Measurement of Dijet Azimuthal Decorrelations in pp Collisions at $\sqrt{s} = 7$ TeV

G. Aad et al.*
(ATLAS Collaboration)

(Received 14 February 2011; published 29 April 2011)

Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full data set ($\int L dt = 36$ pb$^{-1}$) acquired by the ATLAS detector during the 2010 $\sqrt{s} = 7$ TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high-energy regime.

DOI: 10.1103/PhysRevLett.106.172002

The production of events containing high transverse-momentum (p_T) jets is a key signature of quantum chromodynamic (QCD) interactions between partons in pp collisions at large center-of-mass energies (\sqrt{s}). The Large Hadron Collider (LHC) opens a window into the dynamics of interactions with high-p_T jets in a new energy regime of $\sqrt{s} = 7$ TeV. QCD predicts the decorrelation in the azimuthal angle between the two most energetic jets, $\Delta \phi$, as a function of the number of partons produced. Events with only two high-p_T jets have small azimuthal decorrelations, $\Delta \phi \sim \pi$, while $\Delta \phi \ll \pi$ is evidence of events with several high-p_T jets. QCD also describes the evolution of the shape of the $\Delta \phi$ distribution, which narrows with increasing leading jet p_T. Distributions in $\Delta \phi$ therefore test perturbative QCD (pQCD) calculations for multiple jet production without requiring the measurement of additional jets. Furthermore, a detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the standard model [1].

In this Letter, we present a measurement of dijet azimuthal decorrelations with jet p_T up to 1.3 TeV as measured by the ATLAS detector, beyond the reach of previous colliders. The differential cross section $(1/\sigma)(d\sigma/d\Delta \phi)$ is based upon an integrated luminosity $\int L dt = (36 \pm 4)$ pb$^{-1}$ [2]. The $\Delta \phi$ distribution is normalized by the inclusive dijet cross section σ, integrated over the same phase space. This construction minimizes experimental and theoretical uncertainties. Previous measurements of $\Delta \phi$ from the D0 [3] and CMS [4] Collaborations are extended here to higher jet p_T values.

Jets are reconstructed using the anti-k_t algorithm [5] (implemented with FASTJET [6]) with radius $R = 0.6$, and the jet four-momenta are constructed from a sum over its constituents, treating each as an (E, \vec{p}) four-vector with zero mass. The anti-k_t algorithm is well motivated since it is infrared safe to all orders, produces geometrically well-defined cone-like jets, and is used for pQCD calculations (from partons), event generators (from stable particles), and the detector (from energy clusters [7]). The azimuthal decorrelation $\Delta \phi$ is defined as the absolute value of the difference in azimuthal angle between the jet with the highest p_T in each event, p_T^{\max}, and the jet with the second-highest p_T in the event. There are nine analysis regions in p_T^{\max}, where the lowest region is bounded by $p_T^{\max} > 110$ GeV and the highest region requires $p_T^{\max} > 800$ GeV [7]. Only jets with $p_T > 100$ GeV and $|y| < 2.8$, where y is the jet rapidity [8], are considered. The two leading jets that define $\Delta \phi$ are required to satisfy $|y| < 0.8$, restricting the measurement to a central y region where the momentum fractions (x) of the interacting partons are roughly equal and the experimental acceptance for multijet production is increased. In this region where $0.02 < x < 0.14$, the parton distribution function (PDF) uncertainties are typically $\pm 3\%$ (at fixed factorization scale) [9]. The cross sections, measured over the range $\pi/2 \leq \Delta \phi \leq \pi$ and normalized independently for each analysis region, are compared with expectations from a pQCD calculation [10] that is next-to-leading order (NLO) in three-parton production. The perturbative prediction for the cross section is $O(\alpha_s^2)$, where α_s is the strong coupling constant.

The angular decorrelation is sensitive to multijet configurations such as those produced by event generators like SHERPA [11], which matches higher-order tree-level pQCD diagrams with a dipole parton-shower model [12]. Samples for $2 \rightarrow 2 - 6$ jet production are combined using an improved parton matching scheme [13]. Event generators such as PYTHIA [14] and HERWIG [15] use $2 \rightarrow 2$ leading order pQCD matrix elements matched with phenomenological parton-cascade models to simulate higher-order QCD effects. Such models have been successful at reproducing other QCD processes measured by the ATLAS Collaboration [7,16].

The ATLAS detector [17,18] consists of an inner tracking system surrounded by a thin superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer based on

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

0031-9007/11/106(17)/172002(17) 172002-1 © 2011 CERN, for the ATLAS Collaboration
large superconducting toroids. Jet measurements depend most heavily on the calorimeters. The electromagnetic calorimeter is a lead liquid-argon (LAr) detector with an accordion geometry. Hadron calorimetry is based on two different detector technologies, with scintillator tiles or LAr as the active medium, and with either steel, copper, or tungsten as the absorber material. The pseudorapidity (η) [8] and ϕ segmentations of the calorimeters are sufficiently fine to ensure that angular resolution uncertainties are negligible compared to other sources of systematic uncertainty.

A hardware-based calorimeter jet trigger identified events of interest; the decision was further refined in software [17,18]. Events with at least one jet that satisfied a minimum transverse energy (E_T) requirement were recorded for further analysis. The events in each p_T^{max} range are selected by a single trigger with a given E_T threshold, and the lower end of the range is chosen above the jet p_T at which the trigger is $\approx 100\%$ efficient. Three sets of triggered events with different integrated luminosity are considered: 2.3 pb^{-1} for $110 < p_T^{\text{max}} \leq 160\text{ GeV}$, 9.6 pb^{-1} for $160 < p_T^{\text{max}} \leq 260\text{ GeV}$, and 36 pb^{-1} for $p_T^{\text{max}} > 260\text{ GeV}$ [2]. Events are also required to have a reconstructed primary vertex within 15 cm in z of the center of the detector; each vertex had ≥ 5 associated tracks. The inputs to the anti-k_t jet algorithm are clusters of calorimeter cells seeded by cells with energy that is significantly above the measured noise [7]. Jets reconstructed in the detector, whether in data or the GEANT4-based simulation [19,20], are corrected for the effects of hadronic shower response and detector-material distributions using a p_T and η-dependent calibration [7] based on the detector simulation and validated with extensive test beam [18] and collision data [21] studies. Jets likely to have arisen from detector noise or cosmic rays are rejected [22].

The resulting $\Delta \phi$ distribution is shown in Fig. 1 for jets with $p_T > 100\text{ GeV}$. There are 146,788 events in the data sample, 85 of which have at least five jets with $p_T > 100\text{ GeV}$. Also shown is the PYTHIA sample with MRST 2007 LO* PDF [23] and ATLAS MC09 underlying event tune [24], processed through the full detector simulation and normalized to the number of events in the data sample. Two- and three-jet production primarily populates the region $2\pi/3 < \Delta \phi < \pi$ while smaller values of $\Delta \phi$ require additional activity such as soft radiation or more jets in an event. Figure 1 illustrates that the decorrelation increases when a third high-p_T jet is also required. Events with additional high-p_T jets widen the overall distribution.

The measured differential $\Delta \phi$ distributions in data are corrected in a single step with a bin-by-bin unfolding method [7] to compensate for trigger and detector inefficiencies and the effects of finite experimental resolutions. These correction factors, evaluated using the PYTHIA sample, lie within $\pm 9\%$ of unity. The leading sources of systematic uncertainty on the normalized cross section are the jet energy scale calibration ($2\%–17\%$) [7], the bin-by-bin unfolding method ($1\%–19\%$), and the jet energy and position resolutions ($0.5\%–5\%$). The ranges in parentheses represent the magnitude of the uncertainties near π and $\pi/2$, respectively, and correspond to the analysis region with the smallest statistical uncertainty ($160 < p_T^{\text{max}} \leq 210\text{ GeV}$). Multiple pp interactions in the same beam crossing that can increase the measured jet energy are included in the evaluation of the jet energy scale uncertainties ($< 0.8\%$ on the cross section for all analysis regions).

The normalized differential cross section is shown for each of the nine p_T^{max} analysis regions as a function of $\Delta \phi$ in Fig. 2. As p_T^{max} increases, and the probability for the emission of a hard third jet is reduced, the fraction of events near π becomes larger. Overlaid on the data are the results from a NLO pQCD ($O(\alpha_s^3)$) calculation, NLOJET ++ [10] with FASTNLO [25] and using the MSTW 2008 PDF [9]. The factorization and renormalization scales are set to p_T^{max} and are varied independently up and down by a factor of 2 to determine the scale uncertainties. The scale uncertainties are larger between $\pi/2 < \Delta \phi < 2\pi/3$ where the pQCD calculation is effectively leading order in four-parton production. The PDF uncertainties are treated as the envelope of the 68% C.L. uncertainties from MSTW 2008 [9], NNPDF 2.0 [26], and CTEQ 10 [27], and are combined with the uncertainties resulting from an α_s variation of ± 0.004; the α_s contributions dominate. The calculation is corrected for nonperturbative effects due to hadronization and the underlying event [28]; the correction is smaller than 3%. The fixed-order calculation fails near $\Delta \phi \rightarrow \pi$ where soft processes dominate and contributions from logarithmic terms are enhanced. Figure 3 displays the ratio of the cross section.
Theoretical approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta \phi \rightarrow \pi$; all three provide a good description of the data in this region. In the region $\pi/2 < \Delta \phi < 5\pi/6$, where multijet contributions are significant, this observable distinguishes between the three generators. SHERPA, which explicitly includes higher-order tree-level diagrams, performs well in most $\Delta \phi$ and p_T^{max} regions. Having phenomenological parameters that have been adjusted to previous ATLAS measurements, PYTHIA [28] and HERWIG [24] also describe the data.

In summary, we present a measurement of dijet azimuthal decorrelations in events produced in pp collisions at $\sqrt{s} = 7$ TeV. The normalized differential cross sections with respect to the NLO calculation. In most regions, the theory is consistent with the data. However, the prediction in the range $110 < p_T^{\text{max}} < 160$ GeV is relatively low in the central region of $\Delta \phi$ where the scale uncertainties are small.

The data are also compared with predictions [29] from SHERPA, PYTHIA, and HERWIG in Fig. 4. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta \phi \rightarrow \pi$; all three provide a good description of the data in this region. In the region $\pi/2 < \Delta \phi < 5\pi/6$, where multijet contributions are significant, this observable distinguishes between the three generators. SHERPA, which explicitly includes higher-order tree-level diagrams, performs well in most $\Delta \phi$ and p_T^{max} regions. Having phenomenological parameters that have been adjusted to previous ATLAS measurements, PYTHIA [28] and HERWIG [24] also describe the data.

Figure 2 (color online). The differential cross section $(1/\sigma) \times (d\sigma/d\Delta\phi)$ binned in nine p_T^{max} regions. Overlaid on the data (points) are results from the NLO pQCD calculation. The error bars on the data points indicate the statistical (inner error bars) and systematic uncertainties added in quadrature in this and subsequent figures. The theory uncertainties are indicated by the hatched regions. Different bins in p_T^{max} are scaled by multiplicative factors of 10 for display purposes. The region near the divergence at $\Delta \phi \rightarrow \pi$ is excluded from the calculation.

The data are also compared with predictions [29] from SHERPA, PYTHIA, and HERWIG. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta \phi \rightarrow \pi$; all three provide a good description of the data in this region. In the range $110 < p_T^{\text{max}} < 160$ GeV, it is relatively low in the central region of $\Delta \phi$ where the scale uncertainties are small.

The data are also compared with predictions [29] from SHERPA, PYTHIA, and HERWIG. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta \phi \rightarrow \pi$; all three provide a good description of the data in this region. In the range $110 < p_T^{\text{max}} < 160$ GeV, it is relatively low in the central region of $\Delta \phi$ where the scale uncertainties are small.

The data are also compared with predictions [29] from SHERPA, PYTHIA, and HERWIG. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta \phi \rightarrow \pi$; all three provide a good description of the data in this region. In the range $110 < p_T^{\text{max}} < 160$ GeV, it is relatively low in the central region of $\Delta \phi$ where the scale uncertainties are small.

The data are also compared with predictions [29] from SHERPA, PYTHIA, and HERWIG. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta \phi \rightarrow \pi$; all three provide a good description of the data in this region. In the range $110 < p_T^{\text{max}} < 160$ GeV, it is relatively low in the central region of $\Delta \phi$ where the scale uncertainties are small.

The data are also compared with predictions [29] from SHERPA, PYTHIA, and HERWIG. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta \phi \rightarrow \pi$; all three provide a good description of the data in this region. In the range $110 < p_T^{\text{max}} < 160$ GeV, it is relatively low in the central region of $\Delta \phi$ where the scale uncertainties are small.
several event generators successfully describe the general characteristics of our measurements, including the increasing slope of the $\Delta \phi$ distribution with p_T^{max} and the shape near $\Delta \phi \sim \pi/2$ where events with multiple jets make a considerable contribution. Our data, which include jets with p_T values that significantly exceed earlier measurements, explore QCD in a new kinematic region.

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DAE, DST and UGC, India; PPARC and STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is gratefully acknowledged, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), and RAL (UK), and in the Tier-2 facilities worldwide.

[8] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Rapidity is defined as $y = \frac{1}{2} \ln[(E + p_z)/(E - p_z)]$, where E is the energy and p_z is the longitudinal component of the momentum along the beam direction.

Department of Physics, Carleton University, Ottawa ON, Canada

Department of Physics, Carleton University, Ottawa ON, Canada

Department of Modern Physics, University of Science and Technology of China, Anhui, China

Department of Physics, Nanjing University, Jiangsu, China

High Energy Physics Group, Shandong University, Shandong, China

Department of Physics, Indiana University, Bloomington Indiana, USA

Department of Physics and Astronomy, Iowa State University, Ames Iowa, USA

University of Iowa, Iowa City Iowa, USA

Department of Physics, Iowa State University, Ames Iowa, USA

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

INFN Sezione di Lecce, Lecce, Italy

Dipartimento di Fisica, Università del Salento, Lecce, Italy

Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia