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Abstract

We calculate the cumulants of the charge transmitted through a chaotic cavity in the limit that the two openings have a
large number of scattering channels. The shot noise, which is the second cumulant, is known to be insensitive to dephasing
in this limit. Unexpectedly, the fourth and higher cumulants are found to depend on dephasing: A semiclassical theory and
a quantum mechanical model with strong dephasing give a result di�erent from a fully phase-coherent quantum mechanical
theory. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The theory of shot noise in mesoscopic systems has
developed along two parallel lines, one fully quantum
mechanical, the other semiclassical (see Refs. [1,2] for
reviews). The semiclassical method treats the dynam-
ics of the electrons according to classical mechanics,
but includes quantum statistical e�ects following from
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the Pauli exclusion principle. The fully quantum me-
chanical method includes interference e�ects that are
ignored in the semiclassical approach. Both methods
are expected to give identical results in the limit that
the Fermi wavelength goes to zero, or equivalently,
in the limit that the number of scattering channels N
goes to inFnity, corresponding to a large conductance
compared to the conductance quantum e2=h.

For example, in a di�usive conductor the shot-
noise power S → 2

3e〈I〉 in the limit N → ∞ (with
〈I〉 the mean current), and this result has been ob-
tained both quantum mechanically (using random-
matrix theory [3] or Green’s functions [4–6]) and
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semiclassically (using the Boltzmann–Langevin equa-
tion [7]). Another example of the correspondence
principle between quantum mechanics and semi-
classics in the large-N limit is the shot noise of a
double-barrier tunneling diode [8–11].

The shot-noise power is the second cumulant of the
charge transmitted through the conductor in a certain
time. For the complete counting statistics, one needs to
know the higher cumulants as well. The only existing
semiclassical calculation of higher cumulants was
done for the double-barrier tunneling diode [11], and
was found to be in complete agreement with the quan-
tum mechanical theory [12–16] in the large-N limit.

In this paper we present a semiclassical theory for
the counting statistics of charge transported through
a chaotic cavity, using the ‘minimal correlation’ ap-
proach developed recently by Sukhorukov and one of
the authors [17]. Much to our surprise, we do not re-
cover the quantum mechanical results in the large-N
limit: the fourth and higher cumulants di�er. We need
to introduce dephasing into the quantum mechanical
theory (by means of a voltage probe [18–21]) to ob-
tain agreement with semiclassics.

2. Transmitted charge

We consider a chaotic cavity (or quantum dot)
connected to two equilibrium reservoirs by ballistic
contacts (Fig. 1). (Since our results do not depend
on the dimensionality of the cavity we focus on the
two-dimensional situation, which simpliFes notation.)
A voltage V is applied between the reservoirs. The
reservoirs are described by equilibrium Fermi func-
tions, which at zero temperature (the case of interest
in this paper) have the form fL(E) = �(eV − E) and
fR(E) = �(−E). The cross-sections of the contacts
are denoted by �L and �R. Since we want to exploit

Fig. 1. Two-terminal chaotic cavity. The left and right contacts
have cross-sections �L, �R, and outward normals nL; nR.

the chaotic dynamics of the electron motion, we as-
sume that there is no direct transmission between
the contacts. In addition, the contacts are narrow as
compared to the circumference of the cavity, but
are classical in the sense that the number NL, NR of
propagating modes through each contact is large.

We are interested in the statistics of the charge trans-
mitted through any of the contacts in a given time
interval t,

Q(t) =
∫ t

0
I(t′) dt′; (1)

where I(t) = 〈I〉+�I(t) is the Muctuating current. We
take the limit t → ∞. For deFniteness, we consider the
current through the left contact, with the convention
that positive current is directed towards the sample. In
the long-time limit the charge transmitted through the
right contact is the same, due to current conservation.

The average transmitted charge gives the aver-
age current 〈I〉= limt→∞t−1〈Q(t)〉, and the variance
of the transmitted charge gives the zero-frequency
shot-noise power,

S = 2
∫ ∞

−∞
〈�I(0)�I(t)〉 dt

= 2 lim
t→∞t−1(〈Q2〉 − 〈Q〉2): (2)

Higher cumulants of Q(t) determine higher-order cor-
relation functions of the current.

Classically, the current is expressed in terms of the
distribution function f(r; n; E; t), with n the direction
of momentum. The absolute value of the momentum
pF may be regarded as a constant. The current is
given by

IL(t) =− epF

2�˜2

∫
�L

dyL

∫
dE

×
∫

dn(nL · n)f(x; t); (3)

where nL is the outward normal to the surface of the
cavity at the location of the left contact (Fig. 1), yL

is a point at the cross-section of the contact, and we
have abbreviated x ≡ {r; n; E}. The angular integral
is normalized to unity,

∫
dn= 1.

Electrons incident from the left reservoir (nL·n¡ 0)
are described by the non-Muctuating distribution func-
tion fL(E). (We ignore thermal Muctuations.) The
distribution function of the electrons with nL · n¿ 0
carries information about the chaotic dynamics inside
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the cavity. On average, it only depends on energy,
since the coordinate and angular dependence averages
out due to the multiple scattering from the surface of
the cavity. This average distribution function inside
the cavity is readily found from the condition that the
current in each energy layer is conserved [17],

〈f〉=
NLfL + NRfR

NL + NR
: (4)

The number of modes NL, NR is given by NL;R =
pFWL;R=�˜, with WL;R the width of the contacts. The
mean transmitted charge (1) is thus

〈Q〉= 〈IL〉t = e2Vt
h

NLNR

NL + NR
: (5)

This result could also be obtained by series addition
of the ballistic conductances NLe2=h and NRe2=h of the
two contacts.

3. Fluctuations of the distribution function

Fluctuations of the transmitted charge at zero tem-
perature are entirely determined by the Muctuations of
the distribution function inside the cavity. Following
Ref. [17], we assume that the Muctuations of the dis-
tribution function �f ≡ f−〈f〉 inside the cavity may
be decomposed into two parts,

�f(x; t) = �f̃(x; t) + �fC(E; t): (6)

The function �f̃ describes the purely ballistic motion
and obeys the equation

(@t + vFn · ∇)�f̃(x; t) = 0 (7)

with vF the Fermi velocity. This equation is supple-
mented by the expression for the equal-time correla-
tor,

〈�f̃(x; t)�f̃(x′; t)〉= �(x − x′)〈f〉(1 − 〈f〉); (8)

where

�(x − x′) = �−1�(r− r′)�(n − n′)�(E − E′) (9)

and �=m=2�˜2 is the density of states. Eq. (8) has
the same form as in equilibrium, although the function
〈f〉 describes the non-equilibrium state in the cavity.
The reason is that the only source of noise at equilib-
rium as well as in the case of a deterministic chaotic
cavity is the partial occupation of states. The uniform
Muctuating term �fC accounts for the fact that at long

times the motion inside the cavity is not purely ballis-
tic, and ensures the current conservation at any time
in any energy interval.

The Muctuations in the current due to the term �f̃
are given by

�ĨL(t) =− epF

2�˜2

∫
�L

dyL

∫
dE

×
∫

(nL·n)¿0
dn (nL · n)�f̃(x; t) (10)

and similarly for �ĨR(t). The condition that the current
at any time in any energy interval is conserved can be
used to eliminate the Muctuation in the current due to
the term �fC. The total Muctuation of the current is
then given by

�IL(t) =
NR�ĨL(t) − NL�ĨR(t)

NL + NR
: (11)

Eqs. (6)–(8) constitute the minimal correlation ap-
proach, which was shown in Ref. [17] to agree in the
limit NL, NR�1 with the quantum mechanical expres-
sion for shot noise in a multi-terminal chaotic cavity.
We seek to extend this approach to higher cumulants
of the transmitted charge. Therefore, we have to spec-
ify all the cumulants of the function �f̃ at equal time
moments. Generalizing Eq. (8), we write

〈〈�f̃(x1; t)�f̃(x2; t) · · · �f̃(xk ; t)〉〉
= �(x1 − x2)�(x1 − x3) · · · �(x1 − xk)

×〈〈fk(x; t)〉〉; (12)

where 〈〈· · ·〉〉 denotes the cumulant. The cumulant
〈〈fk(x; t)〉〉 is calculated later on; it depends only on
E, since moments of f(x) are determined by 〈f〉.
Eq. (12) is equivalent to Eq. (8) for k = 2, since
〈〈f2〉〉= 〈f〉(1 − 〈f〉) (see below).

Taking into account Eq. (7) and using Eq. (12) as
the initial condition, we obtain the expression for the
cumulant of �f̃ at arbitrary times,

〈〈�f̃(x1; t1)�f̃(x2; t2) · · · �f̃(xk ; tk)〉〉
= �1−k�(E1 − E2) · · · �(Ek−1 − Ek)

×�(n1 − n2) · · · �(nk−1 − nk)

×�[r1 − r2 − vFn1(t1 − t2)] · · · �[rk−1

−rk − vFn1(tk−1 − tk)]〈〈fk〉〉: (13)
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4. Semiclassical cumulants

Eqs. (3), (10), (11), and (13) may now be
used to calculate the cumulants of the transmit-
ted charge. We note that all cumulants of the type
〈〈�Ĩ �(t1) · · · �Ĩ  (tk)〉〉 vanish due to the combination
of delta functions in Eq. (13), unless all the subscripts
�; : : : ;  are equal to L or all are equal to R. The two
non-zero cumulants are

〈〈�Ĩ �(t1)�Ĩ �(t2) · · · �Ĩ �(tk)〉〉

= (−1)k
ekN�

h

∫
dE〈〈fk(E)〉〉�(t1 − t2) · · ·

×�(tk−1 − tk); �=L; R; k¿ 2: (14)

Consequently, for the cumulant of the transmitted
charge we obtain

〈〈Qk〉〉=
ek t
h

Nk
LNR + (−1)kN k

RNL

(NL + NR)k

×
∫

dE 〈〈fk(E)〉〉: (15)

To complete the calculation, we must compute the
cumulant 〈〈fk〉〉. The Muctuating distribution function
assumes only the values 0 and 1, thus 〈fk〉= 〈f〉 for
k¿ 1. The characteristic function

!(p) = 〈exp(pf)〉= 1 + 〈f〉[exp(p) − 1] (16)

generates the cumulants as coeOcients in a series ex-
pansion,

ln !(p) =
∞∑
k=1

pk

k!
〈〈fk〉〉: (17)

Substituting the average distribution function (4),
integrating over energy, and taking into account Eq.
(5), we obtain the expression for the cumulants of the
transmitted charge (k¿ 2),

〈〈Qk〉〉= ek−1〈Q〉Sk N
k−1
L + (−1)kN k−1

R

(NL + NR)k−1 ; (18)

where the coeOcients Sk are deFned as

ln[NR + NL exp(p)] =
∞∑
k=0

pk

k!
Sk : (19)

Expression (18) may be simpliFed in the symmetric
case NL =NR, when

S2l =
22l − 1

2l
B2l; S2l+1 = 0; l¿ 1; (20)

where Bn are Bernoulli numbers. In this case we have
(for l¿ 1)

〈〈Q2l〉〉= e2l−1〈Q〉2
2l − 1
l22l−1 B2l;

〈〈Q2l+1〉〉= 0: (21)

In particular, 〈〈Q2〉〉= e〈Q〉=4, which is the 1=4-shot
noise suppression in a symmetric chaotic cavity
[22]. The next non-vanishing cumulant is negative,
〈〈Q4〉〉= − e3〈Q〉=32.

For non-equivalent contacts Eq. (18) yields

〈〈Q2〉〉= e〈Q〉 NLNR

(NL + NR)2 ; (22)

in agreement with Refs. [6,23]. The next two cumu-
lants are

〈〈Q3〉〉= − e2〈Q〉NLNR(NL − NR)2

(NL + NR)4 ; (23)

〈〈Q4〉〉= e3〈Q〉NLNR

(N 2
L − 4NLNR + N 2

R)(N 3
L + N 3

R)
(NL + NR)7 : (24)

5. Phase-coherent quantum mechanical cumulants

We produced the result (18) by a semiclassical
method, generalizing the minimal correlation ap-
proach to higher cumulants. Let us compare it to the
phase-coherent quantum mechanical theory in the
large-N limit.

We use the relationship derived by Lee et al. [15]
between the characteristic function of the transmitted
charge and the transmission eigenvalues Tj,

〈exp(Qp=e)〉=
∏
j
[1 + Tj(exp(p) − 1)]eVt=h: (25)

This is the expression for a particular cavity, so we still
have to perform an ensemble average. The transmis-
sion eigenvalues have density '(T ) in the ensemble
of chaotic cavities. The ensemble-averaged cumulants
of the transmitted charge follow from
∞∑
k=1

pk

k!
e−k〈〈Qk〉〉

=
eVt
h

∫ T

0
dT '(T ) ln[1 + T (exp(p) − 1)]:

(26)
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The density of transmission eigenvalues for NL,
NR�1 has the form [6,23]

'(T ) =
√
NLNR

�T

(
T

1 − T
− (NL − NR)2

4NLNR

)1=2

:

(27)

It vanishes for T6 [1 + 4NLNR(NL − NR)−2]−1.
In the symmetric case NL =NR =N one simply has

[22,24]

'(T ) =
N
�

1√
T (1 − T )

(28)

and hence
∞∑
k=1

pk

k!
e1−k〈〈Qk〉〉= 4〈Q〉 ln[ 1

2 + 1
2 exp(p=2)]; (29)

which is equivalent to Eqs. (18) and (20). Thus, for
the symmetric case the results for the charge counting
statistics, obtained semiclassically and quantum me-
chanically, are identical.

This correspondence does not extend to the more
general case NL =NR. From Eqs. (26) and (27) we
reproduce the semiclassical expressions (22) and (23)
for 〈〈Q2〉〉 and 〈〈Q3〉〉. However, the fourth cumulant,

〈〈Q4〉〉= e3〈Q〉NLNR(NL + NR)−6

×(N 4
L −8N 3

LNR +12N 2
LN

2
R −8NLN 3

R +N 4
R);

(30)

is di�erent from Eq. (24).

6. E"ect of dephasing on the quantum mechanical
cumulants

Apparently, the di�erence between Eqs. (24) and
(30) is due to the lack of phase coherence in the semi-
classical minimal correlation approach. To strengthen
this explanation, we incorporate into the quantum
mechanical theory a dephasing mechanism via an
additional Fctitious lead attached to the cavity (see
Fig. 2). Following Refs. [20,21] we assume that this
lead has a (Muctuating) distribution function which is
determined from the condition that no current Mows
into the reservoir at every energy and every instant
of time. An electron absorbed by this lead is imme-
diately reinjected back at the same energy, without
any memory of the phase. Thus, this Fctitious lead

Fig. 2. Chaotic cavity with a Fctitious lead (supporting N( prop-
agating modes) that models strong uniform dephasing.

introduces dephasing but not inelastic scattering. For
homogeneous and complete dephasing, we take the
number of scattering channels N( in the dephasing
lead to be very large, N(�NL; NR.

Our starting point is the expression for the cur-
rent operator in the lead � (�= L;R; () in terms of
creation=annihilation operators [8,2],

Î �(t) =
e
h
∑
)�

∑
mn

∫
dE

∫
dE′ exp

(
i(E − E′)t

˜

)

×â†)m(E)Amn
)� (�; E; E′)â�n(E′): (31)

The sum over ) and � is over the leads L, R, and
(, the sum over m, n is over the mode indices. The
current matrix A is expressed in terms of the scattering
matrices s,

Amn
)� (�; E; E′) = �mn��)��� − s†mn�) (E)snm�� (E′) (32)

and the creation and annihilation operators obey the
fermion anticommutation relation

â†�m(E)â-n(E′) + â-n(E′)â†�m(E)

= ��-�mn�(E − E′): (33)

The expectation value

〈a†�m(E)â-n(E′)〉= ��-�mn�(E − E′)f�(E) (34)

is given by the average distribution function f�(E) in
reservoir �. From the condition that the average (en-
ergy resolved) current 〈I((E)〉 through the dephasing
lead vanishes at every energy, one Fnds the average
distribution function

f((E) =
NLfL + NRfR

NL + NR
; (35)

which is identical to the average semiclassical distri-
bution function (4) inside the cavity.
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The distribution function of the dephasing lead Muc-
tuates in time. These Muctuations, which can also be
found from the condition that the current through this
lead vanishes, modify the Muctuations of the current
at the leads L and R [21],

SÎ L(t) = �ÎL(t) +
NL

NL + NR
�Î((t);

SÎ R(t) = �ÎR(t) +
NR

NL + NR
�Î((t); (36)

where the intrinsic Muctuations �Î �(t) = Î �(t)−〈Î �(t)〉
are described by Eq. (31).

We now calculate the fourth cumulant of the charge
transmitted through the left lead,

〈〈Q4〉〉=

〈〈(∫ t

0
dt′SÎ L(t′)

)4
〉〉

: (37)

Explicitly, we have

〈〈Q4〉〉=.LLLL +
4NL

NL + NR
.LLL(

+
6N 2

L

(NL + NR)2.LL(( +
4N 3

L

(NL + NR)3.L(((

+
N 4
L

(NL + NR)4.((((; (38)

where we have deFned the cumulant

.�1�2�3�4 =
〈〈

4∏
i=1

∫
dti Î �i(ti)

〉〉
(39)

in terms of the current operators (31). It remains to
calculate the cumulant of eight creation=annihilation
operators, by taking into account all possible pair-
ings between the operators â†)imi

and â�ini (i= 1; 2; 3; 4)
which couple all the four current operators together.
For N(�NL; NR�1 the leading contribution to the cu-
mulant comes from the terms with )i = �i =(. Sum-
ming all possible pairings, we obtain

.�1�2�3�4 =
e4t
h

Tr[A(((�1) · · ·A(((�4)]
∫

dE

×f((1 − f()[f2
( − 4f((1 − f()

+(1 − f()2]; (40)

where the trace is taken over the mode indices. In the
same leading order, we neglect all traces of the type
Tr[s†�( · · · s (] (� : : :  =L; R), unless all indices � : : :  
are the same. In this case

Tr[s†L(sL(]4 =NL; Tr[s†R(sR(]4 =NR: (41)

Summing all contributions in Eq. (37), we recover the
result (24) of the semiclassical theory.

7. Conclusions

To summarize, we have studied the charge count-
ing statistics in chaotic cavities using three di�erent
approaches: (i) a fully coherent quantum mechanical
theory; (ii) a dephasing-lead model that is also quan-
tum mechanical but phenomenologically introduces
uniform and strong dephasing inside the cavity; and
(iii) the semiclassical minimal correlation approach.
All three approaches give the same results if the two
openings in the cavity have the same (large) number
of scattering channels. The cumulants for this sym-
metric case are given by Eq. (21). In the asymmetric
case of two di�erent openings, the Frst three cumu-
lants are also the same in the three approaches, but the
fourth cumulant is not: For approach (i) it is given by
Eq. (30), for approaches (ii) and (iii) by Eq. (24).

We conclude that the counting statistics of a chaotic
cavity is sensitive to dephasing even in the limit of a
large number of scattering channels. This is an unex-
pected conclusion since the shot noise is not a�ected
by dephasing. What is lacking is an understanding in
physical terms as to why the high-order cumulants of
the transmitted charge respond di�erently to dephas-
ing than the low-order cumulants.
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