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Large sample-to-sample fluctuations of the nonequilibrium critical current
through mesoscopic Josephson junctions

P. Samuelssdrand H. Schomerds
Department of Microelectronics and Nanoscience, Chalmers University of Technology aslio@pUniversity,
S$-41296 Gteborg, Sweden
2Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 12 October 2000; published 11 January 2001

We present a theory for the nonequilibrium current in a mesoscopic Josephson junction which is coupled to
a normal electron reservoir, and apply it to a chaotic junction. Large sample-to-sample fluctuations of the
critical currentl, are found, with rms ;= \/NeA/%, when the voltage differenceV between the electron
reservoir and the junction exceeds the superconductingAgapd the number of modes connecting the
junction to the superconducting electrodes is large.
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Recently, there has been an increased interest in the non- eA
equilibrium Josephson current in mesoscopic multiterminal rms |cEV<|§>_<|c>22<|c>”—‘\/N7, (1)
superconductor-normal metal-superconduct6NS junc-
tions. Nonequilibrium in the junction is created by quasipar-hence the fluctuations are of the order of the ensemble-
ticle injection from one or several normal electron reservoirsaveraged critical current itselfHere N is the number of
connected to the normal part of the SNS junction. By con-modes connecting the junction to each of the superconduct-
trolling the voltage applied between the normal reservoirdng electrodes. In this regime the current results from the
and the SNS junction, it has been shown in recent experiguantum-interference contribution alone, and its statistics are
ments that the Josephson current can be suppre$seddominated by fluctuations of wave functions. These are
reversed, and in the case with injection from a supercon- much larger than the fluctuations of transmission eigenvalues
ducting reservoir, even enhanckd. (which repell each other mutuallyhat characterize the equi-

The microscopic mechanism for these effects, nonequilibtibrium situation. Sample-to-sample fluctuations of this mag-
rium population of the current-carrying Andreev levels, wasnitude have never been predicted before. It should be pos-
discussed by van Weest al® already in 1991. Thereafter, sible to measure these fluctuations with some modifications
the nonequilibrium Josephson current in various multitermi-of existing experimental setups? For eV<A the critical
nal geometries has been studied in both diffuSi¥eand  current is of orderN(eA/%), with fluctuations of order
quantum ballisti&® junctions. In Ref. 10 it was pointed out eA/#.
that the nonequilibrium Josephson current in ballistic SNS A model of the junction is presented in Fig. 1. A mesos-
junctions cannot be described only in terms of the nonequicopic scatterer is connected to two superconducting leads via
librium population of Andreev levels: The Andreev levels pallistic contacts, each supportilg transverse modes. The
also change properties when the SNS junction is connecteshase difference between the superconductags Ehe scat-
to a normal reservoir, giving rise to a quantum interferenceerer is also connected to a normal reservoir via a contact
addition to the Josephson current. This interference contribuxith M modes, containing a tunnel barrier with transparency
tion, resulting from the difference between the scatteringy", A voltageV is applied between the SNS junction and the
state wave functions for injected electrons and holes, is onlyjormal reservoir. We assume that the resistance of the injec-
present in nonequilibrium and is a generic feature for alkion contact is the dominating resistance of the junction, such
multiterminal mesoscopic SNS junctions. However, the enthat the potential drops completely over the injection point.

semble average of this interference contribution is zero, anth order to preserve nonequilibrium, the strength of the tun-
does thus not show up in approaches starting with ensemble

averaged equations, e.g., the Usadel equation used for calcu-
lating the nonequilbrium Josephson current in diffusive
junctions®-8

In this paper we develop a general theory of the nonequi-
librium Josephson current in three-terminal SNS junctions
(see Fig. 1, within a scattering-matrix approach. The
theory is then applied to a chaotic junction, in the limit of
weak coupling to the normal reservoir and at zero tempera-
ture. We find that the quantum-interference contribution FiG. 1. Three-terminal SNS junction, consisting of a mesos-
gives rise to sample-to-sample fluctuations of the critical curcopic scatterefgray shadexconnected to two superconducting res-
rent |, which are much larger than the equilibrium ervoirs via contacts 2 and 3 and a normal reservoir via contact 1.
fluctuationst*? For a large voltag®/ (with eV=A, the su-  The black bar in contact 1 indicates a tunnel barrier, the arrows the
perconducting gap direction of positive current flow.
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nel barrierl” is, however, limited by the requirement that the

dwell time of the injected quasiparticlég,ee<1/I' must be |t t

smaller than the inelastic scattering tiyg, in the junction. S'=| ta T2 Ty (5
Under these conditions, the distribution of the quasiparti- ta1 t3n ra3

cles in the junction is determined by the distributiarf$"

=ng(E¥eV) of electrons(holes in the reservoir at energy

E, where ng=[1+expE/kT)]"L. The current in contac}

We introduce a nonunitary matri®,, describing only the
scattering between the contag¢ts 2 and 3,

=1, 2, 3 can then be written as So(E) 0 Foy tos
= . . ®
” ( 0 S5(—E) ( t3p Ta3
_ iee, ihoh, s
lj= fﬁwdE('Jn T Ng), @ such thatc,,=Syc;,, and matrices which involve also con-
tact 1,
with i the current density of the scattering states resulting
I s tio(E) ti3(E) 0 0

from injected electrorthole) quasiparticles from the normal < . . '
reservoir andi} the total current density for quasiparticles 0 0 2 —E) ti(—E)
injected from the superconductoii$£ 0 for subgap energies
|[E|<A). t21(E) 0

The current =(1,+13)/2 flowing between the supercon- ta(E) 0 r1(E) 0
ductors can be rewritten by using the current conservation 7' = 0 s g | :( . )
for each energy"+iS"=i$"and the fact that no current is t51(—E) 0 rn(—E)

flowing in the injection lead in equilibriumis+if=0. It 0 t3(-E)
takes then the fornh=1"%41%9 where the equilibrium cur-

rent ateV=0 is given byl %= [dE[i * + (i3+i3)/2]ne, and The scattering matriXs for injected quasiparticles from the

normal reservoir can be written as

i+ i
?(ne+ n"—2ng) + ?(ne— n"

I”eq=joc dE

r I

) s=( * e) =R+T(Sh—Sy) 17T". (7)
Fen Thh

it —ie+ih—ie4ih i~ _qie From these ingredien_ts_, th_e coefficietsan _be calculated

Here the current densitiess =i,*i;=i3*i; andi =(i; and the current densities in E¢R) are obtained from the

q '2+.t'.3 |3f)/t2hare tht? sum a?dt thefdlfferentcedoflthet current uantum mechanical expression for current. The current den-
ensities of the scatlering states for injected elecrons angyiaqi+ andi- follow after some matrix algebra, and read

holes. The contributiori * to I"®results from the nonequi- :
librium population of the Andreev levels, while the current (for subgap energieiE| <A)
«i~ accounts for the quantum-interference contribution as 2e d 2e d
well as for an asymmetric splitting of the injected current i (E)= .—tr( ST—S), i (E)= .—tr( ST—STZ),

e hyrne_ nh ih do ih do
[1=SdE(i{—i7])(n®*=n")/2. )

We will now express the current densities in terms of the

scattering matrixS of injected quasiparticles from the with 7,=diag (1,—1). (The expression fori™ is well
reservoirt! The current densities are calculated most conveknown**) Equations(3) and(8) are our general results for
niently in the contact§=1, 2, 3, where the wave functions the nonequilibrium Josephson current.
are plane-wave solutions to the Bogoliubov-de Gennes equa- In general, the current flowing between the superconduct-
tion. A wave incident on the scatterer from leads 2 and 3 i®rs contains also the part of the injected current which is
described by the M vector of wave function coefficients asymmetrically split between contacts 2 antf Fhis is not
Cin=(c5",c5~ ch” ,c§'+). The superscript-(—) denotes a  the case when the SNS junction is weakly coupled to the

positive (negative sign of the wave vector. Correspondingly reservoir {'<1), because the injected current is then negli-

the outgoing wave is given by,u=(cS,cS",ch™,ch). gible compgred to the current flowing be_:tween the supercon-
At the NS interfaces, Andreev reflection is described by theductors. It is, however, important to point out that the cou-
scattering matrix pling strengthl’ has a lower practical limit, since we still
require that the inelastic relaxation timge=tyweni1/M .
0 r Qi 12 0 The coqpling strength also sets the ltime scale on _which the
S,= a( A) rA:( D ) (4) nonequilibrium steady state is established, since this is of the
rx 0 0 e '92) order of the dwell time. The total energy transfered in estab-

lishing the steady statextg,eI’, remains finite even for
such thatc;,=SxCou, With a=exd —iarccosg/A)]. The smallI', as is demanded by general thermodynamic prin-
wave functions in the three contacts are then matched withiples.

help of the (N+ M) X (2N+ M) scattering matriX§' of the In this limit the matrixSy= Syo+ 1" 6Sy can be expanded
normal region(including the tunnel barri¢r with blocks to first order inI", where Sy, is unitary. The two current
(corresponding to contagts densities ™ andi~ have the same discrete spectrum of An-
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dreev levels, given by the solutiorts, of det(1— SpSyo)
=0, but different spectral weights. The current density
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The statistical properties of the equilibrium currdfif=
=31t are knownt' with (I®*h=NeA/% and rms |

reduces to the well-known expression for the closed junction:=€A/%.

_ 2edE,

hode

4
I n

i"(E)=2 17 8(E-Ey), (9)

The current density~ can be found from the first-order per-
turbation theory in the tunnel-barrier transparehcy

iT(E)=> 1, 8(E-E,), I1,=Ryl,, (103

R _RdUTUz5SNSAU)nn
" ReUTSSAU)py

(10b)

whereo,=diag(1,1,—1,—1) and the unitary matrixJ diago-
nalizes the unitary matrix produiSyo=Udiag(\)U'. One
can show with help of the corresponding eigenvalue equatio
that the ratiogR,|<1. It should be pointed out that the ma-
trix 6Sy cannotbe expressed in terms of the closed junction
scattering matrixSy, i.e., the current density” depends

manifestly on the properties of the contact between the nor-

mal reservoir and the SNS junction.

In order to investigate the mesoscopic fluctuations of the

nonequilibrium current in more detail we now apply our
theory to a chaotic SNS junction, in the limit of weak cou-
pling to the normal reservoif’. The ergodic time is assumed

ForeV=A the current id =3I, =3 ,R,l, . The statis-
tics of the ratiosR,, follows from the construction of all
perturbationssSy which are compatible with a giveByg
(i.e., both matrices follow from the same scattering matrix of
the open scatterh. ForM=1 such an analysis results in

R,=(1-T)Y(sirfp/2) =T, ¥?sinB,, (13

where the angle$3,} (parametrizing the coupling to the
reservoij are independent random numbers, uniformly dis-
tributed in the interva]0,27). As a consequence, for fixed
phase difference the average currert)=0, and the fluc-
tuations rmd = /NeA/# becausé ~ is a sum ofN indepen-
dently fluctuating numberls, . The precise value of the fluc-
tuations can be calculated upon replacing the sunl fiy
nz@n(Rner)"} (valid due to the independence of tg) by
an integral over the transmission eigenvalues, with density
(T)=N#"YT(1-T)] Y2 This results in

p
JNeA ¢ 8sitpld  sirtel2
rms | = —————\/sif=+ -3
2% |tang/2)| 2 cos¢l2 coso/2
for eV=A, (14

which is parametrically larger than the equilibrium fluctua-
tions whenN>1.

to be much smaller than the dwell time and the inverse su- another physical quantity of interest is the critical current

perconducting gaf/A. Here we only consider the simplest
case, in which the dwell time in the normal scattefith
the superconducting leads replaced by normal otfe&h
<A/A. (Our main conclusions should apply also for the op-

I, the largest possible current for a given realization. Be-
cause ofl (¢)=—1(—¢) it sometimes makes sense to re-
strict the phase to €¢<m and to consider the current
which is largest in modulus|. can then be positive or

posite case.For such a junction we can neglect the energynegative® (With this definition, the average critical current

dependence of', which is then distributed with the so-
called Poisson kerndP(S')o|det(1—(S'T)S")|~(@N*TM+1)
where (S') is the ensemble-averaged scattering maftix.
(The magnetic field=0, which gives a symmetric scatter-
ing matrix S'=S'T.) Furthermore, the current density for
energies outside the gap vanishislsing the energy sym-
metriesi *(E)=—i"(—E) andi (E)=i"(—E), the total
current at zero temperature,

— > D =T+,

En>eV E <eV

I (11
can be written as a sum over the curreijfsand|,, carried
by the individual Andreev levels with positive energies.
Equation(11) provides a simple picture where in equilibrium
all Andreev levels carry the currentt$ . Increasing the volt-
age, the Andreev levels one by one switch frojnto I,
when the voltage is passing through'=E,,. At eV=A, all
levels carry the currerlt, .

In terms of the transmission eigenvalugsof the matrix
Sy, the Andreev bound-state energies are given Hy
=A(1-T,sir? #/2)" hence the relatidh

|y =—(eA/2h)T,sing(1—T,sirf¢/2) Y2 (12

vanishes foreV>A.) In the following, however, we maxi-
mize over— 7w<¢<1r, hencel, is always positive, as it is
obtained from thel/V characteristic in experiments. The
ensemble-averaged critical current and its fluctuati@is
tained from a numerical simulation of the random-matrix
ensemble witiN=10 andM =1) are shown in Fig. 2, as a
function of applied voltageV. The result is compared to the
contribution ofl* in Eq. (11) alone, which only takes the
nonequilibrium population of the Andreev levels into ac-
count.

For 0<eV=0.54A the critical current is equal to its equi-
librium value, because at the nonfluctuating critical pfhase
¢.=2 all bound-state energids,>eV (in general the ener-
gies lie in the interval A cos¢/2,A]). In the range 0.54
<eV=0.98)A the critical phase is determined by the condi-
tion cos¢/2=eV/A that the first Andreev bound state drops
below eV, with only small fluctuations due to the high den-
sity of transmission eigenvaluek,~1. Hence the critical
current is 1.=1°Y¢.). In this regime the quantum-
interference contributioh™ in Eq. (11) does not play any
role becausél ")>rms|~. For a voltageeV~0.98\ very
close to the gap,” andl~ are both of order/NeA/#, and
the critical current starts to deviate from what one would
expect from a pure nonequilibrium population of the An-
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FIG. 2. Ensemble-averaged critical curréhd (solid thick ling
and the fluctuations rms; (dashed thick ling as a function of
voltageV between the normal reservoir and the junction. The thin
lines are the result with™=0 in Eq. (11). The junction hasN
=10 modes to each of the superconducting electrodeshard.
mode to the normal reservoir. Inset: the voltage range Q965
<eV<1.01A. (10° random matrice$' have been generated

dreev levels.(For increasingN the cross-over voltageV
—A.) In parallel the fluctuations of the critical current in-
crease. The critical current remains constant é=A, FIG. 3. Ensemble-averaged critical curréig) (open circles
where it is given solely by . and the fluctuations rmis. (full circles) as a function of the number
The critical current foreV=A and its fluctuations as a ©f junction modesN for a single injection modeM=1 (upper
function of junction modesl are shown in the upper panel of Pane) and the number of injection moded for N=10 junction
Fig. 3. The mean critical current {$)=0.16/NeA/%. The ~ Modes (lower panel. The curves arexN"= (upper pangl and
fluctuations are of the same order, rms=0.1/NeA/#, #M " (lower panel.
which is by a factor of about/N/3 larger than the equilib-

rium fluctuations. Hence thil dependence in Eq14) car- sephson current in a mesoscopic SNS junction connected to a
ries over to the average critical current and its fluctuations. P _ op J
normal electron reservoir. It is found that the current can be

Finally let us consider the dependence of the critical cur- . ) . :
rent on the number of injection modéé. This number is expressed in terms of the scattering matrix for the quasipar-
significant because the current depends manifestly on the ticles injected from the normal reservoir, E¢8) and(8). As
coupling of the reservoir to the junctidisee Eq.(10)], in  @n application we considered the nonequilibrium current in a
contrast to the currerit” which only depends on properties chaotic Josephson junction at zero temperature, weakly
of the decoupled junction. The lower panel of Fig. 3 showscoupled to the normal reservoir. It is found that the fluctua-
that the critical current and its fluctuations @v=A are tions of the critical current for a voltageV=A are of order
suppressed wheMl is increased. The functional dependencerms | = JNAe/#, which is of the same order as the mean
is approximatelyxM ~Y3. The curves flatten out whekl critical current itself, and much larger than the equilibrium
becomes larger than the total numbeX »f modes con- fluctuations(of orderAe/#).
nected to the superconductors. Thus, for an experimental ob- . ] .
servation of the large fluctuations predicted above, an injec- \We acknowledge discussions with C. W. J. Beenakker, V.
tion contact W|th feW modes is favorab|e. S. Shume”(o, and G. Wend|n. Th|S WOI’k haS been Supported

In conclusion, we have studied the nonequilibrium Jo-by TFR, NUTEK, NEDO, and NWO/FOM.
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