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Large sample-to-sample fluctuations of the nonequilibrium critical current
through mesoscopic Josephson junctions
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We present a theory for the nonequilibrium current in a mesoscopic Josephson junction which is coupled to
a normal electron reservoir, and apply it to a chaotic junction. Large sample-to-sample fluctuations of the
critical current I c are found, with rmsI c.ANeD/\, when the voltage differenceeV between the electron
reservoir and the junction exceeds the superconducting gapD and the number of modesN connecting the
junction to the superconducting electrodes is large.
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Recently, there has been an increased interest in the
equilibrium Josephson current in mesoscopic multitermi
superconductor-normal metal-superconductor~SNS! junc-
tions. Nonequilibrium in the junction is created by quasip
ticle injection from one or several normal electron reservo
connected to the normal part of the SNS junction. By co
trolling the voltage applied between the normal reservo
and the SNS junction, it has been shown in recent exp
ments that the Josephson current can be suppress1,2

reversed,3 and in the case with injection from a superco
ducting reservoir, even enhanced.4

The microscopic mechanism for these effects, nonequ
rium population of the current-carrying Andreev levels, w
discussed by van Weeset al.5 already in 1991. Thereafter
the nonequilibrium Josephson current in various multiter
nal geometries has been studied in both diffusive6–8 and
quantum ballistic9,10 junctions. In Ref. 10 it was pointed ou
that the nonequilibrium Josephson current in ballistic S
junctions cannot be described only in terms of the noneq
librium population of Andreev levels: The Andreev leve
also change properties when the SNS junction is conne
to a normal reservoir, giving rise to a quantum interferen
addition to the Josephson current. This interference contr
tion, resulting from the difference between the scatteri
state wave functions for injected electrons and holes, is o
present in nonequilibrium and is a generic feature for
multiterminal mesoscopic SNS junctions. However, the
semble average of this interference contribution is zero,
does thus not show up in approaches starting with ensem
averaged equations, e.g., the Usadel equation used for c
lating the nonequilbrium Josephson current in diffus
junctions.6–8

In this paper we develop a general theory of the noneq
librium Josephson current in three-terminal SNS junctio
~see Fig. 1!, within a scattering-matrix approach.11 The
theory is then applied to a chaotic junction, in the limit
weak coupling to the normal reservoir and at zero tempe
ture. We find that the quantum-interference contribut
gives rise to sample-to-sample fluctuations of the critical c
rent I c which are much larger than the equilibriu
fluctuations:11,12 For a large voltageV ~with eV*D, the su-
perconducting gap!,
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2&2^I c&

2.^I c&.AN
eD

\
, ~1!

hence the fluctuations are of the order of the ensem
averaged critical current itself.~Here N is the number of
modes connecting the junction to each of the supercond
ing electrodes.! In this regime the current results from th
quantum-interference contribution alone, and its statistics
dominated by fluctuations of wave functions. These
much larger than the fluctuations of transmission eigenva
~which repell each other mutually! that characterize the equ
librium situation. Sample-to-sample fluctuations of this ma
nitude have never been predicted before. It should be p
sible to measure these fluctuations with some modificati
of existing experimental setups.2,12 For eV&D the critical
current is of orderN(eD/\), with fluctuations of order
eD/\.

A model of the junction is presented in Fig. 1. A meso
copic scatterer is connected to two superconducting leads
ballistic contacts, each supportingN transverse modes. Th
phase difference between the superconductors isf. The scat-
terer is also connected to a normal reservoir via a con
with M modes, containing a tunnel barrier with transparen
G. A voltageV is applied between the SNS junction and t
normal reservoir. We assume that the resistance of the in
tion contact is the dominating resistance of the junction, s
that the potential drops completely over the injection poi
In order to preserve nonequilibrium, the strength of the tu

FIG. 1. Three-terminal SNS junction, consisting of a mes
copic scatterer~gray shaded! connected to two superconducting re
ervoirs via contacts 2 and 3 and a normal reservoir via contac
The black bar in contact 1 indicates a tunnel barrier, the arrows
direction of positive current flow.
©2001 The American Physical Society12-1
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nel barrierG is, however, limited by the requirement that th
dwell time of the injected quasiparticlestdwell}1/G must be
smaller than the inelastic scattering timet inel in the junction.

Under these conditions, the distribution of the quasipa
cles in the junction is determined by the distributionsne(h)

5nF(E7eV) of electrons~holes! in the reservoir at energy
E, where nF5@11exp(E/kT)#21. The current in contactj
51, 2, 3 can then be written as

I j5E
2`

`

dE~ i j
ene1 i j

hnh1 i j
snF!, ~2!

with i j
e(h) the current density of the scattering states result

from injected electron~hole! quasiparticles from the norma
reservoir andi j

s the total current density for quasiparticle
injected from the superconductors (i s50 for subgap energie
uEu,D).

The currentI 5(I 21I 3)/2 flowing between the supercon
ductors can be rewritten by using the current conserva
for each energyi 1

e,h1 i 2
e,h5 i 3

e,h and the fact that no current i
flowing in the injection lead in equilibrium,i 1

e1 i 1
h50. It

takes then the formI 5I neq1I eq, where the equilibrium cur-
rent ateV50 is given byI eq5*dE@ i 11( i 2

s1 i 3
s)/2#nF , and

I neq5E
2`

`

dEF i 1

2
~ne1nh22nF!1

i 2

2
~ne2nh!G . ~3!

Here the current densitiesi 15 i 2
e1 i 2

h5 i 3
e1 i 3

h and i 25( i 2
e

2 i 2
h1 i 3

e2 i 3
h)/2 are the sum and the difference of the curre

densities of the scattering states for injected electrons
holes. The contribution} i 1 to I neq results from the nonequi
librium population of the Andreev levels, while the curre
} i 2 accounts for the quantum-interference contribution
well as for an asymmetric splitting of the injected curre
I 15*dE( i 1

e2 i 1
h)(ne2nh)/2.

We will now express the current densities in terms of
scattering matrix S of injected quasiparticles from th
reservoir.11 The current densities are calculated most con
niently in the contactsj 51, 2, 3, where the wave function
are plane-wave solutions to the Bogoliubov-de Gennes e
tion. A wave incident on the scatterer from leads 2 and 3
described by the 4N vector of wave function coefficient
cin5(c2

e,1 ,c3
e,2 ,c2

h,2 ,c3
h,1). The superscript1(2) denotes a

positive~negative! sign of the wave vector. Corresponding
the outgoing wave is given bycout5(c2

e,2 ,c3
e,1 ,c2

h,1 ,c3
h,2).

At the NS interfaces, Andreev reflection is described by
scattering matrix

SA5aS 0 r A

r A* 0 D , r A5S eif/2 0

0 e2 if/2D , ~4!

such thatcin5SAcout, with a5exp@2i arccos(E/D)#. The
wave functions in the three contacts are then matched
help of the (2N1M )3(2N1M ) scattering matrixS8 of the
normal region~including the tunnel barrier!, with blocks
~corresponding to contacts!
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S85S r 11 t12 t13

t21 r 22 t23

t31 t32 r 33

D . ~5!

We introduce a nonunitary matrixSN , describing only the
scattering between the contactsj 52 and 3,

SN5S S0~E! 0

0 S0* ~2E!
D , S05S r 22 t23

t32 r 33
D , ~6!

such thatcout5SNcin , and matrices which involve also con
tact 1,

T5S t12~E! t13~E! 0 0

0 0 t12* ~2E! t13* ~2E!
D ,

T 85S t21~E! 0

t31~E! 0

0 t21* ~2E!

0 t31* ~2E!

D , R5S r 11~E! 0

0 r 11* ~2E!
D .

The scattering matrixS for injected quasiparticles from th
normal reservoir can be written as

S5S r ee r he

r eh r hh
D 5R1T ~SA

† 2SN!21T 8. ~7!

From these ingredients, the coefficientsc can be calculated
and the current densities in Eq.~2! are obtained from the
quantum mechanical expression for current. The current d
sities i 1 and i 2 follow after some matrix algebra, and rea
~for subgap energiesuEu,D)

i 1~E!5
2e

ih
trS S†

d

df
SD , i 2~E!5

2e

ih
trS S†

d

df
StzD ,

~8!

with tz5diag ~1,21!. ~The expression fori 1 is well
known.13,14! Equations~3! and~8! are our general results fo
the nonequilibrium Josephson current.

In general, the current flowing between the supercondu
ors contains also the part of the injected current which
asymmetrically split between contacts 2 and 3.15 This is not
the case when the SNS junction is weakly coupled to
reservoir (G!1), because the injected current is then neg
gible compared to the current flowing between the superc
ductors. It is, however, important to point out that the co
pling strengthG has a lower practical limit, since we sti
require that the inelastic relaxation timet inel*tdwell}1/G.
The coupling strength also sets the time scale on which
nonequilibrium steady state is established, since this is of
order of the dwell time. The total energy transfered in est
lishing the steady state,}tdwellG, remains finite even for
small G, as is demanded by general thermodynamic pr
ciples.

In this limit the matrixSN5SN01GdSN can be expanded
to first order inG, whereSN0 is unitary. The two current
densitiesi 1 and i 2 have the same discrete spectrum of A
2-2
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LARGE SAMPLE-TO-SAMPLE FLUCTUATIONS OF THE . . . PHYSICAL REVIEW B63 054512
dreev levels, given by the solutionsEn of det(12SASN0)
50, but different spectral weights. The current densityi 1

reduces to the well-known expression for the closed junct

i 1~E!5(
n

I n
1d~E2En!, I n

15
2e

\

dEn

df
. ~9!

The current densityi 2 can be found from the first-order pe
turbation theory in the tunnel-barrier transparencyG,

i 2~E!5(
n

I n
2d~E2En!, I n

25RnI n
1 , ~10a!

Rn5
Re~U†szdSNSAU !nn

Re~U†dSNSAU !nn

, ~10b!

wheresz5diag~1,1,21,21! and the unitary matrixU diago-
nalizes the unitary matrix productSASN05Udiag(l)U†. One
can show with help of the corresponding eigenvalue equa
that the ratiosuRnu<1. It should be pointed out that the ma
trix dSN cannotbe expressed in terms of the closed juncti
scattering matrixSN0, i.e., the current densityi 2 depends
manifestly on the properties of the contact between the n
mal reservoir and the SNS junction.

In order to investigate the mesoscopic fluctuations of
nonequilibrium current in more detail we now apply o
theory to a chaotic SNS junction, in the limit of weak co
pling to the normal reservoir.14 The ergodic time is assume
to be much smaller than the dwell time and the inverse
perconducting gap\/D. Here we only consider the simple
case, in which the dwell time in the normal scatterer~with
the superconducting leads replaced by normal ones! tdwell

normal

,\/D. ~Our main conclusions should apply also for the o
posite case.! For such a junction we can neglect the ener
dependence ofS8, which is then distributed with the so
called Poisson kernelP(S8)}udet(12^S8†&S8)u2(2N1M11),
where ^S8& is the ensemble-averaged scattering matrix16

~The magnetic fieldB50, which gives a symmetric scatte
ing matrix S85S8T.! Furthermore, the current density fo
energies outside the gap vanishes.11 Using the energy sym
metries i 1(E)52 i 1(2E) and i 2(E)5 i 2(2E), the total
current at zero temperature,

I 52 (
En.eV

I n
11 (

En,eV
I n

2[I 11I 2, ~11!

can be written as a sum over the currentsI n
1 and I n

2 carried
by the individual Andreev levels with positive energiesEn .
Equation~11! provides a simple picture where in equilibriu
all Andreev levels carry the currentsI n

1 . Increasing the volt-
age, the Andreev levels one by one switch fromI n

1 to I n
2

when the voltage is passing througheV5En . At eV>D, all
levels carry the currentI n

2 .
In terms of the transmission eigenvaluesTn of the matrix

S0, the Andreev bound-state energies are given byEn
5D(12Tn sin2 f/2)1/2, hence the relation11

I n
152~eD/2\!Tn sinf~12Tn sin2f/2!21/2. ~12!
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The statistical properties of the equilibrium currentI eq5
2(nI n

1 are known,11 with ^I eq&.NeD/\ and rms I eq

.eD/\.
For eV>D the current isI 5(nI n

25(nRnI n
1 . The statis-

tics of the ratiosRn follows from the construction of all
perturbationsdSN which are compatible with a givenSN0
~i.e., both matrices follow from the same scattering matrix
the open scatterer16!. For M51 such an analysis results in

Rn5~12Tn!1/2@~sin2f/2!212Tn#21/2sinbn , ~13!

where the angles$bn% ~parametrizing the coupling to th
reservoir! are independent random numbers, uniformly d
tributed in the interval@0,2p). As a consequence, for fixe
phase differencef the average current^I &50, and the fluc-
tuations rmsI .ANeD/\ becauseI 2 is a sum ofN indepen-
dently fluctuating numbersI n

2 . The precise value of the fluc
tuations can be calculated upon replacing the sum in^I 2&
5^(n(RnI n

1)2& ~valid due to the independence of thebn) by
an integral over the transmission eigenvalues, with den
r(T)5Np21@T(12T)#21/2. This results in

rms I 5
ANeD

2\utanf/2uAsin2
f

2
1

8 sin2f/4

cosf/2
23

sin2f/2

cosf/2

for eV>D, ~14!

which is parametrically larger than the equilibrium fluctu
tions whenN@1.

Another physical quantity of interest is the critical curre
I c , the largest possible current for a given realization. B
cause ofI (f)52I (2f) it sometimes makes sense to r
strict the phase to 0,f,p and to consider the curren
which is largest in modulus;I c can then be positive o
negative.3 ~With this definition, the average critical curren
vanishes foreV.D.! In the following, however, we maxi-
mize over2p,f,p, henceI c is always positive, as it is
obtained from theI /V characteristic in experiments. Th
ensemble-averaged critical current and its fluctuations~ob-
tained from a numerical simulation of the random-mat
ensemble withN510 andM51) are shown in Fig. 2, as a
function of applied voltageeV. The result is compared to th
contribution of I 1 in Eq. ~11! alone, which only takes the
nonequilibrium population of the Andreev levels into a
count.

For 0<eV&0.54D the critical current is equal to its equ
librium value, because at the nonfluctuating critical phas11

fc.2 all bound-state energiesEn.eV ~in general the ener-
gies lie in the interval@D cosf/2,D#). In the range 0.54D
<eV&0.98D the critical phase is determined by the cond
tion cosfc/25eV/D that the first Andreev bound state drop
below eV, with only small fluctuations due to the high den
sity of transmission eigenvaluesTn'1. Hence the critical
current is I c5I eq(fc). In this regime the quantum
interference contributionI 2 in Eq. ~11! does not play any
role becausêI 1&@rms I 2. For a voltageeV'0.98D very
close to the gap,I 1 and I 2 are both of orderANeD/\, and
the critical current starts to deviate from what one wou
expect from a pure nonequilibrium population of the A
2-3
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dreev levels.~For increasingN the cross-over voltageeV
→D.! In parallel the fluctuations of the critical current in
crease. The critical current remains constant foreV>D,
where it is given solely byI 2.

The critical current foreV>D and its fluctuations as a
function of junction modesN are shown in the upper panel o
Fig. 3. The mean critical current iŝI c&.0.16ANeD/\. The
fluctuations are of the same order, rmsI c.0.1ANeD/\,
which is by a factor of aboutAN/3 larger than the equilib-
rium fluctuations. Hence theN dependence in Eq.~14! car-
ries over to the average critical current and its fluctuation

Finally let us consider the dependence of the critical c
rent on the number of injection modesM. This number is
significant because the currentI 2 depends manifestly on th
coupling of the reservoir to the junction@see Eq.~10!#, in
contrast to the currentI 1 which only depends on propertie
of the decoupled junction. The lower panel of Fig. 3 sho
that the critical current and its fluctuations ateV>D are
suppressed whenM is increased. The functional dependen
is approximately}M 21/3. The curves flatten out whenM
becomes larger than the total number 2N of modes con-
nected to the superconductors. Thus, for an experimenta
servation of the large fluctuations predicted above, an in
tion contact with few modes is favorable.

In conclusion, we have studied the nonequilibrium J

FIG. 2. Ensemble-averaged critical current^I c& ~solid thick line!
and the fluctuations rmsI c ~dashed thick line! as a function of
voltageV between the normal reservoir and the junction. The t
lines are the result withI 250 in Eq. ~11!. The junction hasN
510 modes to each of the superconducting electrodes andM51
mode to the normal reservoir. Inset: the voltage range 0.96D
,eV,1.01D. (103 random matricesS8 have been generated!.
s.

M

n
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sephson current in a mesoscopic SNS junction connected
normal electron reservoir. It is found that the current can
expressed in terms of the scattering matrix for the quasip
ticles injected from the normal reservoir, Eqs.~3! and~8!. As
an application we considered the nonequilibrium current i
chaotic Josephson junction at zero temperature, wea
coupled to the normal reservoir. It is found that the fluctu
tions of the critical current for a voltageeV>D are of order
rms I c.ANDe/\, which is of the same order as the me
critical current itself, and much larger than the equilibriu
fluctuations~of orderDe/\).

We acknowledge discussions with C. W. J. Beenakker,
S. Shumeiko, and G. Wendin. This work has been suppo
by TFR, NUTEK, NEDO, and NWO/FOM.

FIG. 3. Ensemble-averaged critical current^I c& ~open circles!
and the fluctuations rmsI c ~full circles! as a function of the numbe
of junction modesN for a single injection modeM51 ~upper
panel! and the number of injection modesM for N510 junction
modes ~lower panel!. The curves are}N1/2 ~upper panel! and
}M 21/3 ~lower panel!.
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