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Statistics of finite-time Lyapunov exponents in a random time-dependent potential

H. Schomerus* and M. Titov†

Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Strasse 38, 01187 Dresden, Germany
~Received 17 April 2002; published 12 December 2002!

The sensitivity of trajectories over finite-time intervalst to perturbations of the initial conditions can be
associated with a finite-time Lyapunov exponentl, obtained from the elementsMi j of the stability matrixM.
For globally chaotic dynamics,l tends to a unique value~the usual Lyapunov exponentl`) for almost all
trajectories ast is sent to infinity, but for finitet it depends on the initial conditions of the trajectory and can
be considered as a statistical quantity. We compute for a particle moving in a randomly time-dependent,
one-dimensional potential how the distribution functionP(l;t) approaches the limiting distributionP(l;`)
5d(l2l`). Our method also applies to the tail of the distribution, which determines the growth rates of
moments ofMi j . The results are also applicable to the problem of wave-function localization in a disordered
one-dimensional potential.

DOI: 10.1103/PhysRevE.66.066207 PACS number~s!: 05.45.2a, 05.40.2a, 42.25.Dd, 72.15.Rn
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I. INTRODUCTION

In this work, we give a uniform description of the com
plete asymptotic statistics of the finite-time Lyapunov exp
nent for a particle moving in a randomly time-depende
one-dimensional potential. The Lyapunov exponentl` char-
acterizes the sensitivity of trajectories to small perturbati
of the initial conditions and plays a fundamental role in t
characterization of systems which display determinis
chaos@1#. The Lyapunov exponent is defined in the joi
limits of vanishing initial perturbation and infinitely larg
times. In a hyperbolic Hamiltonian system,l` may be ob-
tained from any nonperiodic trajectory, because for ar
trarily long times the trajectories uniformly explore the com
plete phase space.

A widely studied generalization ofl` is the finite-time
Lyapunov exponent@1–17#, which is defined for finite
stretches~time interval t) of trajectories~generalizations to
finite perturbations also exist@18#!. The sensitivity of the
dynamics to initial perturbations is given by the stability m
trix map M, which is the linearization of the map of initia
coordinates to final coordinates. In terms of elementsMi j of
M, the finite-time Lyapunov exponent may then be defined

l5
1

2t
ln Mi j

2 . ~1!

In contrast tol` ,l is not a unique number independe
of the initial conditions, but a fluctuating quantity with
distribution functionP(l;t) ~defined by uniformly sampling
all initial conditions in phase space!. This distribution func-
tion determines, e.g., the generalized entropy and dimen
spectra of dynamical systems@1#, and more practically the
weak-localization correction to the conductance@19# and the
shot-noise suppression@20,21# in mesoscopic systems
Finite-time Lyapunov exponents also determine the wa
front stability of acoustic and electromagnetic wave pro
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gation through a random medium, in the ray-acoustics/r
optics regime of short wavelengths~for a recent application,
see Refs.@22,23#!. Moreover, they have shifted into the focu
of attention due to recent advances in the understandin
the role of the Lyapunov exponents for quantum-chao
wave propagation@24–30#: It has been observed that und
certain conditions the Lyapunov exponent can be extrac
from the decay of the overlap of two wave functions whi
are propagated by two slightly different Hamiltonians~the
so-called Loschmidt echo!. Since the overlap is studied as
function of time, the distribution of the finite-time Lyapuno
exponent is directly relevant for these investigations. T
extends also to related semiclassical time scales, such a
Ehrenfest time;(ln \)/l, which is a semiclassical estimat
of the diffraction time of wave packets due to the chao
classical dynamics.

In the limit of infinite time t, the distribution function
P(l;t) in a completely chaotic phase space tends to the l
iting form P(l;`)5d(l2l`). For large but finitet, the
bulk of the distribution function can be approximated by
Gaussian centered aroundl` , with the width vanishing
}t21/2 as t→`. However, many of the properties dete
mined by P(l;t) ~like the generalized entropy and dime
sion spectra! cannot be calculated from the Gaussian bulk
the distribution function@1#.

In this paper, we investigate for a particle moving in
one-dimensional randomly time-dependent potential w
Gaussian statistics howP(l;t) approaches the limiting dis
tribution function P(l;`)5d(l2l`) for large times. Our
approach uniformly applies both to the bulk as well as to
far tail l@l` of the distribution function. We find that the
cumulant-generating function ofP(l;t),

h~j!5 ln^exp~jtl!&5 (
n51

`

^^ln&&
~jt !n

n!
~2!

~where the averagê•& is over realizations of the fluctuatin
potential and ^^•&& denotes the cumulants!, takes the
asymptotic form

h~j!5m~j!t/tc1O~ t0!, ~3!
©2002 The American Physical Society07-1
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with m(j) a universal function~within the statistical model!
and

tc5l`
21m (1) ~4!

a system-specific time scale which can be determined f
the infinite-time-Lyapunov exponent and the constantm (1)

5dm/djuj50 ~by definition,dh/djuj505l`t). The function
m(j) is given by the leading eigenvalue of a second-or
differential equation in whichj appears as a parameter. Th
eigenvalue can be calculated perturbatively inj, which gen-
erates the cumulants ofl. The values ofm at integerj
determine the asymptotic growth rates (1/t)ln^Mij

j &
5Rem(j)/tc of moments of stability-matrix elements. Fo
the positive moments (j.0), we find that these values ar
given by the leading eigenvalue of finite-dimensional ma
ces.

In practical applications, an ensemble of independent
jectories through a randomly fluctuating potential can be
alized in different ways. If the potential also has a rand
spatial dependence with a short correlation length~on top of
the random temporal dependence!, independent trajectorie
can be realized by choosing different initial conditions
phase space~most appropriately, distributed with the canon
cally invariant uniform phase-space density!. It should also
be noted that a random time-dependent potential is o
considered as a statistical model for the ergodic propertie
hyperbolic chaotic motion, in the spirit of the early work
Chirikov @31#. The time dependence of the potential th
mimics the dependence of the potential in the eigent
along the trajectory. In the context of finite-time Lyapun
exponents, there have been indications that a statistica
scription is usually valid for the chaotic background of
distribution @16#, while system-specific deviations may exi
in some exceptional cases even in the bulk of the distribu
function @15#. Moreover, these findings indicate that the a
sumption of Gaussian statistics of the fluctuations is not
strictive. While the statistical model considered in this wo
is tailored to a specific class of Hamiltonian systems, it c
be modified straightforwardly to other classes of chaotic s
tems~this is briefly described at the end of this paper!.

The problem of finite-time Lyapunov exponents in t
random time-dependent potential is equivalent to the pr
lem of wave localization in a random one-dimensional p
tential @32–36#, because the equations of motion for the m
trix elements Mi j are formally equivalent to the
corresponding Schro¨dinger equation@10,37#. Indeed, the
Fokker-Planck equation employed in this work is based
the phase formalism described, e.g., in Refs.@38–40#.
Hence, the asymptotic statistics of the finite-time Lyapun
exponent presented in this work is of direct interest and
be transferred to this field of research@41#. A number of
additional areas of application of our method come in
scope if one considers the vast arena of problems which
be analyzed by products of random matrices, since the fin
time Lyapunov exponents are a valuable way to characte
the eigenvalues of these products@10#.

The plan of this paper is as follows. In Sec. II, we form
late the problem of finite-time Lyapunov exponents in t
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one-dimensional random time-dependent potential. In S
III, we show how the cumulant-generating function can
related to the parametrized eigenvalue of a second-order
ferential equation, and that the cumulants can be calcula
systematically. Moments ofMi j are calculated in Sec. IV. We
close the paper with a discussion and conclusions in Sec

II. FORMULATION OF THE PROBLEM

A. Statistical model

Let us consider an ensemble of time-dependent Ham
tonian system with one degree of freedom~canonically con-
jugated coordinatesx,p), and the Hamiltonian given by

H5
p2

2m
1V~x,t !. ~5!

HereV(x,t) is a randomly time-dependent potential andm is
the mass. Shortly we will see that the stability of trajector
obtained from Hamiltonian~5! is determined by properties o
the curvature of the potential. We allow for a time
independent mean curvature

K ]2V

]x2 L 5V2 , ~6a!

which may arise from a static background potential, wh
temporal fluctuations of the curvature are assumed to
Gaussian andd-function-correlated,

K ]2V~x,t1!

]x2

]2V~x,t2!

]x2 L 2V2
252Dd~ t12t2!. ~6b!

The constantD is similar to a diffusion constant, but no
identical with conventional diffusion constants of motion
phase space.@In the specific model of Refs.@22,23#, D can be
related to the temporal and spatial fluctuation properties
the potentialV(x,t).#

Equation~5! along with Hamilton’s equations of motion
and Eqs.~6! along with the assumption of Gaussian fluctu
tions completely specify the statistical model of Hamiltoni
dynamics which we investigate in this paper. As alrea
mentioned in the Introduction, statistical models of this ki
have a long history in the description of dynamical system
not only for truly time-dependent cases but also as an
proximation of the pseudorandomness induced by cha
dynamics, with the underlying assumption that differe
stretches of typical trajectories are practically uncorrelat
Although we restrict our mathematical analysis to the sta
tical model with Gaussian fluctuations, the general findin
should also carry over to other random potentials, as long
the correlations are short-ranged and the variance of the
dom values is finite. This expectation is supported by
certain degree of universality found in chaotic dynamic
systems, as well as by the indications of universal wa
function statistics in one-dimensional localization. For d
tailed investigations of the applicability of statistical a
proaches to these models, refer to the works mentioned in
Introduction.
7-2
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STATISTICS OF FINITE-TIME LYAPUNOV . . . PHYSICAL REVIEW E66, 066207 ~2002!
In order to investigate the stability properties of trajec
ries, we introduce the mapFt which propagates initial con
ditions (xi ,pi) over a time intervalt to the final coordinates
(xf ,pf)5Ft(xi ,pi). The stability matrixM is the lineariza-
tion of the mapFt and describes the sensitivity of the fin
coordinates to a small perturbation of the initial condition

M5
]~xf ,pf !

]~xi ,pi !
5S M11 M12

M21 M22
D . ~7!

Area preservation of the dynamics in phase space entails
property detM51 of the stability matrix.

We are interested in the evolution of the stability mat
with given initial conditions and increasing time intervalt.
According to Hamilton’s equations of motion, the stabili
matrix fulfills the differential equation

dM

dt
5KM , K5S 0 m21

v 0 D , ~8!

where the functionv(t) in the matrixK is given by

v~ t !52
d2V

dx2 U
x5xf (t)

. ~9!

Differential equation~8! is supplemented by the initial con
ditions

M ~0!5diag~1,1!, ~10!

corresponding to the identification of the initial and fin
coordinate systems fort50. The statistical properties ofv
directly follow from Eqs.~6!,

^v~ t !&52V2 , ^v~ t1!v~ t2!&2V2
252Dd~ t12t2!.

~11!

Both D as well as the massm can be eliminated from the
subsequent analysis by rescaling quantities in the follow
way:

t5tct8, v5~D/m!tcv8, V25~D/m!tcV28 ,

M125~ tc /m!M128 , M215~m/tc!M218 ,

M115M118 , M225M228 . ~12!

Here we defined the characteristic time scale

tc5m2/3D21/3. ~13!

@In the course of our analysis, we will see that this time sc
also can be found from Eq.~4!.# The rescaled~primed! quan-
tities fulfill Eqs. ~8!,~10!,~11!, with D5m51. Also note that
the rescaling leaves the property detM51 invariant.

B. Relation to one-dimensional localization

The set of linear first-order differential equations~8! can
be decoupled by converting them into second-order differ
tial equations. It is useful to note~as mentioned in the Intro
06620
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duction! that the equations for the elementsM11 andM12 are
equivalent to the Schro¨dinger equation, at energyE
5V2 /m, of a particle of mass\2/2 in a one-dimensiona
random potential (v1V2)/m ~of vanishing mean!, with t
playing the role of the spatial coordinate,

d2M11

dt2
5

v
m

M11,
d2M12

dt2
5

v
m

M12, ~14!

while the other matrix elements are directly related to th
by

M215m
dM11

dt
, M225m

dM12

dt
. ~15!

The problem of finite-time Lyapunov exponents hence
closely related to the problem of one-dimensional locali
tion in a random potential, in which the Lyapunov expone
corresponds to the inverse decay length of the wave funct

III. CUMULANTS OF THE FINITE-TIME
LYAPUNOV EXPONENT

We now solve the problem of finding the probability di
tribution function of matrix elementsMi j within the statisti-
cal model of chaotic dynamics, defined by the evoluti
equation~8! for M, with initial condition~10!, and the statis-
tical properties~11! of the random functionv. For the sake
of definiteness we will consider in this section the statist
of the upper diagonal elementM11. The results directly carry
over to the other elements ofM, as is discussed in Sec. IV C

A. Cumulant-generating function as an eigenvalue

We introduce the quantities

u5
1

2
ln M118

2, z5
M218

M118
, ~16!

where the relationu5lt to the finite-time Lyapunov expo
nentl is established by Eq.~1! @note thatM115M118 in the
rescaling Eq.~12!#. According to Eqs.~8! and ~12!, u andz
fulfill the differential equations

du

dt8
5z,

dz

dt8
5v82z2. ~17!

Note that the evolution equation ofz decouples fromu
and can be interpreted as a Langevin equation. Hence
distributionP(z;t8) can be calculated from a Fokker-Planc
equation, which was considered before in the context
wave-function localization@39,40#,

] t8P~z;t8!5LzP~z;t8!, ~18a!

Lz•5]z~z21V281]z!. ~18b!

For larget8, the distribution functionP(z;t8) approaches the
stationary solution@38–40#
7-3
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Pstat~z!5ÑE
2`

z

dy K~y,z!, ~19a!

K~y,z!5e(y32z3)/31V28(y2z), ~19b!

Ñ5p22@Ai2~2V28!1Bi2~2V28!#21. ~19c!

Here Ai and Bi are Airy functions. The normalization co
stant is directly related to the integrated density of state
the localization problem @38–40#. For V2850, Ñ
535/6221/3p21/2/@G(1/6)#. Becausedu/dt5z/tc , it is clear
@40# that the infinite-time Lyapunov exponent can be o
tained froml`5^z&/tc ; this relation will be demonstrate
explicitly in Sec. III C.

The Fokker-Planck equation for the joint distributio
function P(u,z;t8) is given by

] t8P52z]uP1LzP. ~20!

This Fokker-Planck equation withV2850 has been derived in
Ref. @19# for the autonomous chaotic scattering of a parti
from a dilute collection of scatterers~with more than one
degree of freedom!.

The joint distribution functionP(u,z;t8) does not ap-
proach a stationary limit becauseu runs away to infinitely
large values. In order to analyze the behavior of the distri
tion function P(u,z;t8) for large times, we convert the
Fokker-Planck equation~20! into an eigenvalue problem
which discriminates between the different time scales
volved in this evolution. For this purpose, we introduce in
Eq. ~20! the ansatz

P~u,z;t8!5E
2 i`

1 i` dj

2p i (
n50

`

exp@mn~j!t82ju# f n~j,z!.

~21!

~The integration contour along the imaginary axis cor
sponds to a Fourier transformation.! It follows that the func-
tions f n fulfill the differential equation

mn f n~j,z!5~jz1Lz! f n~j,z!, ~22a!

in which mn andj appear as parameters. However, in ord
to obtain a meaningful probability distribution function~21!,
we have to impose boundary conditions onf n(j,z) at z→
6`. It is convenient to express these boundary conditi
by the requirement

PE
2`

`

dz fn~j,z!z,`. ~22b!

HereP denotes the principal value with respect to the in
gration boundaries at6`. Condition~22b! follows from the
behavior z'(t82t 8̀ )21 of the solution of the differentia
equation ~17! close to timest8't 8̀ , where uzu→` ~and
hencev8 can be ignored!. In practical terms, the condition
~22b! guarantees that the drift ofu remains finite for all
times.
06620
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Equations~22! form an eigenvalue problem, since cond
tion ~22b! only can be fulfilled for a discrete set of numbe
mn—note that these eigenvalues depend on the parametj.
At j50, there is a finite gap between the largest eigenva
m0 and the second-largest eigenvaluem1, and by continuity
it is guaranteed that this gap also persists in a finite ne
borhood ofj50. In the limit of larget8, only the largest
eigenvalue is relevant, because the other eigenvalues
rise to exponentially smaller contributions. The largest eig
value vanishes asj→0, i.e.,m0(0)50, because the station
ary distribution ofz, Eq. ~19!, must be recovered for larg
times from Eq.~21! by integrating outu. In the following,
we denote for simplicitym0(j)[m(j).

The moments ofu are given by

^un&5E
2 i`

1 i` dj

2p i E2`

`

du exp~mt82ju! f ~j!un

5 lim
j→0

]j
n exp„m~j!t8…f ~j!, ~23!

where the coefficientsf (j)5*2`
` dz f0(j,z) are determined,

in principle, by the initial condition forP(u,z;t8) at t850.
From Eq.~23!, we obtain the moment-generating function

x~j!5^exp~ju!&5exp„m~j!t/tc…f ~j!, ~24!

where we reintroduced the original time variablet5tct8 by
Eq. ~12!. The cumulant-generating function~2! hence takes
the form of Eq.~3!, including the corrections of ordert0,

h~j!5 ln x~j!5m~j!t/tc1 ln f ~j!. ~25!

The cumulantŝ ^ln&& of the finite-time Lyapunov expo-
nent are obtained by expanding the generating functionh in
powers ofj, see Eq.~2!. In terms of the coefficients of the
Taylor expansion,

m~j!5 (
n51

`

jnm (n) ~26!

@which starts with the linear term inj becausem(0)50],
according to Eqs.~2! and~25! the nth cumulant ofl is then
given by

^^ln&&5n!m (n)tc
21t12n1O~ t2n!. ~27!

This equation means that within the statistical model,
cumulants are universal quantities in the leading order int, in
the sense that the initial conditionsP(z,u;0) only enter the
next-order corrections. The only system-specific parame
which enter the cumulants are the time scaletc and the~re-
scaled! strengthV28 of the static potential. Note that ratios o
cumulants are even independent of the time scaletc ~and
hence of the parametersD andm of the statistical model!.

The form ~4! of tc follows from Eq. ~27! when tc is ex-
pressed in terms of the infinite-time Lyapunov exponentl`

with help of the definition

l`5 lim
t→`

^l&5m (1)/tc . ~28!
7-4
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In terms of the bare quantities of the statistical model,

l`5m (1)D1/3m22/3. ~29!

In the next two sections, we obtain general expressi
for the expansion coefficientsm (n) and calculate explicitly
the proportionality factorm (1)5dm/djuj50 in Eq. ~29!, as
well as the first few coefficientsm (2),m (3), . . . , which deter-
mine, respectively, the variance and the leading n
Gaussian corrections~higher cumulants! of the fluctuations
of the finite-time Lyapunov exponent around its limitin
valuel` .

B. Recursion relations for the cumulants

We now show how the cumulants can be calculated fr
Eq. ~27! by recursively solving a hierarchy of equations f
coefficientsm (n) in the Taylor expansion ofm(j), Eq. ~26!.

In analogy to Eq.~26!, let us also expand the functio
f 0(j,z) in powers ofj,

f 0~j,z!5 (
n50

`

jnf 0
(n)~z!. ~30!

With Eqs. ~26! and ~30!, the eigenvalue problem~22! can
now be written order by order in powers ofjn. Forn50, we
recover the stationary variant~18! of the Fokker-Planck
equation~20!,

Lzf 0
(0)~z!50, ~31!

which is solved by the stationary solutionf 0
(0)(z)5Pstat(z),

Eq. ~19!. For n.1, the differential equations are of the for

Lz f 0
(n)~z!52z f0

(n21)~z!1(
l 51

n

m ( l ) f 0
(n2 l )~z!. ~32!

Let us assume that we have solved the hierarchy of eq
tions up to ordern21. In the next ordern, both the unknown
quantitiesf 0

(n) as well asm (n) appear. The unknowns can b
separated by integrating the differential equation~32! over z
from 2` to `: The integrated left-hand side vanishes b
cause of condition~22b! of the eigenvalue problem. The in
tegrated right-hand side can be rearranged to givem (n),

m (n)5E
2`

`

dzFz f0
(n21)~z!2 (

l 51

n21

m ( l ) f 0
(n2 l )~z!G , ~33a!

which only involves quantities up to ordern21. Subse-
quently,m (n) can be inserted into Eq.~32!. The function

f 0
(n)~z!5E

2`

z

dyE
2`

y

dx K~y,z!F2x f0
(n21)~x!

1(
l 51

n

m ( l ) f 0
(n2 l )~x!G ~33b!

@with the kernelK(y,z) defined in Eq.~19!# is then obtained
by solving the resulting inhomogeneous differential equat
06620
s
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a-

-

n

with the help of the partial solutionf 0
(0)(z) of its homoge-

neous counterpart, Eq.~31!. This inhomogeneous part of th
functions f 0

(n)(z) is fixed by the requirement thatf 0
(0)(z) be

normalized to 1. Adding the homogeneous solution tof 0
(n)(z)

in any order gives rise to additional terms in all higher o
ders, but these combine in such a way that they drop ou
the calculation of the coefficientsm (n), which hence are
uniquely determined by Eq.~33a!.

The recursion relations~33! can be iterated to calculat
successively all cumulants ofl.

C. Explicit expressions and numerical values

According to Eq.~27!, the two numbersm (1) and m (2)

determine mean and variance of the distribution function
l, which then is approximated by a Gaussian. The coe
cient m (1) has been obtained in Ref.@40# from the Fokker-
Planck equation~18! for arbitrary V2. For the special case
V250, the two coefficientsm (1) and m (2) have been ob-
tained in Ref.@19# from the Fokker-Planck equation~20!.
However, the deviations from the Gaussian distribution fu
tion are not at all negligible for many chaotic systems, wh
is most clearly displayed in their generalized dimension a
entropy spectra@1#. As we have seen in Sec. III B, our ap
proach of reduction to the eigenvalue problem~22! allows us
to analyze the non-Gaussian deviations by the higher cu
lants of l. @In Sec. IV, we show that one can even obta
from our analysis the positive momentsM11

j , j.0, which
are determined by the far taill@l` of P(l;t), while the
bulk of the distribution is essentially irrelevant for these m
ments.#

Explicit expressions for the first few coefficientsm (1),
m (2), m (3), andm (4) result from Eq.~33a!,

m (1)5E
2`

`

dz z f0
(0)~z!, ~34a!

m (2)5E
2`

`

dz~z2m (1)! f 0
(1)~z!, ~34b!

m (3)5E
2`

`

dz@~z2m (1)! f 0
(2)~z!2m (2)f 0

(1)~z!#, ~34c!

m (4)5E
2`

`

dz@~z2m (1)! f 0
(3)~z!2m (2)f 0

(2)~z!2m (3)f 0
(1)~z!#,

~34d!

wheref 0
(0)(z)5Pstat(z) is given by the stationary distribution

function ofz, Eq. ~19!, while the other functions follow from
Eq. ~33b!,

f 0
(1)~z!5E

z.y.x
dy dx K~y,z!~m (1)2x! f 0

(0)~x!,

~35a!
7-5
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f 0
(2)~z!5E

z.y.x
dy dx K~y,z!@~m (1)2x! f 0

(1)~x!

2m (2)f 0
(0)~x!#, ~35b!

f 0
(3)~z!5E

z.y.x
dy dx K~y,z!@~m (1)2x! f 0

(2)~x!

2m (2)f 0
(1)~x!2m (3)f 0

(0)~x!#. ~35c!

The coefficientm (1) is then given by@40#

FIG. 1. Coefficientm (1) of the first cumulant, and the ratio
n!m (n)/m (1) for the coefficients of the second, third, and four
cumulant@cf. Eq.~27!#, as a function of the strengthV28 of the static
background potential.
06620
m (1)5
1

2

d

dV28
log Ñ, ~36!

whereÑ is given in Eq.~19!, while the cumulants forn>2
can be obtained quickly by numerical integration of 2n-fold
integrals. The effort of integration can be greatly reduc
down to the expense equivalent to a single integral, beca
the integrand factorizes. An efficient recursive scheme is
scribed in the Appendix. In Fig. 1, we plot the coefficie
m (1) and the ratiosn!m (n)/m (1) for n52,3,4 as a function of
V28 . The non-Gaussian corrections are largest aroundV28
50, while they become irrelevant for large negative or po
tive values ofV28 .

For large negative valuesV28!21, the growth ratez of u
fluctuates only weakly around the valuez5A2V28, which in
the absence of the temporal fluctuations inv would be a
stable equilibrium point forz, see Eq.~17!. Henceu grows
linearly in time with almost negligible fluctuations.

For V28@1, the Lyapunov exponent becomes small b
cause of the stabilizing influence of the confining bac
ground potential.@In the context of wave localization, thi
corresponds to the well-known limit of a large Fermi ener
E;V28 ~cf. Sec. II B!.# The matrix elementsMi j then oscil-
late with an almost fixed frequency;AV28, as can be seen
from Eq. ~8!. The coefficientsn!m (n)/m (1)→d1n1d2n , with
dmn the Kronecker symbol, and the Gaussian approximat

mGaussian~j!5m (1)S j1
1

2
j2D ~37!

becomes valid.
Analytical results can be found in the caseV2850 for the

first two coefficients,

m (1)5
~3/2!1/3Ap

G~1/6!
, ~38a!

m (2)5
5p2

18
Ñ2

p

2A3
Ñ 3F2S 1,1,

7

6
;
3

2
,
3

2
;
3

4D , ~38b!

whereÑ(V2850)535/6221/3p21/2/@G(1/6)#, while 3F2 is a
generalized hypergeometric function. Incidentally, the n
merical value given form (2) in Ref. @19# is wrong, but the
analytic expression given in that paper is equivalent to E
~34b! and~38b!. In Table I, we tabulate the numerical value
of the first eight coefficientsn!m (n) for V2850.

TABLE I. The first eight coefficientsn!m (n) of the cumulants of
finite-time Lyapunov exponents@cf. Eq. ~27!#, in the absence of the
static background potential (V2850).

n 1 2 3 4

n!m (n) 0.365 0.401 0.0975 0.0361
n 5 6 7 8

n!m (n) 20.266 20.628 20.554 3.71
7-6
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IV. MOMENTS OF M ij

A. Formally exact expressions

In view of Eqs.~16! and~24!, we find that the exponentia
growth rates of the moments ofM11 are given by the larges
eigenvaluem(j) of Eq. ~22! at integer values ofj @42#,

d ln^M11
j &

dt
5Re

m~j!

tc
. ~39!

As we will now show, for positive integer values ofj the
eigenvalue problem~22! can be reduced to a matrix eige
value problem of finite dimension. For the first few m
ments, the leading eigenvalue can be calculated explic
while for larger values it is formally given by the largest ro
of the corresponding characteristic polynomial.

In order to obtain a solution of the differential equatio
~22a!, we write

f 0~j,z!5E
2`

z

dy K~y,z!
g~z!

g~y!2
~40!

@with the kernelK(y,z) defined in Eq.~19!#, and obtain forg
the differential equation

~m2jz!g52~z21V28!]zg1]z
2g ~41!
lem

nt
en
a

n

06620
y,

~a triconfluent Heun’s equation with singularity at 1/z50).
We introduce into this equation the polynomial ansatz

g~z!5 (
n50

j

cnzn. ~42!

Power matching results in the following backward-recurs
relation:

~j2n!cn5mcn111~n12!@V28cn122~n13!cn13#

~43a!

for the coefficientscn , with initial conditions

cj51, cj215m, cj225m2/2. ~43b!

For integerj, this backward-recursion relation terminate
We obtain functionsc0(m), c1(m), andc2(m) and an addi-
tional condition from the terms in Eq.~41! which are con-
stant inz,

pj~m!5mc01V28c122c250, ~44!

wherepj(m) is a polynomial of degreej11. This polyno-
mial can also be interpreted as the characteristic polynom
of the @(j11)3(j11)#-dimensional matrix
1
0 2V28 132 0 0 ••• ••• •••

j 0 22V28 233 0 ••• ••• •••

0 j21 0 23V28 334 ••• ••• •••

0 0 j22 0 24V28 ••• ••• •••

0 0 0 j23 0 � ••• •••

] ] ] ] � 0 ~12j!V28 ~j21!j

] ] ] ] ] 2 0 2jV28

] ] ] ] ] 0 1 0

2 , ~45!
ei-

d

d

which is the matrix representation of the eigenvalue prob
~22! in the space of the monomial expansion ofg(z).

The exponential growth ratem(j) of the jth moment is
given by the root~s! of pj(m) with the largest real part@42#.
In Sec. IV B, we will see for the examplesj51,2 that the
other roots show up in the transient behavior of the mome

For V2850, the values for the first few moments are giv
in Table II. Figure 2 shows the growth rates and the real p
of the subleading eigenvalue for values ofj up to 80. A
log-normal statistics ofM11 ~corresponding to a Gaussia
statistics of the finite-time Lyapunov exponents! would result
in the quadratic dependence Eq.~37! of m(j) on j, while the
plot shows a weaker~approximately linear! dependence for
large j. This results from the influence of the termsm (n)jn

for n>3 in the complete Taylor expansion ofm, Eq. ~26!.
s.

rt

The distance of the subleading eigenvalue to the leading
genvalue increases with increasingj.

For finiteV28 , we plotted the real parts of the leading an
subleading growth rates@eigenvalues of the matrix~45!# for
the first four moments in Fig. 3. The growth rate Rem(1)

TABLE II. Exponential growth ratesm(j) of the first few mo-
ments^M11

j & @cf. Eq. ~39!#, in the absence of the static backgroun
potential (V2850).

j 1 2 3 4
m 0 22/3 241/3 841/3

j 5 6 7
m 2(1413A19)1/3 (252124A79)1/3 2(63115A10)1/3
7-7
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5uImAV28u of the first moment̂ M11& follows from the roots
of p1(m)5m21V28 . Consequently, the growth rate of^M11&
vanishes in the case of confinement,V28.0. This will be
confirmed by the direct computation in Sec. IV B.

B. Direct computation of the first and second moment

In order to illustrate our findings for the growth rates
the momentŝ M11

j &, we compare the results forj51 and
j52 to the exact results for all times~including the transient
behavior!. A formal solution of the differential equation~14!
in terms of a series in the disorder potential is obtained
integrating Eq.~14! iteratively, under observation of the in
tial conditionsM1151, dM11/dt50 for t50. This gives

M11~ t0!511 (
n51

`

)
k51

n E
0

tk21
dtk ~ tk212tk!

v~ tk!

m
, ~46!

where we introducedt05t for notational convenience.
For the first moment, we can average Eq.~46! directly

with help of Eq.~11!,

^M11&5cos@~ t/tc!AV28#5
1

2
e(t/tc)A2V281

1

2
e2(t/tc)A2V28.

~47!

For V2850, the first moment is constant and given by
initial value, ^M11&51. This means that negative deviatio
M11!0, corresponding to inverse hyperbolic motion, can
precisely the positive deviationsM11@0 of hyperbolic mo-
tion. For negativeV28 the first moment grows, while for posi
tive V28 it oscillates and stays of order unity. In the deco
position of the cosine into the two exponentials, we ident
in the exponents the two roots6A2V28 of p1(m)5m2

1V28 . For negativeV28 , the subleading root hence gover
the transient behavior of the first moment.

For the second moment, let us restrict ourselves for s
plicity to the caseV2850. We group the functionsv in the
two factors ofM11 in pairs and then invoke thed-function
correlations of Eq.~11!. Performing the time-ordered inte
grals, we obtain

FIG. 2. Growth ratesm(j) of the momentŝM11
m & @cf. Eq. ~39!#

in the absence of the static background potential (V2850), obtained
as the largest eigenvalue of the matrix~45! ~full circles!. Also
shown is the real part of the subleading eigenvalue of this ma
~open circles!.
06620
y

l

-

-

^M11
2 &511 (

n51

`

~2/tc
3!n)

k51

n E
0

tk21
dtk~ tk212tk!

2

5
1

3
@em(2)t/tc1e2(21)1/3m(2)t/tc1e2(21)21/3m(2)t/tc#.

~48!

The asymptotic growth rate of the second moment is giv
by the leading rootm(2)522/3 of the characteristic polyno
mial p2(m)5 1

2 m322, in accordance with Table II. The sec
ond and third exponent are the other two roots of this po
nomial.

ix

FIG. 3. Growth rates Rem(j) of the momentŝ M11
m & @cf. Eq.

~39!#, for m51,2,3,4, as a function of the strengthV28 of the static
background potential. Also shown~dashed lines! are the subleading
growth rates@real parts of the subleading eigenvalues of the ma
~45!#.
7-8
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C. Equivalence of matrix elements

So far we mainly studied the statistics of the upper di
onal elementM11 of the stability matrixM. At this point now
we can discuss how the results for the cumulant-genera
function and the moments can be transferred to the o
elements ofM.

The differential equation~15! for M22 can be integrated
similarly to the one forM11, from which we obtain analo-
gously to Eq.~46! the formal solution

M22~ t0!511 (
n51

`

)
k51

n E
0

tk21
dtk ~ tk2tk11!

v~ tk!

m
. ~49!

Here we defined in each term of ordern that tn1150. It
follows by direct computation that the first two moments
M22 are identical to those ofM11, ^M22&5^M11&, ^M22

2 &
5^M11

2 &. These explicit results already suggest that the
tistics of the two diagonal matrix elements is the same.
deed, the transformationtk5t2 t̃ n112k , v(t2 t̃ )5 ṽ( t̃ )
brings Eq. ~49! into the form of Eq.~46! and leaves the
properties of the Gaussian noise~11! invariant. Hence even
the transient behavior of the diagonal elements is comple
identical, for arbitrary values ofV28 .

The results for the cumulant-generating functionh(j)
~hence also the growth rates of the moments, but not
transient behavior! can also be transferred to the off-diagon
matrix elements ofM: The elementM12 fulfills the same
differential equation asM11, see Eq.~14!, while M21 fulfills
the same differential equation asM22. The initial conditions
of the off-diagonal matrix elements differ from those of t
diagonal elements. However, according to Eq.~25! this only
affects the functionf (j) in the subleading corrections of th
cumulant-generating function@which, for the example of the
second moment, results in factors in front of the exponen
functions which are different from those in Eq.~48!#.

Let us add that from Eqs.~46! and ~49!, we find for V28
50 the cross-correlator̂M11M22&5 1

2 1 1
2 ^M11

2 &. Collecting
the results, this giveŝtrM &52,

^~ tr M !2&511em(2)t/tc12 Ree2(21)1/3m(2)t/tc. ~50!

V. DISCUSSION

In this work, we presented a uniform approach to t
asymptotic statistics of finite-time Lyapunov exponents,
the model~described in Sec. II! of a particle moving in a
random time-dependent potential. The cumulant-genera
function h(j) was found to be directly proportional to th
eigenvaluem(j) of a parametrized differential equation, d
fined by Eqs.~22!. This facilitated an effective analysis o
the statistics, including the non-Gaussian deviations of
distribution function. These deviations are especially imp
tant for the moments of the elements of the stability mat
since their growth ratecannotbe predicted by the Gaussia
approximation Eq.~37!.

We limited our attention to the case of time-depend
Hamiltonian systems with a single degree of freedom an
Hamiltonian~5! which is of the special type of kinetic energ
06620
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plus potential energy, with time dependence only in the
tential energy. This case is of particular interest because o
direct applicability to specific dynamical systems as in t
random wave-propagation problem of Refs.@22,23#, and be-
cause of its applicability to one-dimensional wave localiz
tion. For the Hamiltonian~5!, the matrixK in the differential
equation~8! is purely off-diagonal, with fluctuations only in
the lower-left element. For Hamiltonians which do not sep
rate into kinetic and potential energy, the differential equ
tion ~5! for M involves the matrixK in the more general form

K5S K11 K12

K21 K22
D 5S ]2H

]x ]p

]2H

]p2

2
]2H

]x2
2

]2H

]x ]p

D . ~51!

A generalized statistical model now arises by introduc
noise into all of the matrix elements ofK. ~One may also
allow for correlations between the different matrix eleme
or for finite correlation times by introducing auxiliary var
ables for the noise in the standard way.!

Let us point out two particular cases for which a statisti
description promises to result in direct applications to phy
cal situations of interest. One case is more relevant to wa
function localization while the other is more relevant for ch
otic dynamics.

~a! The diagonal elementsK1152K2250 still vanish
identically, but both off-diagonal elementsK12 andK21 fluc-
tuate with a vanishing mean. This situation is related to
band-center case of one-dimensional localization in
Anderson model@41,43,44# ~where space is discretized o
the lattice!, since at the band center the effective mass of
particle diverges~and hence the mean ofK12 vanishes!.

~b! Dynamics which are isotropic in phase space, in
sense that the HamiltoniansH(p,x,t) statistically do not
single out any specific direction in phase space. In this c
one would encounter independent fluctuations of all four m
trix elementsKi j with identical amplitude and vanishin
mean. Hamiltonian dynamics gives rise to the further co
straintK1152K22.

It would be interesting to compare the outcome of
analysis of this model with the findings in the literatu
@15,16#, which indicate a certain degree of robustness~if not
universality! of the distribution of finite-time Lyapunov ex
ponents in chaotic maps.
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APPENDIX: INTEGRALS FOR THE
HIGHER CUMULANTS

The cumulants of ordern result from the recursion rela
tions Eq.~33! in the form of 2n-fold integrals. Usually, the
7-9
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numerical evaluation of such integrals for largen is very
time consuming, since the number of points on a grid cov
ing the integration domain with lattice constant (1/N), N
@1, grows rapidly withn asN2n. However, the integrand
in Eq. ~33! factorize and the expense of the integration c
be reduced from exponential to algebraicn dependence
;nN. The principle can be demonstrated for the example
the twofold integral,

I (1)5E
2z0

z1
dz I(2)~z!,

I (2)~z!5g~z!E
2z0

z

dy I(3)~y!, ~A1!

where g is an arbitrary function andI (3) may itself be a
multidimensional integral.

We introduce an indexm which denotes that the argume
of a function is taken at themth lattice point on the appro
priate axis of the grid. The initial values ofI m

(n) at m50 ~the
ev

i,

.

06620
r-

n

f

lower integration boundary! are zero. We now can write re
cursively, by incrementally increasing the integration va
ables,

I m11
(2) 5

gm11

gm
I m

(2)1
1

N
gmI m

(3) , ~A2a!

I m11
(1) 5I m

(1)1
1

N
I m11

(2) . ~A2b!

Moreover, whenI (3) itself is a multidimensional integral o
type I (1), its current value can be obtained recursively in t
same way as the value ofI (1). Since each additional integra
will give rise to only one additional equation@similar either
to Eq. ~A2a! or to Eq. ~A2b!#, the number of operations
grows linearly withn, as advertised above.@The recursion
relations~A2! have the additional advantage for the pres
problem that they avoid overflow and underflow in the eva
ation of the kernelK(y,z)5exp(y3/31V28y2z3/32V28z).#
hys.
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