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Abstract—Interoperability in the Internet of Things is critical 
for emerging services and applications. In this paper we advocate 
the use of IoT ‘hubs’  to aggregate things using web protocols, 
and suggest a staged approach to interoperability. In the context 
of a UK government funded project involving 8 IoT projects to 
address  cross-domain  IoT  interoperability,  we  introduce  the 
HyperCat  IoT catalogue  specification.   We then   describe  the 
tools  and  techniques  we  developed  to  adapt  an  existing  data 
portal and IoT platform to this specification, and provide an IoT 
hub  focused  on  the  highways  industry  called  ‘Smart  Streets’. 
Based on our experience developing this large scale IoT hub, we 
outline lessons learned which we hope will contribute to ongoing 
efforts to create an interoperable global IoT ecosystem.

Keywords—internet of things; interoperability

I. INTRODUCTION

The Internet of Things (IoT) in which everyday objects can 
be  equipped  with  identifying,  sensing  and  processing 
capabilities,  and  then  connected  to  the  Internet,  promises 
significant  benefits  both  in  terms  of  efficiencies  and  new 
services [1].  To reach the full potential of the IoT, however, it 
is not sufficient for things to just be connected to the Internet; 
they also need to be found, accessed, managed and potentially 
connected to other ‘things’. To enable this interaction, a degree 
of  interoperability  is  necessary  that  goes  beyond  simple 
protocol interoperability as provided by the Internet.

As we strive for greater interoperability, one logical  next 
step is to exploit web technologies such as HTTP,  JSON and 
the Representational State Transfer (REST) architecture of the 
World  Wide  Web,  an  approach  referred  to  as  the  ‘Web  of 
Things’  [2]. This use of the web provides a higher degree of 
interoperability,  potentially  connecting  islands  of  things  in 
different domains. By doing so, developers can connect things 
using web tools and technologies and create new applications 
and mashups [3], [4] that combine data from physical things in 
different  domains  with  other  online  services  such  as  social 
networks [5], [6]. 

However,  even  as  many  in  the  IoT  community  have 
converged  on  the  use  of  web  technologies,  the  plethora  of 
systems for the Web Of Things testifies to the fact that there is 
no standard approach to exposing physical objects to the web 
today.   To  address  this  issue,  some  have  begun  to  create 
large-scale  ‘hubs’  that  provide  a  consistent  and  easy-to-use 
interface for both integrators and application developers (e.g. 
[3],  [7],  [8]).   These  hubs  provide  facilities  for  search,  for 
(meta)  data  storage  and  for  interaction  between  things  and 
applications.

While these hubs, by the simple process of aggregation of 
data and standard representation of ‘things’ provide a degree of 
interoperability, they typically do not  inter-operate with each 
other  [9]. We argue that this lack of inter-hub interoperability 
may stifle the uptake of the IoT.  Many of the things of interest 
to application and service developers will only be accessible 
using product or hub-specific APIs.  Long term, this must be 
addressed through a standardization process, and indeed many 
in the web and IoT community have started  this  process  in 
various  groups  (e.g.  [10],  [11],  [12],  [13]).   While  this  is 
important  work that  must continue,  we argue that  it  will  be 
difficult  to  achieve  consensus  until  the  fundamental 
requirements  for  these  IoT  hubs  are  clearly  established. 
Premature  standardization  could risk stifling innovation.   At 
the same time, and even as the community evolves, there is a 
need  for  some degree  of  interoperability,  if  we are  to  offer 
developers  more  than  simple  islands  of  Internet 
connected-things,  requiring  developers  to  address 
interoperability issues themselves.

II. PATH TO HUB INTEROPERABILITY

In previous work [9] we proposed a four stage path toward 
greater interoperability between IoT hubs. 

1.  IoT  Core. Hubs  expose  things  and  associated  metadata 
using the web architecture and RESTful web services _ a web 
of things.  

2.  IoT Model.  Agreement  on  basic  approaches  and models 
requiring  a  common  understanding  of  what  things  and 
associated data a hub should contain.  Achieving this stage will 
facilitate  the  development  of  adapters  and  other  integration 
tools for hub interoperability.

           
Fig. 1. IoT hubs provide single consistent interface for hosted 'things'



3. IoT Hub.  Agreement on certain implementation issues such 
as concrete representations, URLs and schema for describing 
and querying catalogs and data from hubs.  This will include 
support  for  security  mechanisms  so  that  hubs  can  control 
access  to  things  and  offer  some  guarantees  over  who  is 
providing things and their data and who is able to access and 
use these resources.

4. IoT Profiles.  Agreement on the semantics of things and 
their  associated  data  exposed  on  a  hub.  For  example:  a 
temperature sensor in one hub provides the same quality and 
value  of  temperature  as  one  in  another  hub.  Essentially  the 
taxonomy  of  things  and  the  ontological  models  that  hubs 
support will need to be defined. By reaching agreement at this 
level, deep integration of application is possible, allowing hubs 
and things to link to and communicate directly with each other.

Assuming that hubs are exposing IoT resources using web 
protocols  (stage  1),  we  need  to  begin  moving  toward 
agreement on basic models for the IoT (stage 2) and agreement 
on hub implementation issues (stage3).  To that end, we have 
begun to explore the use of integration tools to map existing 
IoT  systems  to  emerging  specifications  and  diverse  data 
sources.   This work was performed in the context  of  a  UK 
funded IoT programme that established 8 IoT data hubs from 
different  domains  and  explored  the  creation  of  an 
interoperability specification called HyperCat [14]. 

In  this  paper,  we  briefly  describe  the  HyperCat 
specification that  aims to unify the catalogues of these hubs 
with a shared  representation and query mechanism.  This is 
followed by a description of the tools we have developed to 
ease the implementation tasks we faced when we attempted to 
expose our own IoT catalogues as specified by HyperCat and 
tried to integrate disparate data sources into our IoT hub for 
access by developers in a uniform manner. We conclude with 
some lessons from our experiences building a large-scale IoT 
hub and supporting the HyperCat approach to interoperability, 
hoping  that  our  experiences  will  contribute  to  the  ongoing 
search for a truly global IoT ecosystem.

III. HYPERCAT 

In  early  2013,  the  UK’s  Technology  Strategy  Board 
invested in a project called the Internet of Things Ecosystem 
Demonstrator [15] to stimulate the development of an open IoT 
application  and  services  ecosystem.   In  this  project,  eight 
industry led sub-projects were funded to deliver IoT clusters in 
the spring of 2014.  Each cluster focused on different domains, 
for example airports, city transportation, smart homes, schools, 
highways, etc.   One of the key goals of the project focused on 
interoperability, specifically on how the UK's IoT ecosystem 
could  achieve  interoperability  and  data  availability  between 
clusters in different domains.  

Recognizing  that  full  IoT  interoperability  is  a  large 
undertaking,  the  project  focused  on  providing  application 
developers with information about what data is available, what 
it represents, and how it is represented.  To accomplish this, 
each cluster was tasked to create one or more IoT “hubs” that 
describe the devices they manage or represent to the web, and 
permits applications and services to interact with them.  Each 
hub is then responsible for interacting with applications, and 
potentially,  other  hubs.   Initially  the  project  focused  on 
supporting  application  developers  with  a  specification  for 

exposing diverse sets of IoT resources such as real time sensor 
data  feeds,  meta-data,  and  static  asset  datasets  that  describe 
“things”.  The outcome of this effort was HyperCat [14].

HyperCat is a specification for a lightweight hypermedia 
catalog  for  querying  and  representing  catalogs  of  resources 
(URIs) on the web.   Exposed resources are described by a list 
of RDF-like triple statements to provide information about the 
format  and semantics  of  the URI as  illustrated  in  Figure 2. 
This enables applications to search for suitable resources and 
understand  the  data  when  they  retrieve  it.   Because  of  its 
simplicity,  developers  can  easily  publish descriptions  of  the 
resources  they  expose;  applications can  easily  query  for  the 
things they are interested in.

To  do  so,  applications  access  a  top-level  catalogue  that 
every HyperCat  hub must expose.  The catalogue itself is a 
resource representing an unordered list of items.  Each item 
refers to a single URI, which may itself be another catalogue. 
An example of a simple catalogue is shown in Figure 3.

HyperCat  specifies  how  to  insert,  update  and  delete 
catalogue  items  and  provides  a  limited  set  of  metadata 
relationships to describe catalogues and items.  The relation 
urn:X-sbiot:rels:hasDescription:en,  for  example,  is  used  to 
provide  an  English  description  of  an  item;  urn:X-  
sbiot:rels:isContentType indicates the MIME type of the data 
associated  with an item.   The initial  specification  defines  a 

simple search capability where query parameters are used to 
query for a specific resource URI (href  parameter),  metadata 
relationships (rel parameter) and/or values (val parameter).  If 

    
Fig. 3. Example HyperCat catalogue.

Fig.  2.  HyperCat  catalogues  consist  of  a  list  of  resources  annotated  with 
relationships and values.



multiple parameters are supplied, the server is required to 
return  the  intersection  of  items  that  match  all  search 
parameters. Catalogues advertise whether they support search 
by  using  a  tsbiot:rels:supportsSearch metadata  relation. 
Finally,  HyperCat  specifies  an  optional  security  mechanism 
whereby all requests may be authenticated with a key presented 
using HTTP basic authentication,  or  in  an  x-api-key header. 
Details  related  to  visibility  and  access  control  to  catalogues 
were considered out of scope for the initial phase of the project.

A. Smart Streets IoT Hub

As developers of the Smart Streets IoT Hub, our focus was 
the Highways maintenance sector  (a $6B sector in the UK), 
which gathered data from a variety of sources related to the 
UK’s  national  and  regional  road  network.  Data  included 
real-time  road  traffic,  incidents  that  affected  traffic,  road 
works,  flood  and  rain  data,  etc.,  all  of  which  were  made 
available via the Smart Streets IoT Hub1.  

A critical challenge we faced was the need to collect and 
manage a diverse set of existing data sources ranging from real 
time data on traffic flow or water levels in roadside drains, to 
soft  real-time data  such as  roadwork  schedules  to  relatively 
static  data  such  as  highways  asset  lists  of  signs,  bridges, 
markings etc. in our IoT hub and provide a uniform API (via 
HyperCat) to this data.

The Hub itself was built from two core components (Fig. 
4).  Firstly, our own IoT platform called the Web of Things 
ToolKit (WoTKit) [3], [16], and secondly, an open source data 
management tool provided by the Comprehensive Knowledge 
Archive  Network (CKAN) project  [17],  designed to support 
static data and metadata storage as illustrated in Figure 4.

IV. INTEROPERABILITY TOOLS

The CKAN system is a data management system and portal 
that allows data publishers like governments, companies and 
other organizations to make their data available to others.  It 
makes it easy for data publishers to easily upload and publish 
new datasets containing one or more data resources, providing 
versioning and support for multiple formats. Datasets can be 
associated  with  organizations  for  access  control.   Grouping, 
tagging and metadata are supported to facilitate search.  CKAN 
provides an API that allows developers to search for, download 
and, in some cases, query for data within relevant datasets.  In 
Smart Streets, we used the CKAN system to store data sets that 
are static or do not change often (e.g. monthly or annually).

1 Smart Streets Data Hub.” https://smartstreets.sensetecnic.com/. Accessed: 
28-Mar-2014.

The  WoTKit,  under  development  since  2009,  is  a 
web-centric  IoT  toolkit,  focused  on  managing  things  that 
exhibit  real-time  behaviour.  Running  as  a  cloud service,  its 
APIs  offer  developers  a  comprehensive  set  of  IoT  services 
making it easy to develop web applications and services for the 
IoT.  Users create ‘sensors’ with the UI or API that represent 
‘things’,  can  receive  data  from  those  things,  and  can  send 
control commands.  Like CKAN, sensors can be arranged into 
organizations  for  access  control  and  can  be  grouped  and 
tagged.   Unlike CKAN,  data  is  typically  not  uploaded as  a 
single file, but on an ongoing basis, either periodically or when 
sensor values change, typically every few minutes.

Both CKAN and the WoTKit support API calls to view a 
‘catalogue’ of resources (datasets and sensors), but the formats 
and  APIs  to  access  these  catalogues  are  very  different.   To 
support interoperability, we needed to adapt the catalog APIs 
for both the WoTKit and CKAN to the HyperCat simple search 
parameters and semantics.

A. The API Proxy

To achieve this, we developed an API proxy architecture 
implemented  as  a  web  application  in  Python,  using  the 
Pyramid framework2.   Like other  web frameworks,  Pyramid 
maps URLs to methods in control modules.  In the API Proxy, 
when the corresponding URL (method) for a given catalog is 
requested, an object called  CatalogCreator is instantiated. To 
support CKAN and the WoTKit and associated sub catalogues, 
we  sub-classed  this  object  for  our  implementations  as 
illustrated in Figure 5.

B. Search engine implementation

To  support  flexible  search,  our  initial  CatalogCreator 
implementations leveraged the Apache Solr search platform3 to 
both store and search catalogs (right side of Figure 5).  We 
created data importer scripts that periodically called the CKAN 
and WoTKit APIs, and imported their data into solr ‘cores’ that 
could then be searched by the API Proxy.  While this solution 
worked  well  for  public  sensors  and  data  sets  that  did  not 
change often, catalogue visibility and access control of private 
sensors and datasets by the underlying systems could not be 
supported without replicating the access  control  logic of the 
underlying  systems.   Moreover,  if  the  catalog  changed,  the 
catalog exposed by the API Proxy would be out of date until 
the next catalogue import.

C. Catalogue proxy implementation

To address these issues, we created  ProxyCatalogCreator 
sub-classes.  These  implementations  translated  HyperCat 
queries  format  to  an  appropriate  API call  to  the  underlying 
CKAN or WoTKit system, and then converted the response to 
the HyperCat format ‘on the fly’.  While the concept seemed 
straightforward, it raised a number of issues related to access 
control and security, query capability/semantic mismatch and 
catalogue scale.

1) Unified access control
To ensure that users could only view and access datasets or 

sensors they were permitted to, we needed to unify the user 

2 “Pylons Project Home.”http://www.pylonsproject.org/.  Accessed 
1-Apr-2014
3 “Apache Solr.”https://lucene.apache.org/solr/.  Accessed 1-Apr-2014

Fig. 4. High-level Smart Streets Hub Architecture

http://www.pylonsproject.org/


accounts and access control mechanism used by both systems. 
The CKAN API uses a single developer key per user for access 
control,  while  the  WoTKit  API  supports  both  basic 
authentication  and  OAuth  2.   Like  CKAN,  HyperCat  only 
required  a single  key for  authentication  and did not  specify 
how the key is  obtained or  what  it  contains.   To unify  the 
systems under a single HyperCat key, we decided to modify 
the WoTKit to support CKAN authentication keys, associating 
this key with a WoTKit user and ensure the user credentials in 
both systems were  kept  in  sync  on  both  systems.   Another 
approach would have been to maintain a mapping in the API 
Proxy to API keys or access tokens in the underlying systems. 
With unified access control, only the sensors or CKAN data 
sets visible to the user  associated  with the API key will  be 
queried and returned by the API Proxy.

2) Query mismatch and filtering
Another issue was related to supporting catalogue queries. 

The  initial  query  semantics  for  HyperCat,  called  ‘simple 
search’, allows users of the API to query for certain catalogue 
items  by  specifying  whether  a  metadata  relationship  exists, 
and/or is set to a certain value. To perform a simple search, 
clients provide a query string specifying the specific item URI, 
relationships and/or values of the items they are interested in 
(href,  rel  and  val  parameters).  All  items  with  metadata  that 
matches the query parameters must be returned. 

While this sounds straightforward, because of limitations or 
the semantics of certain metadata in the underlying system, we 
weren’t  always  able  to  search  by  the  existence  or  value  of 
certain metadata, nor did it always make sense to do so.  For 
example, we included location as metadata using longitude and 
latitude relationships as the WoTKit maintains the location of 
fixed  sensors.   Since  the  WoTKit  API  did  not  provide  a 
mechanism to find all sensors with a certain latitude value, just 
geo-queries in an area, we could not map the HyperCat simple 
search to the WoTKit search API directly.  In the WoTKit, we 
provided  a  way  to  find  sensors  that  contained  certain  text 
strings in the name, or description, but not to find sensors that 
matched these metadata values exactly.   To address this, we 
extended the ProxyCatalogCreator implementation to support 
filtering a HyperCat response by query relationships and values 
after it  was generated by the underlying system.  While this 
worked,  it  meant  that  we  had  to  retrieve  more  data  than 
necessary, reducing the performance of a simple search.

3) Large catalogues
Since  the  WoTKit  contained  large  amounts  of  real-time 

data, e.g. more than 40,000 gully/drain sensors from a given 
region, we needed a way to partition this large catalogue into 
manageable  ‘chunks’  to  avoid  overwhelming  clients  of  the 
HyperCat API.  One approach we considered was to split the 
sensor catalogue into sub catalogues corresponding to ‘pages’ 
of a larger catalogue.  Another was to partition our catalogue 
into sub-catalogues corresponding to the owner of datasets or 
sensors.  On  further  consideration,  we  found  that  either 

approach would interfere with the ability to search the entire 
catalogue since  HyperCat’s  simple  search  applies  only  to  a 
single catalogue, not sub catalogues.  Realizing this issue could 
not be addressed adequately with the current specification, we 
requested a change to support catalogue paging and new query 
parameters. These limited the number of items returned  by a 
query on a large catalogue that  co-exists with the HyperCat 
search query parameters.

Data interoperability: The Harvester

A secondary issue we faced was integrating a variety of 
heterogeneous  data  from a  set  of  disparate  sources  ranging 
from  lists  of  street  fixtures  (signs,  lamps,  barriers  etc.)  to 
collected statistics on road repair performance and impact. To 
address  this, we  developed  an  additional  tool  called  the 
Harvester, loosely based on the CKAN Harvester plug-in used 
for federating CKAN open data portals.  Like data warehouse 
Extract  Transform  and  Load  (ETL)  tools,  the  Harvester 
integrates  sources  of  data  into  a  common  ‘web  of  things’ 
repository.  Rather than simply extracting data from databases, 
the  Harvester  extends  that  capability  to  also  extract  virtual 
sensor data buried in web pages,  XML data feeds and other 
web formats.  It  normalizes this data and uploads it into the 
WoTKit for easy access by developers.  Today the Harvester 
loads data into several instances of the WoTKit platform using 
its REST API. 

V. RELATED WORK

Aggregating many things into cloud-based IoT hubs is a 
growing  trend. Some  are  product  or  market-centric,  others 
focus  on  specific  domains. Interoperability  is  also  being 
addressed at different levels by various industry and standards 
groups.

Many  of  today’s  Internet-connected  products  use 
web-based  services  for  remote  control  and  monitoring 
employing mobile phone applications and web browsers. The 
‘Nest’ thermostat  [18], for example,  is connected to a cloud 
service using home wifi networks ,permitting users to manage 
their home heating with their mobile phones and the web.  The 
Koubachi system [19] connects consumer plant sensors to the 
web, allowing  owners  to  monitor  and  improve  their  plant 
health with alerts and graphs.  It supports a RESTful API for 
developers to access this data from other applications.    The 
Smart  Things  platform  provides  an  API,  a  programming 
language and web based  IDE for  creating home automation 
applications [20].

Large IoT hub and platform vendors provide a degree of 
interoperability  by  providing a thing-agnostic model and API 
to  integrate  things across  a  wide  variety  of  domains.  These 
vendors aim to create a network effect where the hub becomes 
more valuable as more users and their things are connected. By 
doing  so,  vendors  hope  to  establish  their  hubs  as  de-facto 
standards for web of things interoperability.  Our own work, 
the WoTKit [3], as well as Xively(formerly Cosm and Pachube 
[8]), aggregate collections of data streams called feeds to store 
information about sensors and the data they emit  over time. 
Similarly, ThingSpeak  [7] supports a data model of channels 
similar  to  Xively  and  WoTKit  feeds.  All  three  include 
applications for processing, visualization and integration, and 
offer the ability to find and share sensors and data, allowing 
others to take advantage of the integration work of others. The 

Fig. 5. CatalogCreator class diagram



Each  of  these  platforms  offer  a  ‘hub’  model  to  provide  a 
repository for Things (data and metadata) and a set of APIs for 
accessing and using Things.

The  Internet  of  Things  Architecture  project  (IoT-A)  is 
proposing  an  architectural  reference  model  for  IoT 
interoperability together with key components of the future IoT 
to  enable  search,  discovery  and  interaction  as  one  coherent 
network [21].

The IETF community has  been involved in  foundational 
IoT technologies such as IPv6 and the Constrained Application 
Protocol (CoAP), focusing on getting constrained devices and 
sensor networks connected to the Internet [11], [22]. Similarly, 
the  IEEE  has  several  protocol  standards  that  form  the 
foundation of the IoT and provid connectivity between things 
and the Internet [10].

The Open Geospatial  Consortium (OGC) and others  [23] 
have recognized the need for coordinating systems to make it 
easier for applications to discover and access a wide variety of 
sensors independent of connectivity and data types.  The OGC 
Sensor Web Enablement (SWE) framework defines a standard 
set of web service interfaces making it easier to share sensor 
data. A new working group called Sensor Web Interface for the 
IoT  [12] aims  to  link  emerging  web  of  things  toolkits  and 
platforms to the OGC SWE standards. 

While  these  efforts  are  moving  the  IoT  toward  greater 
interoperability,  some,  such  as  the  IETF  and  IEEE, deal 
primarily with connecting things to the Internet and the web. 
They  specify  only  the  core  networking  infrastructure  and 
protocols  needed,  not  cross-domain  hub-to-hub  or 
hub-to-application  catalogue  and  data  interoperability  as 
outlined here. More ambitious standardization efforts such as 
the  IoT-A  project  [21],  although  offering  a  comprehensive 
approach to interoperability, are hampered by their scale, and 
may be attempting to lock down aspects of the IoT ecosystem 
while  it  is  still  rapidly  evolving.   Developers  and  vendors 
however,  may  favour  less  complex  approaches  that  address 
requirements as they emerge. 

VI. EXPERIENCES AND LESSONS

The  Smart  Streets  IoT  hub  has  been  in  operation  for 
approximately  8  months  and  currently  manages  64,000 
time-series  sensor  feeds  as  well  as a  wide  variety  of  static 
datasets.  It includes a diverse set of both open and private data 
about transportation, road traffic and highways, ranging from 
real-time  traffic  data  to  road  asset  condition,  planned 
roadworks,  air  quality,  weather  and  flooding  information. 
These data sources have been pushed into the hub either via 
tools such as the Harvestor, by end users uploading data sets, 
or from physical devices that explicitly send information to the 
Hub via its APIs.

During the course of the project, we have built a variety of 
IoT applications that use our Smart Streets hub as well as data 
from other hubs.  The  Catalogue Explorer connects to other 
hubs’ HyperCat catalogues to display and view things available 
on other hubs.  We used JavaScript visualization frameworks 
to build a roadworks mashup that uses roadwork and sign data 
to  display  the  location  and  severity  of  accidents. A Traffic  
Data Explorer application displays roadworks against  traffic 
flow and  the  relationship of  traffic  flow to  delays,.A gully 

visualization  mashup  that explores the  correlation  between 
road  works  and  gully  silt  levels  over  time.   At  a  recent 
hackathon,  50+ participants  from Switzerland,  Germany and 
the UK developed a  series  of  apps. Over  a  two day period 
generated more than 300K Hub API calls transferring over 9 
GB of data.

Making a diverse set of IoT resources discoverable on the 
web by using a common catalogue was the initial focus of the 
UK IoT project.  Even with the limited scope of the HyperCat 
specification  (catalogs,  simple  security,  simple  search), we 
found  that  achieving  a  level  of  meaningful  interoperability 
using our API proxy was difficult.   Some of  the challenges 
included  the  need  to  resolve  different  access  control 
mechanisms, different query semantics,  and dealing with the 
size of certain large catalogues.

Related to security and access control, we found that it is 
not  enough to control  access to the data for thing resources 
hosted on an IoT hub.  It is also critical to control the visibility 
or  knowledge  that  a  resource  is  even  available,  limiting  or 
exposing  its  visibility  in  a  catalogue  depending  on  its 
ownership and the user, or application accessing the catalogue 
API.  To ensure these controls were reflected in the exposed 
catalogue, we  could  not  simply  replicate  the  catalogue  of 
underlying  systems;  we  needed  to  access  these  catalogues 
directly using the credentials of the requesting client to ensure 
only resources visible to that client were retrieved as described 
in section IV.

Overall we found that although the scope of HyperCat was 
appropriate  for  this  initial  project,  it  became  obvious  once 
several of the hubs came on-line that the groups will need to 
work closely toward standardizing catalogue item semantics, 
agreeing  on  the  definition  of  certain  meta  data  relationship 
fields and on how they relate to search, access control and data 
formats.

We believe that the use of ETL tools such as the Harvester  
is a good interim step towards addressing data interoperability,. 
The Harvester framework allowed us to aggregate a diverse set 
of data sources into a single hub that exposed a consistent API 
for  developers, allowing  developers  to  focus  more  on  their 
applications rather than worry about the location and formats 
of  the data they needed on the web.   During our efforts  to 
populate our hub with interesting data sets, we have found that 
there is an abundance of thing and sensor data available on the 
web today, buried in various web sites.  In many cases these 
sites focus on providing end users with information and do not 
consider the value of their data as part of an IoT ecosystem, in 
which application developers can combine their data with that 
of  others.   We  believe  this  will  change  over  time  as  data 
suppliers standardize data formats and the metatdata used to 
describe these representations (e.g. MIME types). Based on our 
experience with HyperCat,our hub containing both CKAN and 
WoTKit data feeds and the diverse data already available on 
the web, we believe that it may be more practical to agree on 
the  metadata  (relationships  and  values)  used  to  describe 
domain-specific  data  formats  rather  than  to  agree  on  one 
format.   Using  a  catalogue  like  HyperCat, with  a  flexible 
metadata facility for describing things, will allow application 
developers to decide whether they are capable of consuming 
the data exposed by a given resource.



VII. CONCLUSIONS

Interoperability  in  the  IoT  is  critical  to  achieving  the 
potential of the widest variety of applications and services that 
can interact with objects in our physical world.  Research and 
development to date have shown that a web-centric approach is 
a  critical  first  step  in  achieving  this  vision.   With  the 
introduction of  IoT hubs that  aggregate  IoT resources  using 
web  protocols,  application  developers  can  access  individual 
hub-hosted physical resources such as environmental sensors, 
home automation equipment, home appliances and other things 
in a uniform manner.  The challenge of interoperability then 
becomes  one of  unifying the presentation  of  hub catalogues 
and  data  formats.   While  we  believe  standards  groups  will 
eventually be able to  provide interoperable specifications for 
WoT hubs, the tools presented here allow hub developers to 
begin  to  address  interoperability  while  the  requirements  for 
such specifications become clearer and agreement is  reached 
between  academic  and  industrial  practitioners  in  the  IoT 
community.
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