Increasing soil nutrient loads of European semi-natural grasslands strongly alter plant functional diversity independently of species loss

Helsen, Kenny and Ceulemans, Tobias and Stevens, Carly and Honnay, Olivier (2014) Increasing soil nutrient loads of European semi-natural grasslands strongly alter plant functional diversity independently of species loss. Ecosystems, 17 (1). pp. 169-181. ISSN 1432-9840

Full text not available from this repository.

Abstract

Anthropogenically increased input of nitrogen (N) and phosphorous (P) have led to a severe reduction of plant species richness in European semi-natural grasslands. Although it is well established that this species loss is not trait neutral, a thorough analysis of the effects of nutrient addition on trait based functional diversity and functional composition, independently of species loss, is lacking so far. We compiled data on the plant species abundance (relevé’s) of 279 Nardus grasslands from nine European countries, across a gradient of soil N and P content. Functional diversity (Petchy and Gaston’s FDc, weighted FDc and quadratic entropy) and mean trait composition were calculated for each relevé, based on 21 functional traits. Differences in functional diversity and functional composition were related to differences in soil N, atmospheric N deposition, soil P and pH, while controlling for geographic location and species richness. All functional diversity measures decreased with increasing soil N, with wFDc also decreased by soil P, independent of species loss. This was accompanied by clear shifts in functional trait composition, associated with shifts from below-ground competition for nutrients to above-ground competition for light. This resulted in a decrease in insect-pollinated therophytes and chamaephytes and an increase in long-lived, clonal graminoids and hemicryptophytes under increasing soil N and P. These functional community changes can be expected to alter both ecosystem functioning and service provisioning of the studied grasslands. Our research emphasizes the importance of a reduction of both N and P emission throughout Europe for sustainable conservation of these communities.

Item Type:
Journal Article
Journal or Publication Title:
Ecosystems
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2300/2304
Subjects:
?? ACIDIFICATIONEUTROPHICATIONFUNCTIONAL COMPOSITIONFUNCTIONAL TRAIT NARDUS GRASSLANDN DEPOSITION NITROGEN PHOSPHORUSECOLOGYECOLOGY, EVOLUTION, BEHAVIOR AND SYSTEMATICSENVIRONMENTAL CHEMISTRY ??
ID Code:
67789
Deposited By:
Deposited On:
29 Nov 2013 12:50
Refereed?:
Yes
Published?:
Published
Last Modified:
19 Sep 2023 01:11