RAPID COMMUNICATIONS

Microscopic versus mesoscopic local density of states in one-dimensional localization
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We calculate the probability distribution of the local density of statéa a disordered one-dimensional
conductor or single-mode waveguide, attached at one end to an electron or photon reservoir. We show that this
distribution does not display a log-normal tail for smalbut diverges instead v~ Y. The log-normal tail
appears ifv is averaged over rapid oscillations on the scale of the wavelength. There is no such qualitative
distinction between microscopic and mesoscopic densities of states if the levels are broadened by inelastic
scattering or absorption, rather than by coupling to a reservoir.
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Localization of wave functions by disorder can be seen ingrrive at a relation between, v, and reflection coefficients.
the fluctuations of the density of states, provided the systenthis allows a direct calculation of the distributions. We find
is probed on a sufficiently short length scafeThe local  thatP(») andP(%) have the same log-normal tail for large
density of statesLDOS) of electrons can be probed using densities, but the asymptotics for smalhndv is completely
the tunnel resistance of a point confaut the Knight shift in different ’The strong fluctuations of on the scale of the
nuclear magnetic resonantayhile the LDOS of photons waveleﬁgth lead to a divergende(»)xv 12 for y—0
determines the rate of spontaneous emission from an atomic, . . . ~ ’
transition® In the photonic case one can study the effects oﬂ\’h'le the 'dIStI’IbL.ItIO.I’I of the envelope van|sh@§,v)—>0 for
localization independently from those of interactiogor ~ »—0- This qualitative difference between microscopic and
the description of one-dimensional interacting electrons ifnesoscopic LDOS is a feature of an open system. Bgth
terms of Luttinger liquids and the interplay of interaction andand P(v) vanish for small densities if the wire is closed at

localization see, e.g., Ref.)6. both ends and the levels are broadened by inelastic scatterers
For each length scalé characteristic for the resolution of (for electrons or absorption(for photons. _ .
the probe, one can introduce a corresponding LD@SIt is We consider a 1D wire and relate the microscopic and

necessary that is less than the localization length, in order mésoscopic LDOS at enerdy and at a poink=0 to the
to be able to see the effects of localization—the hallrhark reflection amplitudesg, r. from parts of the wire to the
being the appearance of logarithmically normal tailsfight and to the left of this point. The Hamiltonian K
o exp(—constx In?v) in the probability distributiorP(v,). =~ (A%2m)d°/x*+V(x) for noninteracting electrongEor
Much of our present understandfhgf this problem in a  Photons of a single polarization we would consider the dif-
wire geometry builds on the one-dimensioab) solution ~ ferential operator of the scalar wave equatiove will put
of Altshuler and Prigodif. In the simplest case one has a 7i=1 for convenience of notation. We start from the relation
single-mode wire which is closed at one end and attached &etween the LDOS and the retarded Green function,
the other end to an electron reservoir. The optical analogue is 1
. ; I v=—a -ImG(0) (1)
a single-mode waveguide that can radiate into free space ’
from one end. In 1D the localization length equals twice the . _
mean free path, which is assumed to be large compared to (E+in=H)G(x)=d(x), 2
the wavelength\. One can then distinguish the microscopic with » a positive infinitesimal. We assume weak disorder
LDOS v=v, for §<\, and the mesoscopic LDOS=vsfor  (kI>1, with k=2m/\ the wave numbgr so that we can
A <<5<I|. While v oscillates rapidly on the scale of the wave- expand the Green function in scattering states in a small

length, » only contains the slowly varying envelope of these Intérval around=0,
oscillations. Altshuler and Prigodin calculated the distribu- G(x)=c,_(e“kx+r,_e‘kx) 0(—x)+cR(e‘kx+rRe“kX) a(x).

tion P(7) and surmised tha®(») would have the same log- (3)
normal tails. We will demonstrate that this is not the case for )
the smallv asymptotics. [The functiond(x)=1 for x>0 and 0 forx<0.] The coef-

The calculation of Ref. 9 was based on the Berezinskificients ¢, and cg are related by the requirement that the
diagram techniqué&’ which reconstructs the probability dis- Green function be continuous a=0,c (1+r)=cg(1
tribution from its moments(An alternative approacH,using ~ +Fr). Substitution of Eq.(3) into Eq. (2) gives a second
the method of supersymmetry, also proceeds via the md€lation betweerr, andcg, from which we deduce
ments) An altogether different scattering approach has been
proposed by Gasparian, Christen, andtier? and more G(0)= M
recently by Pustilnik2 We have pursued this approach and iv(1=rgry)
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with v the velocity. Using Eq(1) we arrive at the key rela- will now show, such a relation does not hold, in general, for
tion between the microscopic LDOS and the reflection coefthe microscopic LDOS/, and the asymptotics of its distri-
ficients, bution function for small and large values ofcan be en-
. . tirely different.
v=(mv) "Re(1+r )(1—rgr ) “(1+rg). ) The calculation is facilitated by the fact thais related to

In order to perform the local spatial average that gives the’ by
mesoscopic LDOS, we use that the reflection coefficients
oscillate on the scale of the wavelength. If we shiff

: - 0 5
slightly away from the origin to a poink’, one hasr, Moreover, v is statistically independent apg because the

2ikx’ —2ikx’ -
—e”r, andrg—e rr. The producgr, , however, .. cnierg) only in combination with¢, , which itself is
does not display these oscillations—only this Cornblnatlonuniformly distributed. The distribution of the microscopic
should be retained. Hence ’

LDOS hence follows directly from Eq10),

v=2vCcod(Pl2) if |rgl=1. (12)

V= “IRG1+rgr ) (1—rgr) "L 6
14 (7TU) q R L)( R L) ( ) 5 I{ ) V73/2e75/4 1 dt |n2(1//2t)
In what follows we will measurer and v in units of v, operk V) = S ,
V2ms Jo1—t S
=(mv) 1, which is the macroscopic density of states and mem (13)

the ensemble average ofv. ) )

Let us now demonstrate the power of the two simple reWhere we substitutet=cos(¢e/2). The asymptotic behav-
lations(5) and(6). We take the wire open at the left end and 101 IS
study the density at a distantefrom this opening. At the
right end the wire is assumed to be closed, giving rise to a exp(3s/4) 1 s
reflection coefficientr g=expi¢g) with uniformly distrib- Popen(”):wv ,ov<e’ (149
uted phasepg in the interval (0,2r). The reflection coeffi-
cientr, = VR exp(d,) is parametrized through the uniformly T y
distributed phasep, and the reflection probabilitR in the P v)= exp(—s/4)
interval (0,1). The assumption of a random scattering phase ope sl2312
is justified because we assumad<l.}* The ratio u=(1 (14b)
+R)(1—R) ! has the probability distributidn

V73/2, e S<y<eS,

exf —s/4—In?(v/2)/4s]

v AnY(v12)

g sl foo 7o Zls Poperd ¥) = , v>eS. (140

N d , 7
p(U) J(2s)%2) arcoshu Z(coshz—u)ll2 @

with s=L/I andl the mean free path for backscattering. The - ) .
mesoscopic LDOS6) can be written in terms of the vari- ©f Poped #) in EQ. (10). In the region of the smallest densi-

In the second and third region this is similar to the behavior

ablesu and ¢= ¢ + ¢, ties, howeverP,..{v) is not log-normal IikePope,{;) but
B divergesx v~ 12,
v=(u—u’—1 cosg) ™. (8) The different tails arise from two qualitatively different

mechanisms that produce small valuesvoénd». For the
mesoscopic LDOS this requires remotenes€Ediom the
- V= pu) o eigenvalues of wave functions localized within a localization
Poped V)= N du NTErY a=3(v+v7 1. (9  length aroundx, As a consequenceR() is intimately
my2Ja u-a linked to the distribution function of resonance widths.
The subsequent integration with EJ) yields Small values of the microscopic LDO% are attained at
nodes of the wave function which solves the wave equation
with open boundary conditions, independent of the energy.
' (10) The nodes are completely determined by the small-scale
structure of the wave function, which is a real standing wave

The distribution function(10) is the celebrated result of * Coskx+a) with random phasex.® [We recognize the
Altshuler and Prigodirl.It displays log-normal tails for both Square of this wave amplitude in E¢L2).] The resulting
large and small values &f. Indeed, the two tails are linked . divergence of the probability distribution has the same
by the functional relatich origin as in the Porter-Thomas distribution for chaotic wave

functions®®
"N T3P The two distributions for the open wire are plotted in Fig.
PAR)=vP®). (D 1, together with the result of a numerical simulation in which
This relation follows directly from Eq(9) and hence re- the Green function inside the wire is calculated recursively.
quires only a uniformly distributed phage regardless of the The comparison of theory and numerics is free of any adjust-
distribution functionp(u) of the reflection probability. As we able parameter—the velocity was taken from the dispersion

Averaging first overg we find

531205/ ~
——Iny
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FIG. 1. Distributions of the microscopic local density of states k|G 2. Same as in Fig. 1 but for the closed wire with dimen-
(LDOS) » and the mesoscopic LDOS for the open wire at a  sionless absorption rate=1/6. Solid curves are given by Eq4.7)
distanceL. =2I from the opening[Both are measured in units of and(19). The data points result from a numerical simulation for a
their meany,=(7v) '] Solid curves are given by Eq&L0) and  wire of length 5%, with the LDOS computed halfway in the wire.
(13). The data points result from a numerical simulation for a wire

of length 10 with no adjustable parameter. The inset shows theThis should be compared with the known distribuion
geometry of the open wirénot to scalg

1/2
v ¥ exgo—o(v+r Y] (19

2w

relation, and the mean free path was obtained from the dis- Plosed V) = (—
order strength within the Born approximation. m
We now show that this qualitative difference between the

. . . . . f the microscopic LDOS. In contrast to the open wire, both
microscopic and mesoscopic LDOS is absent in a closeg P P

wire. If the wire is decoupled from the reservoir we needdistributions vanish fow,»—0. This is illustrated in Fig. 2,
another source of level broadening to regularize dHenc- which compares the analytical predictions to numerical data

tions in the LDOS. Following Ref. 9, we will retain a finite obta!ned by ?iagonfalizatiog oftabll-|amiltoniatn. The compari-
imaginary partz of the energy, corresponding to spatially SON IS @gain iree ot any agjustable parameter. .
unifgrm gbZorp?ior(for photor?; or inelaztic scgtterianor ’ We note in passing Fhat the asymptotic behavid) dif-
electrong, with rate 2». Equationg5) and(6) still hold pro- fers from the asymptotic behavior

vided »<E. The reflection coefficients can be written as ~ _

reL=VRg € ?RL, where ¢g and ¢ are uniformly distrib- Peiosed V) # i () Y50~ 3%exp( — mw/16r),  (20)
uted phases if the attenuation lengtt{2 ) > (Ix?)*3® and
Rgr,R, are independent reflection probabilities. In an infi-
nitely long wire they have the same distributtdn

given in Ref. 9 foro<1. There the distribution function was
reconstructed from the leading asymptotics of the moments

lim,_o(?"y= ' "n!/(2n—1). This would be a valid pro-
we® ., cedure if the distribution depends only on the produetin
p(R)=——exd~w(l1-R)™7], wo=4yl/v. the limit w— 0, which it does not. The subleading terms of

2

(=R (15)  the moments have to be included feE w. Indeed, our dis-
tribution function has the same leading asymptotics of the
After elimination of the phases the distribution of the me-moments, but has a different functional form. This illustrates
soscopic LDOS takes again the fof@), whereu now stands the potential pitfalls of the restoration procedure which are

for the combinatioru=(1+RgR,)(1—RgR,) !. Equation  circumvented by our direct method.

(15) implies for u the distribution In conclusion, we have given exact results for the distri-
butions of the local densities of states in one-dimensional

(U —— localization, contrasting the microscopic length scalelow

e " UKo(0u*-1). (16 the wavelengthand mesoscopic length scalleetween the

] S ) ) wavelength and the mean free patontrary to expecta-
The resulting distribution function of the mesoscopic LDOStjons in the literature, the log-normal asymptotics at small

IS

p(U)=w2(l—%

densities applies only to the mesoscopic LD@Swhile the

T2 distribution of the microscopic LDOS$ divergese v~ 2 for
P V)= e U= DuK,(wuZ—1) v—0. This is of physical significance because many of the
cosed 72 Ja Ju-a LUkl local probes act on atomic degrees of freedom and hence
7 7 measure rather tharw. The strong length scale dependence
U= 1Ky (@ U= 1)), 17 of the LDOS disappears if the electrofsr photong are

with a defined in Eq(9). It vanishes for small densities as scattered inelasticalljor absorbefibefore reaching the res-
~ 5 _ ~ ervoir. BothP(v) andP(v) then have an exponential cutoff
Poosed V) =2 Y2wv 2exp —wlv), v<w. (18  at small densities.
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It is an interesting open problem whether the qualitativesyperconductor at one eAtiThe expressions for andv in
distinction betweeny and v in an open wire carries over to terms of the reflection matrices from two independent parts
the quasi-one-dimensional geometry w1 modes. An  of the wire, derived in this paper, can be directly generalized

analytic theory could build on the multichannel generaliza-to include Andreev reflection at the interface. _
tion of Eq. (5), Finally, with our approach one can investigate the relation

of wave-function decay to the decay of transmission prob-
abilities. These are known to be identical in one dimension.
Although identity is widely assumed in quasi-one-dimension,
it has come under debate recerffiyBy cutting the wire at

two points instead of one, we can study the correlator

v=ReTM(1+r ) (1—rgr) Y(1+rg). (22)

Now r, andrg areNx N reflection matrices and the matrix

g — -1 ~1/2gi ) i . i ~ AT ; izati
Mom=2(mA) " H(vwm) Sinn: To)SiNGm:To) — cONtaINS 500 In5)/35(x)), which selects the localization
the weights of theN §ca’;ter|ng sta_tes with transversal mo- center atx and then captures the decay of the wave function
mentumgp and Iongnudmal_velocnyun at the transversal from x to y.2% In one dimension we now can average over
positionry on the cross section of the wifareaA). random reflection phases and indeed obta{®,y)=InT,

. Ou_r approach can be generalized t.o a numb_er of d'ﬁer‘?r\;\/hereT is the transmission probability from to y. The
situations. One example is the LDOS inside a disordered ring,itions for a similar relation in quasi-one-dimension are

penetrated by a magnetic fldX.Our approach maps this not known

problem onto the problem of reflection and transmission '

(with amplitudetg=t, =t for ®=0) from the opposite ends

of a finite disordered segment. The microscopic LDOS is We acknowledge discussions with A. D. Mirlin and M.

then given by v=(mv) R (1+r)(1+rg) —t?](1 Pustilnik. This work was supported by the Dutch Science
— 2t cos 2r®/Py+t?—r rx) "%, with the flux quantum®,  Foundation NWO/FOM, by the NSF under Grant No. DMR
=hc/e. Another example is the LDOS in a wire coupled to a0086509, and by the Sloan foundation.

1K. B. Efetov, Supersymmetry in Disorder and Cha@ambridge  'J.E. Bunder and R.H. McKenzie, Nucl. Phys5B2, 445 (2001).

University Press, Cambridge, 1997 12y Gasparian, T. Christen, and M. Biker, Phys. Rev. /&4, 4022
2A.D. Mirlin, Phys. Rep.326, 260 (2000. (1996.
3T. Schmidt, R.J. Haug, V.I. Falko, K. von Klitzing, A."Ester, and  13p. pustilnik (private communication

H. Luth, Phys. Rev. Lett78, 1540(1997. 14R. Rammal and B. Doucot, J. Phy&rance 48, 509 (1987.
‘E.C. Fritschij, H.B. Brom, L.J. de Jongh, and G. Schmid, Phys.15a A Abrikosov, Solid State Commurg7, 997 (1981).

Rev. Lett.82, 2167(1999. 18M. L. Mehta, Random MatricesAcademic, New York, 1991

°P. de Vries and A. Lagendijk, Phys. Rev. Ledt, 1381(1998. 17H.u. Baranger, D.P. DiVincenzo, R.A. Jalabert, and A.D. Stone,
6J. Voit, Rep. Prog. Phy$8, 977(1995, and references therein; P. Phys. Rev. B44, 10 637(1991).

Schmitteckert, T. Schulze, C. Schuster, P. Schwab, and U. ECkrsv Freilikher and M. Pustilnik, Phys. Rev. B5, R653(1997

, em, Phys. Rev. LetB0, 560 (1998. _ _ 19p_ pradhan and N. Kumar, Phys. Rev5@ 9644 (1994).
B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, iMesoscopic 204 Eeldmann. E.P. Nakhmedov and R Oppermann, Phys. Rev. B
Phenomena in Solidedited by B. L. Altshuler, P. A. Lee, and éz 2401(20’00' ’ ' ’ ' ' ’

R. A. Webb(North-Holland, Amsterdam, 1991 215 Gu H. Pothier. N.O. Bi D. Est d MH. D i
8Y.V. Fyodorov and A.D. Mirlin, Int. J. Mod. Phys. B, 3795 - -oueon, 1. Fothier, %L, birge, L. Esteve, and M.H. Levoret,
Phys. Rev. Lett77, 3025(1996.

(1994). 2 _
A.V. Kolesnikov and K.B. Efetov, Phys. Rev. Let83, 3689

9B.L. Altshuler and V.N. Prigodin, Zh.'IEp. Teor. Fiz.95, 348
(1989 [Sov. Phys. JET®S, 198(1989)]. (1999; cond-mat/0005101v&000; H. Schomerus and C.W.J.

10y/| . Berezinskii, Zh. &sp. Teor. Fiz65, 1251(1973 [Sov. Phys. Beenakker, Phys. Rev. Le@4, 3927(2000.
JETP38, 620(1974]. 23R. Klesse and M.R. Zirnbauer, Phys. Rev. L&8&, 2094(2001.

121101-4



