORMALISM

The scattering approach to coherent dc transport in su
conducting hybrids follows closely the scattering theory d
veloped for nonsuperconducting mesoscopic structures,
e.g., the text-book by Datta.19 For an ideal NS interface, the
interface acts as a phase-conjugating mirror within the A
dreev approximation1 and the rigid boundary condition fo
the pairing potential

D~r !5D0eiwQ~x2L !, ~2!

where D0 is the BCS energy gap,20 w is the phase of the
pairing potential,Q(x) is a Heaviside function, andL5L1
1L2 is the length of the normal region~see Fig. 1!.

In the linear-response regime in zero magnetic fie
Beenakker13 found that the conductanceG[]I /]V is given
by

GNS5
4e2

h
Tr~ tt†@21̂2tt†#21!2

5
4e2

h (
n51

N Tn
2

~22Tn!2
, ~3!

which, in contrast to the Landauer formula,21

GN5
2e2

h
Tr tt†5

2e2

h (
n51

N

Tn , ~4!

is a nonlinear function of the transmission eigenvaluesTn
(n51,2, . . . ,N) of tt†. Heret is theN3N transmission ma-
trix of the normal region,N being the number of propagatin
modes.

Equation~3! holds for an arbitrary disorder potential an
is a multichannel generalization of a conductance form
first obtained by Blonder, Tinkham, and Klapwijk22 who
considered a delta function potential as a model for the
terface barrier potential. The computational advantage of
~3! over the time-dependent BdG approach of De Ra
et al.15 is that we only need to consider the time-independ
Schrödinger equation with a potential which describes t
disorder in the normal region, so that we can use the te
niques developed for quantum transport in normal condu
ing mesoscopic structures. For more details on, e.g., fi
bias and/or temperature, see Lesovik, Fauche`re, and
Blatter,23 Lesovik and Blatter,24 and the reviews of
Beenakker,6 and Lambert and Raimondi.7

III. MODEL

We describe the geometry of Fig. 1 by the Hamiltonia

Ĥ~r !52
\2

2m
“̂1Vd~r !1Vc~r !2m, ~5!

wherem is the chemical potential. The barrier potential
given by a Dirac delta function potential with strengthH:22

Vd~r !5Hd~x2L !, ~6!

and the transverse motion is limited by a hard-wall confin
potential
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Vc~r !5H 0, uyu,W~x!/2,

`, uyu>W~x!/2,
~7!

where the widthW(x) defines the WNW constriction and i
given by

W~x!5H W, x,0,

W8, 0<x<L1 ,

W, x.L1 .

~8!

The scattering states can be constructed as linear com
tions of the eigenstates of the Schro¨dinger equation.

IV. SCATTERING SCHEME

In the following subsections, we consider theS-matrices
of a system with the Hamiltonian in Eq.~5! relevant for the
geometry shown in Fig. 1. TheS-matrix S of a scattering
region relates the incident current amplitudesaS

6 to the out-
going current amplitudesbS

6 . For a scattering region with
two leads, S is a 232 block-matrix with submatrices
S11,S12,S21, andS22, where the diagonal and off-diagon
submatrices are reflection and transmission matrices, res
tively. The appropriate scattering scheme for three scatte
regions~the WN and the NW constrictions, and the interfa
barrier potential, respectively! connected by ballistic conduc
tors is shown in Fig. 2.

The WN constriction is described by theS-matrix SWN

FIG. 2. Scattering scheme appropriate for the normal region
the geometry shown in Fig. 1.
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S bS1

1

bS1

2 D 5SWNS aS1

1

aS1

2 D , ~9!

the narrow region of lengthL1 by the propagation-matrixUN

S aS1

2

aS2

1 D 5UNS bS1

2

bS2

1 D , ~10!

the NW constriction by theS-matrix SNW

S bS2

1

bS2

2 D 5SNWS aS2

1

aS2

2 D , ~11!

the wide region of lengthL2 by the propagation-matrixUW

S aS2

2

aS3

1 D 5UWS bS2

2

bS3

1 D , ~12!

and the delta function barrier by theS-matrix Sd

S bS3

1

bS3

2 D 5SdS aS3

1

aS3

2 D . ~13!

To apply Eqs.~3! and ~4! we need to calculate the com
posite transmission matrixt5S21 which is a submatrix of the
compositeS-matrix S[SWN

^ UN
^ SNW

^ UW
^ Sd relating

the outgoing current amplitudes to the incoming current a
plitudes

S bS1

1

bS3

2 D 5SS aS3

2

aS1

1 D S5S r t 8

t r 8
D . ~14!

The meaning of the symbol̂ is found by eliminating the
internal current amplitudes.19 As a final result we find the
transmission matrix

f

t5S21
d @ 1̂2U21

W$S22
NW1S21

NW@ 1̂2U21
N S22

WNU12
N S11

NW#21U21
N S22

WNU12
N S12

NW%U12
WS11

d #21

3U21
WS21

NW@ 1̂2U21
N S22

WNU12
N S11

NW#21U21
N S21

WN . ~15!
n
en-
A. Quantum point contact

We consider a QPC which we model by a WNW constr
tion defined by a hard-wall confining potential, see Fig.
This geometry has been considered by Szafer and Sto25

and Weisshaar, Lary, Goodnick, and Tripathi26 in the context
of conductance quantization of the QPC in a 2DEG, a
recently by Kassubek, Stafford, and Grabert27 in the context
of conducting and mechanical properties of ideal two a
three-dimensional metallic nanowires. We follow Kassub
et al.27 and calculate the compositeS-matrix SWNW5SWN

^ UN
^ SNW. In zero magnetic field, where allS-matrices sat-

isfy S5ST, the individualS-matrices are given by
-
.
e

d

d
k

SWN5S r NW8 tNW

tNW
T r NW

D , ~16!

UN5S 0̂ XN

XN 0̂
D , ~17!

SNW5S r NW tNW
T

tNW r NW8
D , ~18!

where Xnn8
N

5dnn8 exp (iknL1) describes the narrow regio
with free propagation of propagating modes and an expon
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tial decay of evanescent modes. Herekn

5kFA12(np/kFW8)2 is the longitudinal wave vector o
moden in the narrow region. TheS-matrices of the WN and
NW constrictions are related through an exchange of lea

By elimination of the internal current amplitudes we fin
the composite transmission matrix

SWNW5S r WNW tWNW

tWNW r WNW
D , ~19!

where

r WNW5r NW8 1tNW@ 1̂2~XNr NW!2#21XNr NWXNtNW
T ,

~20!

tWNW5tNW@ 1̂2~XNr NW!2#21XNtNW
T . ~21!

TheSmatrix of the NW constriction can be found from
matching of scattering states which are eigenstates of
Schrödinger equation with the Hamiltonian in Eq.~5! where
we only consider the part of the potential which sets up
NW constriction. From a matching of scattering states
find that
e
in
a

pr
ic
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od
th

a

e

s.

he

e
e

r NW5~ 1̂1%%T!21~ 1̂2%%T!, ~22!

tNW52%T~ 1̂1%%T!21, ~23!

r NW8 5~%T%11̂!21~%T%21̂!, ~24!

where the elements of the% matrix can be written as%nw

5AKw /kn^fnuFw&, where ^fnuFw&5*2`
` dyfn(y)Fw(y)

is an overlap between transverse wave functions of modn
in the narrow region and modew in the wide region. Here
Kw5kFA12(wp/hkFW8)2 is the longitudinal wave vecto
of modew in the wide region andh[W/W8 is the relative
width of the constriction.

The overlap can be calculated analytically since its e
ments consist of overlaps between transverse wave funct
fn andFw which are either two sine or two cosine function
~the overlap between a sine function and a cosine functio
vice versa is zero due to the odd and even character of
two functions!. From the overlap-matrix we get the follow
ing elements of the% matrix:
%nw5dP(n),P(w)S ~kFW8/p!22~n/h!2

~kFW8/p!22n2 D 1/4

35
dP(n),1~21!(n12)/23

4nh3/2sin~wp/2h!

p~n2h22w2!
, nhÞw,

dP(n),21~21!(n21)/23
4nh3/2cos~wp/2h!

p~n2h22w2!
, nhÞw,

h21/2, nh5w,

~25!
long
the

e
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where the parityP( j ) of j is P( j )[1 if j is even andP( j )
[21 if j is odd.

In the numerical evaluation of Eqs.~22!–~24! and Eqs.
~20! and ~21! it is crucial to let the number of modes in th
narrow and wide regions extend over both propagat
modes and evanescent modes. After all matrix inversions
performed, the reflection and transmission matrices are
jected onto the propagating modes. In practice, numer
convergence of the reflection and transmission matrice
found for a finite cutoff in the number of evanescent mod
For the considered device, the number of evanescent m
is roughly ten times the number of propagating modes in
wide region corresponding to 100031000 matrices.

In the limit W@W8, Szafer and Stone25 employed a
mean-field approximation for the overlap^fnuFw& in which
mode n of the narrow region couples uniformly to only
band of modes~with the same parity as moden) in the wide
region within one level spacing so that the elements of th%
matrix take the form

%nw'dP(n),P(w)S ~kFW8/p!22~n/h!2

~kFW8/p!22n2 D 1/4

3H h21/2, ~n21!h<w,~n11!h,

0, otherwise.
~26!
g
re
o-
al
is
.
es
e

Within this approximation, there is no mode mixing andtt†

becomes diagonal with the transmission eigenvalues a
the diagonal. This approximation was found to capture
results of an exact numerical calculation25 when used with
the Landauer formula, Eq.~4!, which is linear in the trans-
mission eigenvaluesTn . However, for an NS interface, th
conductance formula, Eq.~3!, is nonlinear inTn which also
makes off-diagonal components intt† important. As we shall
see~in Fig. 3!, the mean-field approximation cannot repr
duce the results of an exact numerical calculation ofGNS in
the same nice way as forGN .

B. Wide region

The wide regionL1,x,L is described similarly to the
narrow region by

UW5S 0̂ XW

XW 0̂
D , ~27!

whereXww8
W

5dww8 exp(iKwL2) describes both the free propa
gating modes and the exponential decay of the evanes
modes. HereKw is the introduced longitudinal wave vecto
of modew in the wide region.
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C. Interface barrier potential

We consider an NS interface of widthW with a barrier
which we model by a Dirac delta function potential, follow
ing Blonder, Tinkham, and Klapwijk.22 The S-matrix ele-
ments for the delta-function potential is found from a matc
ing of scattering states which are eigenstates of
Schrödinger equation with the Hamiltonian in Eq.~5! where
we only consider the part of the potential consisting of
barrier at the interface. In zero magnetic field one finds
symmetric result

Sd5S r d td

td r d
D , ~28!

with

~ td!ww85dww8

1

11 iZ/cosuw
, ~29!

~r d!ww85dww8

2 iZ/cosuw

11 iZ/cosuw
, ~30!

where the normalized barrier strength is given byZ
[H/\vF and cosuw[Kw /k F5A12(wp/kFW)2. The results
differ from those of a one-dimensional calculation22 since we
have taken the parallel degree of freedom into account. H
ever, if we introduce an angle dependent effective bar
strengthZeff(uw)5Z/cosuw ,28,29 the transmission and reflec
tion amplitudes can formally be written in the on
dimensional form of Ref. 22. The transmission eigenval
of tdtd

† are given byTw
d 5@11Zeff

2 (uw)#21 in contrast to the
mode-independent resultTw

d 5(11Z2)21 of a one-
dimensional calculation.22

FIG. 3. ConductanceGNS and normal state conductanceGN of a
coherent WNW 2DEG-S junction as a function ofkFW8/p. The
constriction has an aspect ratioL1 /W851 and a relative width
W/W8531.72. The full lines are for a numerical calculation
tWNW and the dotted lines are results within the mean-field appr
mation of Szafer and Stone~Ref. 25!. The upper inset shows th
normalized conductanceg[GNS/GN also as function ofkFW8/p.
-
e

e
e

-
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V. RESULTS

A. Phase-coherent junction with ideal interface

For the case of coherent transport through an id
2DEG-S interface with a WNW constriction in the norm
region, see lower inset of Fig. 3, the conductanceGNS and
the normal state conductanceGN can be found from Eqs.~3!
and~4! with the transmission matrixt5tWNW . Fig. 3 shows
the conductance as a function ofkFW8/p based on a numeri
cal calculation oftWNW ~full lines! and the mean-field ap
proximation ~dashed line! for a WNW constriction with an
aspect ratioL1 /W851 and a relative widthW/W8531.72.
The conductanceGNS is seen to be approximately quantize
in units of 4e2/h which is twice the unit of conductance fo
the normal state conductanceGN . However, just above the
thresholds (kFW8/p51,2,3, . . . ), oscillations due to reso
nances in the narrow region of the constriction are observ
In the normal state result, these resonances are small b
contrast to the Landauer formula,GNS is not linear in the
transmission eigenvalues and this makes the resona
much more pronounced compared to those in the nor
state conductance. Another signature of the nonlinearity
GNS and the importance of off-diagonal transmission, is th
the mean-field approximation is in good agreement with
numerical calculation forGN whereas it has difficulties in
accounting forGNS. The sharpness of the resonances is t
certain extent due to the wide-narrow-wide constriction, a
is suppressed in experiments with split-gate-defined cons
tions. However, as shown by the simulations of Maaø, Z
zulenko, and Hauge30 resonance effects do persist even f
more smooth connections of the narrow region to the 2D
reservoirs.

The normalized conductanceg[GNS/GN , shown in the
upper insert, is two on the conductance plateaus but for
tain ‘‘mode fillings’’ of the constriction it is strongly sup
pressed and forkFW8/p;2 ~two propagating modes! we get
g;1.5. This effect, which occurs at the onset of new mod
was also seen in the calculations of Beenakker.13 As the
number of modes increases, these dips vanish and the
malized conductance approaches its ideal value of 2.
reason is simple: suppose the constriction hasN propagating
modes, then theN21 of them will have a transmission o
order unity and only a single mode~corresponding to the
mode with the highest transverse energy! will have transmis-
sion different from unity. AsN increases, the effect of th
single mode with transmission different from unity becom
negligible for the normalized conductance and from Eqs.~3!
and ~4! it follows that lim

N→`
g52.

Since the quasiparticle propagation is coherent and
Andreev scattering is the only back-scattering mechani
the phase conjugation between electronlike and holelike q
siparticles makes the conductanceGNS independent of the
separationL2 of the constriction and the interface. If evane
cent modes in this region were also taken into account
results would depend weakly onL2 as it was found in the
simulations of De Raedtet al.15 and our results should b
compared with their results in the largeL2 limit. As we shall
see below, interfaces with a finite barrier~and thereby nor-

i-
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mal scattering at the interface! lead to size quantization an
thereby resonances which will depend onL2.

The back-focusing phenomenon of the Andreev reflec
quasiparticles and the lowering of the normalized cond
tance due to a QPC in the normal region was studied by
Raedt, Michielsen, and Klapwijk15 by solving the time-
dependent BdG equation fully numerically. In their wa
propagation simulations, the QPC is also modeled b
WNW constriction with a relative width W/W8
51.7 mm/(1.63335 Å).31.72, an aspect ratioL1 /W8
55/1.6, and a relative lengthL2 /W8520/1.6. For the par-
ticular ‘‘mode filling’’ kFW8/p53.2, they find a normalized
conductanceg51.87,2, but the dependence on the ‘‘mod
filling’’ was not studied in detail.

In Fig. 4 we present a calculation ofg as a function of
kFW8/p for this specific geometry. The result of De Rae
et al. (s) is reproduced but in general the normalized co
ductance is seen to have many resonances caused by the
aspect ratio of the constriction. In the range 3,kFW8/p
,4, the normalized conductance can be anything in
range 1.655,g<2 depending on the position of the Ferm
level and though De Raedtet al.15 found the back-focusing
phenomena of the Andreev reflection to be very robust w
respect to changes of the device parameters, the norma
conductance itself certainly depends strongly on the posi
of the Fermi level. The reason is that only those quasipa
cles which enter the region between the constriction and
interface can be Andreev reflected and thus contribute to
conductance enhancement compared to the normal state
ductance.

B. Phase-coherent junction with barrier at interface

We next consider coherent transport through an NS in
face with a barrier at the interface and a WNW constrict
at a distanceL2 from the interface, see lower right inset o

FIG. 4. Normalized conductanceg[G NS/GN of a coherent
WNW 2DEG-S junction as a function ofkFW8/p. The constriction
has an aspect ratioL1 /W855/1.6 and a relative widthW/W8
531.72. The curve is based on a numerical calculation
tWNW . The data-point (s) corresponds to the numerica
result (kFW8/p;g)5(3.2;1.87) of De Raedtet al. ~Ref. 15,
Table I!.
d
-
e

a

t
-
igh

e

h
ed
n
i-
e
e

on-

r-

Fig. 5. The conductanceGNS and the normal state conduc
tanceGN are found from Eqs.~3! and~4! with the transmis-
sion matrix in Eq.~15!.

In Fig. 5 we present a calculation of the normalized co
ductanceg as a function of the normalized barrier strengthZ
for the device considered by De Raedtet al.15 For the posi-
tion of the Fermi level (s) considered by De Raedtet al.,
the normalized conductance is only weakly suppressed~com-
pared to a system without a QPC, see, e.g., Ref. 29! for low
barrier scattering (Z,1) and only for a very high barrie
strength (Z.2) the normalized conductance approaches
crossover from an excess conductance (g.1) to a deficit
conductance (g,1). The effect of the barrier forZ,1 is
very similar to the reflectionless tunneling behavior in diff
sively disordered junctions13,17 where the net result is as i
tunneling through the barrier is reflectionless. In the case
QPC instead of a diffusive region there is a weak depende
on the barrier strength and the tunneling is not perfectly
flectionless.

An interesting feature is the nonmonotonic behavior og
as a function ofZ. ForZ→`, the normalized conductance o
course vanishes, but in some regions it increases with
increasing barrier strength@curve (s)# and for Z.1 it has
the same value as forZ50. This is purely an effect of size
quantization in the cavity between the QPC and the bar
which enters the conducting properties because of the f
coherent propagation of electrons and holes. Howe
changing, e.g., the position of the Fermi level sligh
@curves (n) and (h)#, changes the quantitative behavi
although the overall suppression ofg with increasingZ is
maintained.

C. Incoherent junction

In junctions where the propagation in the cavity betwe
the QPC and the NS interface is incoherent, the so-ca

f

FIG. 5. Normalized conductanceg[G NS/GN of a coherent
WNW 2DEG-S junction with a barrier as a function of the norma
ized barrier strengthZ for kFW8/p53.195(n),kFW8/p53.2 (s),
andkFW8/p53.205(h). The lower left inset shows the normalize
conductanceg as a function ofk FW8/p for Z50. The constriction
has an aspect ratioL1 /W855/1.6, a relative widthW/W8531.72,
and the cavity has a relative lengthL2 /W8520/1.6.
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sequential tunneling regime, the QPC and the NS interf
can be considered as two series-connected resis
regions.31 This means that

GQPC-NS5~GQPC
21 1GNS

21!21, ~31!

GQPC-N5~GQPC
21 1GN

21!21, ~32!

whereGQPCandGN are found from Eq.~4! with t5tQPCand
t5td , respectively, andGNS from Eq. ~3! with t5td . The
normalized conductance can be written as

g[
GQPC-NS

GQPC-N
5

GNS

GN
3

GQPC1GN

GQPC1GNS
, ~33!

and for W@W8 the major contribution to the resistanc
comes from the QPC, i.e.,GQPC!(GN ,GNS). This means
that the enhancement ofGNS compared toG N has a negli-
gible effect on the total conductance so that the normali
conductance approachesg;1.

For an ideal QPC and an ideal interface we haveGQPC
5(2e2/h)N,GNS5(4e2/h)M , and GN5(2e2/h)M , where
N is the number of modes in the QPC andM is the number of
modes at the NS interface. The corresponding normali
conductance is shown in Fig. 6.

The sequential tunneling behavior may provide an exp
nation for the unexpectedly small conductance enhancem
seen in the experiments of Benistantet al.18 on Ag-Pb inter-
faces with injection of quasiparticles into an Ag crys
through a point contact. The condition for the electron
transport to be incoherent is that the distance between
point contact and the NS interface is longer than the co
lation lengthLc5Min( l in ,LT), l in being the inelastic scat
tering length andLT the Thouless length.4,6 For the ballistic
device studied by Benistantet al. Lc5LT5\vF /kBT
;9 mm ~at T51.2 K) which is much shorter than the dis
tance between the point contact and the NS interfa
(;200 mm). Lowering the temperature will increase th
correlation length and for sufficiently low temperaturesT

FIG. 6. Normalized conductanceg[G QPC-NS/GQPC-N of a QPC
NS junction with sequential tunneling through the ideal QPC a
the ideal NS interface as a function of the ratioM /N of propagating
modes in the QPC and at the NS interface.
e
ve

d

d

-
nt
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-

;0.05 K) we expect a crossover from the sequential tunn
ing regime to the phase-coherent regime where the Andr
mediated conductance enhancement should become ob
able.

VI. DISCUSSION AND CONCLUSION

For an ideal 2DEG-S interface with a QPC in the norm
region, the normalized conductanceg[GNS/GN depends
strongly on the position of the Fermi level and only when t
Fermi level corresponds to a conductance plateau a doub
of the conductance is found. The deviations from the fact
of-2 enhancement, when the Fermi level does not corresp
to a plateau, can be significant and for a particular exam
of the WNW constriction we find that the normalized co
ductance can be suppressed tog;1.5 in a system with only
two propagating modes in the constriction. In the presenc
a barrier at the 2DEG-S interface, the normalized cond
tance depends strongly on the longitudinal quantization
the cavity set up by the QPC and the barrier. Depending
the barrier strength, the length of the cavity and the posit
of the Fermi level, this longitudinal quantization may giv
rise to both constructive and destructive inferences in
transmission and thus also in the conductance. Perhaps
prisingly, the effect of the barrier is very much suppress
~compared to a system without a QPC, see, e.g., Ref. 29! due
to a very strong back scattering at the return of the quasi
ticles to the normal probe. The localization of quasipartic
in the cavity gives rise to an almost reflectionless tunnel
through the barrier as it is also found in systems with
diffusive normal region.13,17 The interferences due to loca
ization in the cavity will be smeared by a finite temperatu
and they are also expected to be suppressed by a finite
elastic scattering length compared to the length of
cavity.32

For the sequential tunneling regime we find that the c
ductance enhancement vanishes as the number of mod
the interface becomes much larger than the number of mo
in the QPC. Our calculations show that theS-matrix ap-
proach provides a powerful alternative to the time-depend
Bogoliubov–de Gennes approach of De Raedtet al.15 in de-
tailed studies of the conducting properties of nanosc
2DEG-S devices. Even though the back-focusing pheno
enon of the Andreev reflection is robust against change
the geometry,15 the electron-hole conversion efficiency itse
is not. Finally, we stress that for a quantitative comparison
experimental systems, it is crucial to take different Fer
wave vectors and effective masses of the 2DEG and the
perconductor into account.29
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