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Random matrix theory of the proximity effect in disordered wires

M. Titov and H. Schomerus
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, 01187 Dresden, Germany
~Received 7 August 2002; revised manuscript received 22 October 2002; published 16 January 2003!

We study analytically the local density of states in a disordered normal-metal wire~N! at ballistic distance
to a superconductor (S). Our calculation is based on a scattering-matrix approach, which concerns for wave-
function localization in the normal metal, and extends beyond the conventional semiclassical theory based on
Usadel and Eilenberger equations. We also analyze how a finite transparency of theNS interface modifies the
spectral proximity effect and demonstrate that our results agree in the dirty diffusive limit with those obtained
from the Usadel equation.
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I. INTRODUCTION

It is widely acknowledged that a piece of a normal me
that is in good contact with a superconductor acquires so
superconducting properties. This phenomenon, named
proximity effect, has already been studied by Cooper1 in the
early 1960’s. Since then many theoretical and experime
investigations have been carried out.2 Much owed to the re-
cent progress in the fabrication technology of nanostructu
there is a revived interest to the proximity effect in the la
decade.3 One remarkable evidence of this effect is the fo
mation of a spectral gap in the normal metal, which stron
affects the low-temperature transport properties of
normal-metal–superconductor (NS) junctions. The key
mechanism responsible for the appearance of the gap is
Andreev reflection at theNS boundary, which converts th
dissipative electrical current into dissipationle
supercurrent.4 Similar mechanisms act in superconductor f
romagnet junctions which have become an object of inte
study recently.5,6

An effective experimental technique which allows f
spatially resolved measurements of the electronic densit
the nanostructures is the scanning tunnelling microscop
provides both a unique sub-meV energy sensitivity and
atomic spatial resolution. Several recent measurements o
local electronic density of states~LDOS! in the NS
junctions10,11,8,7,9turned out to be in very good agreeme
with the predictions of quasiclassical theory12–17 of ‘‘non-
equilibrium’’ superconductivity, based on the Usadel equ
tion for the diffusive transport18 and the Eilenberger equatio
for the ballistic transport.19

The interplay of ballistic and diffusive transport becom
important when one studies local properties at short dista
to anNS interface in a disordered system. Quasiparticles
then transferred to the interface by ballistic transport, wh
they explore the rest of the system diffusively. This situat
is not covered by conventional quasiclassical theory. Qu
classics also cannot account for the nonperturbative eff
of wave-function localization, which only can be included
a fully phase-coherent approach. In this paper we prese
theory that goes beyond the quasiclassical description
apply it to calculate the local density of states in anNS wire
geometry near the interface, at zero temperature and van
ing magnetic field.

In our model the normal metal is shaped in the form of
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long disordered quantum wire, which supportsN propagating
modes at the Fermi levelEF . The elastic scattering mea
free pathl in the wire is assumed to be much larger than
Fermi wave lengthlF , which corresponds to the weak dis
order. The superconductor is assumed to be clean and c
acterized by the bulk valueD of the amplitude of the pair
potential. The superconductor order parameter is assume
be constantD in the superconductor and zero in the norm
metal. This approximation is referred to in the literature a
‘‘rigid boundary condition.’’20

We calculate the mean LDOS or, more precisely, its
velope, at a distancex on the normal-metal side of theNS
interface as shown schematically in Fig. 1. The envelope
obtained by averaging the LDOS over distances of the or
of the Fermi wave lengthlF . The spatial averaging smea
out the Friedel type oscillations and makes the LDOS in
pendent on the position across the wire.

We study in detail the case that the distancex is small
compared to the scattering mean free pathl, so thatlF!x
! l , while the ratio between the superconductor cohere
length j5\vF /D and l remains arbitrary. The resulting
mean LDOS found by averaging over disorder does not
pend onx and is a smooth function of energy everywhe
except at«5D ~the energy« is measured from the Ferm
surface!.

Our calculation is organized as follows. In Sec. II w
derive a general relation between the one-point Green fu

FIG. 1. The geometry of anNS junction consisting of a long
normal-metal disordered wireN, a clean superconductorS, and a
dielectric tunnel barrierI in between. The mean local density o
states~LDOS! is calculated at the distancex from theNS interface,
with lF!x! l . The matrixr L relates the plane-wave components
the process of reflection from the normal-metal disordered w
The matrix r R describes the reflection from the tunnel-barrie
superconductor part of the junction. The mean LDOS is found
averaging over the disorder-induced fluctuations of the matrixr L .
©2003 The American Physical Society10-1
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FIG. 2. The mean LDOS~25! in an N-channel normal-metal wire near an ideally transmittingNS interface. The curves are calculate
from Eqs.~24!,~25!. The thick solid~dotted! line corresponds to the limiting case of the multi~single!-channel wire. The thin lines are for th
finite number of channelsN52, 3, and 4. The figures correspond to the clean regimeDts53, the intermediate regimeDts51, and the dirty
regimeDts50.3.
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tion in a quantum wire and the reflection matricesr L , r R .
These matrices relate the plane-wave components of the
siparticle wave function in the process of reflection from t
parts of the wire to the left and to the right part ofx.

We apply this result in Sec. III in order to calculate th
mean LDOS in the neighborhood of an ideally transmitti
NS interface. The matricesr L , r R of the size 2N32N de-
scribe the reflection of the electronlike and holelike quasip
ticles. The left reflection matrixr L is diagonal in the
electron-hole representation and depends on the disord
the normal metal. The right reflection matrixr R is off-
diagonal~in absence of the tunnel barrier! and is fixed within
the model considered.

In the region «,D we obtain the disorder-average
LDOS

n̄~x,«!5pr«~fA!, fA5arccos«/D, ~1!

where the functionr«(f) is the probability density of the
eigenphase of the matrix correlatorr 0(«)r 0(2«)†. The re-
flection matrix r 0(«) relates the plane-wave amplitudes
the electron wave function in the process of reflection fr
the semi-infinite normal-metal wire. The probability dens
r«(f) has been studied in Ref. 21. Apart from energy a
phase it depends on the number of channelsN and the mean
scattering timets5 l /vF . According to Ref. 21 one can dis
tinguish localized, diffusive and ballistic regimes in the for
of the functionr«(f) depending on the value of«. We ob-
serve the effect of Anderson localization in the linear
crease of the LDOS for energies smaller than the Thou
energy«c5\/N2ts . We also find that the curves calculate
for different number of channels in the wire are lying clo
to each other at any ratiol /j ~see Fig. 2!. This suggests tha
the weak-localization correction to the LDOS is small in t
case of the ideally transmitting NS interface.

In Sec. IV we generalize the model to include a tunn
barrier at the interface, parametrized by a tunnel probab
per modeG. We calculate analytically the LDOS near th
interface in the extreme cases of a localized wireN51 and a
diffusive wire N@1.

The effect of the tunnel barrier consists of a reduction
the pseudogap in the normal metal. This effect is most p
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nounced in the dirty regimel &j or Dts /\&1. The results
of our calculation for the diffusive wire in the intermedia
regimel 5j are summarized in Fig. 3 for different values
G. We observe that the LDOS increases monotonously to
bulk constant value around the energy\G2/ts and reveals a
high and narrow peak close to«5D.

The monotonous reduction of the pseudogap is attribu
to the quasiparticles which experience normal reflection
the tunnel barrier and therefore do not see the NS bound
The formation of the peak is due to the quasiparticles
flected from the superconductor.

When the distancex increases beyond the mean free pa
l a competing effect takes place. That is the suppressio
the pseudogap due to the back scattering on the weak d
der potential in the normal-metal segment of lengthx in front
of the interface. The estimated size of the pseudogap du
this effect is\D/x2, whereD is the diffusion constant in the
normal metal. In this case the LDOS considerably oversho
its bulk value around«5\D/x2, which is in contrast to the
monotonous increase due to the tunneling into the super
ductor. We therefore anticipate that the effect of the tun
barrier still can be seen in the shape of the LDOS provid
\D/x2@\G2/ts , or equivalentlyx! l /G. Namely, at dis-

FIG. 3. The mean LDOS in a diffusive normal-metal wire in th
vicinity of an NS interface of finite transparency. The curves a
calculated from Eqs.~54!,~57! for Dts51 and the effective tunnel-
ing probabilityG varying from 0.1 to 1 in steps of 0.1. The thic
line corresponds toG50.5.
0-2
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RANDOM MATRIX THEORY OF THE PROXIMITY . . . PHYSICAL REVIEW B67, 024410 ~2003!
tances smaller thanl /G the LDOS may acquire the steplik
feature at the value«5\G2/ts , which is fixed by the NS
interface transparency rather than by the distance to the
terface.

A qualitatively similar phenomenon has been indeed
served in experiments by Leviet al.9 in the Cu barrier pin
wires near aN(Cu)-S(NbTi) boundary.

On the contrary, at large distancesx@ l /G the barrier is
not effective in the sense that its presence cannot be di
guished in the energy dependence of the LDOS. This is c
sistent with a general semiclassical criterion22 which states
that the barrier is not effective for a given observable if t
most of the relevant trajectories hit theNS interface more
thanG21 times before the electron-hole coherence is lost
the case of the LDOS this criterion is fulfilled forx@ l /G.

The tunnel barrier acts differently for the single-chann
wire. In the dirty regimel &j the size of the pseudoga
\G/ts scales linearly withG due to the Anderson localiza
tion. This results in a different shape of the LDOS compa
to the diffusive case (N@1). The difference becomes mor
and more pronounced with decreasing ratiol /j or tunneling
probability G. In Sec. V we compare the LDOS for the di
fusive case (N@1) found from our theory to the LDOS ca
culated from the Usadel equation.14

II. GREEN FUNCTION IN A WIRE GEOMETRY

In our model of the NS junction the normal metal
shaped in the form of a semi-infinite quasi-one-dimensio
disordered wire. The properties of such a system is well
derstood in the framework of the scattering theory23 provided
the weak disorder limitlF! l . The detailed statistical de
scription of the disorder scattering is based on the Dorokh
Mello-Pereyra-Kumar~DMPK! equation.24,25 This is a scal-
ing equation for the probability distribution of the scatteri
matrix of a segment of the wire. Below we derive a gene
relation between the one-point Green function and the refl
tion matricesr L , r R for two parts of the wire. The single
channel counterpart of this relation has been used recent
reconsider the problem of LDOS fluctuations in on
dimensional~1D! normal-metal wires.26

The disordered wire has the HamiltonianH5H01V(rW),
where V(rW) is a disordered potential. We parametrizerW

5(x,rW ), wherex is the coordinate along the wire andrW is
the vector in the transversal direction. We first discuss
case of ‘‘spinless’’ electrons, assumingH052(1/2me)¹

2,
\51, and include holelike quasiparticles in Secs. III and

In the absence ofV the quantization in the transvers
direction gives rise to a set ofN propagating modes charac
terized by the transverse momentumqW n . The total energy
E5(1/2me)(uqW nu21kn

2), where thex momentumkn is con-
served. The retarded Green functionGR(E)5(E1 ih
2H)21 is written in the channel representation as

Gnm
R ~x,x8!5E E

A
drW drW 8^nurW &^rW 8um&^rWuGRurW8&, ~2!
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where the integration is carried out over a cross-sectio
areaA. Hence the LDOS

n~rW,«!52
1

p
Im (

n,m
^murW &^rW un&Gnm

R ~x,x!, ~3!

where« is the energy measured from the Fermi surface.
a two-dimensional wire of the widthd we have ^run&
5(2/d)1/2sin(pnr/d). In what follows we shall omit the in-
dex R, assuming everywhere the retarded Green function

Let us formally cut the wire in the pointx into two pieces
and treat the left and the right part separately. We decomp
the potentialV5VR1VL , whereVR,L is the disorder poten-
tial in the right and the left part of the wire, respectively. W
also introduce the left and the right Green function asGR,L
5(E1 ih2H02VL,R)21. According to Fisher and Lee~Ref.
27! we have

GL,R;nm~x,x!5
1

iAvnvm

@dnm1r L,R;nm~x!#, ~4!

where vn5kn /me is the channel velocity andr L,R are the
reflection matrices from the left and the right part of the wi
respectively.

The Green functions obey Dyson equations which can
written in the matrix form as

Ĝ~x,x!5Ĝ0~x,x!1E
2`

`

dy Ĝ0~x,y!V̂~y!Ĝ~y,x!, ~5a!

Ĝ~x,x!5ĜR~x,x!1E
2`

x

dy ĜR~x,y!V̂L~y!Ĝ~y,x!,

~5b!

Ĝ~x,x!5ĜL~x,x!1E
x

`

dy ĜL~x,y!V̂R~y!Ĝ~y,x!,

~5c!

where the elements of the matrixV̂ are given by

Vnm~x!5E
A
drW ^nurW &^rW um& V~rW !, ~6!

and the ballistic Green function~in absence of the potential!
reads

G0,nm~x,x8!5
dnm

ivn
eiknux2x8u. ~7!

We also take advantage of the following relations:28

GR,nl~x,y!5e2 ikl (x2y)GR,nl~x,x! for y,x, ~8a!

GL,nl~x,y!5e2 ikl (x2y)GL,nl~x,x!, for y.x, ~8b!

in the disorder-free regions in order to eliminate the integ
terms in Eq.~5!. As a result we obtain the matrix equality

1

Ĝ~x,x!
1

1

Ĝ0~x,x!
5

1

ĜR~x,x!
1

1

ĜL~x,x!
. ~9!
0-3
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Using Eqs.~4! and ~7! we finally get

Ĝ~x,x!5
1

Ai v̂
~11 r̂ R!

1

12 r̂ Lr̂ R

~11 r̂ L!
1

Ai v̂
, ~10!

where v̂ is the diagonal matrix of channel velocitiesvn .
Together with Eq.~3! this equation defines the LDOS via th
reflection matrices. In the case of uncorrelated disorder
reflection matricesr L and r R are statistically independen
which makes Eq.~10! useful for practical calculations.

In general the LDOS oscillates on the scale oflF ~due to
the prevailing contribution of one particular quantum stat!.
These Friedel-type oscillations can play a crucial role es
cially in one dimension. In what follows we are concern
with the smoothed version of the LDOS that does not cha
on the scale of the Fermi wave length and, therefore, also
in the transversal direction. For this purpose we introduce
spatially averaged LDOS

n~x,«!5dV21E
dV

n~rW,«! drW, ~11!

where the integration is carried out over a volumedV around
the point (x,rW ). The linear size of the volumedV is assumed
to be much larger than the Fermi wave length and m
smaller than the mean free pathl. For ux2x8u! l the reflec-
tion matrices defined at the cross sectionx8 are related to
those defined atx by

r L~x8!5e2 i k̂(x2x8)r L~x!e2 i k̂(x2x8), ~12a!

r R~x8!5eik̂(x2x8)r R~x!eik̂(x2x8), ~12b!

with k̂5mev̂. Expanding the right-hand side of Eq.~10! in a
geometric series inr L , r R we notice that only the terms with
equal numbers ofr L and r R matrices do not oscillate on th
scale of the Fermi wave length and have to be kept. Ad
tionally the averaging in the transversal direction mixes
the different modes so that^murW &^rW un&}dmn in Eq. ~3!. As a
result we obtain

n~x,«!5
n0

N
Re Tr

11r Rr L

12r Rr L
, ~13!

wheren0 is the bulk value of the LDOS in the normal meta
which is set to unity in the rest of the paper. In what follow
we apply Eq.~13! to calculate the LDOS in the normal-met
wire in the immediate vicinity of anNS interface.

III. LDOS NEAR THE IDEAL NS INTERFACE

The relation~13! applies straightforwardly to the model o
the NS junction discussed in the Introduction. The on
modification is the doubling of size of the reflection matric
due to particle-hole conversion. We still denote the num
of electron channels in the wire byN, so that the size of the
particle-hole reflection matrix is now 2N. Equation~13! can
be written in the form
02441
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n~x,«!511
2

2N
Re Tr(

n51

`

~r Lr R!n, ~14!

where r L is the electron-hole reflection matrix for the lon
normal-metal wire, whiler R is that for the idealNS inter-
face. These reflection matrices are conveniently parametr
by

r L5S r 0~«! 0

0 r 0~2«!* D , r R5e2 ifAS 0 1

1 0D , ~15!

where fA5arccos«/D is the Andreev phase andr 0(«)
3@r 0(«)* # is N3N reflection matrix of the electronlike
@holelike# quasiparticles for the normal-metal wire. The m
trix product r Lr R is block off-diagonal, hence only the eve
powers n contribute to the trace in Eq.~14!. From Eqs.
~14!,~15! we obtain

n~x,«!511
2

N
Re Tr(

n51

`

@r 0~«!r 0~2«!* #ne22infA.

~16!

The right-hand side of Eq.~16! is completely determined by
the eigenvalues of the correlatorr 0(«)r 0(2«)* , which is a
unitary matrix. Its eigenvalues are conveniently parametri
by exp(2ifj), j 51,2, . . . ,N, where the phasesf j are re-
stricted to the interval (0,p). The joint probability density
P«(f1 ,f2 , . . . ,fN) is a symmetric function with respect t
any permutation of its arguments because of the statis
equivalence of the channels. This function has been stu
in detail in Ref. 21. Our calculation is restricted to the me
LDOS n̄(x,«)[^n(x,«)&, where the angular brackets corr
spond to the average over the disorder potential in the w
In order to perform the average in Eq.~16!, it is enough to
know only the probability densityr«(f) of a single eigen-
phase. It is instructive to compare Eq.~16! with the similar
representation of the integrated density of states in the c
of the normal-metal wire of finite length, which has be
analyzed recently.29

When the Andreev phasefA is real, i.e., for«,D, the
mean LDOS is found from Eq.~16! as

n̄~x,«!5pr«~fA!, «,D, ~17!

where the eigenphase densityr«(f) is assumed to be nor
malized to unity on the interval (0,p). The probability den-
sity r«(f) acquires its simplest form in the caseN@1 of a
large number of channels21

r«~f!5
1

p sin2f
Im A~«ts!

21 i«ts~12e22if! ~18!

and in the single-channel case30,31

r«~f!5
«ts

p E
0

` exp~2«tst !

t2 sin2f2t sin 2f11
dt. ~19!

The scattering timets of the DMPK scaling equation differs
by a numerical factor~dependent on the dimensionalityd of
the Fermi surface! from the mean scattering time of th
0-4
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RANDOM MATRIX THEORY OF THE PROXIMITY . . . PHYSICAL REVIEW B67, 024410 ~2003!
transport theory ts8 . Namely, ts5cdts8 , where cd

52,p2/4,8/3, for the dimensionalityd51,2,3, correspond-
ingly.

Note, that the integrated density of states~DOS! n

5L21*0
Ln̄(x,«) dx in the infinite disordered wireL→` is

given by the relation32 n5p(]/]«)@«r«(0)#, which is simi-
lar in spirit to Eq.~17!. For wires with on-site disorder~in
standard universality classes! the value ofpr«(0) equals to
unity irrespective of energy«; however it can have a singu
larity at «50 for wires with a specific disorder symmetry.

So far we were only concerned with the mean LDOS
«,D. However, the result~17! can be easily extended to th
energies above the pair potential value with the help of
analytical continuation«5 iv. On the other hand the analyt
cal continuation has another crucial advantage. It transfo
the dynamical correlatorr 0(«)r 0(2«)* into the essentially
static objectr 0( iv)r 0( iv)* . In the absence of a magnet
field the time-reversal symmetry is preserved and the refl
tion matrix r 0 is symmetric, hencer 0( iv)* 5r 0( iv)†. The
eigenvalues exp(2ifj) of the matrixr 0(«)r 0(2«)* are trans-
formed to the real eigenvaluesRj of the matrix
r 0( iv)r 0( iv)* , which are the probabilities of the reflectio
from the long disordered wire in the presence of a spati
uniform fictitious absorptionv.

The summation in Eq.~14! is performed in terms of the
eigenvalues

n~x,«!5
1

N
Re(

j 51

N
12Rja

2~v!

11Rja
2~v!

U
v52 i«101

, ~20!

where 01 is an infinitesimally small positive imaginary pa
of energy which ensures the retarded Green function requ
in Eq. ~3!. We have also introduced

a~v!5 ie2 ifA5A11~v/D!22v/D. ~21!

The joint probability density of the eigenvaluesRj for the
infinitely long wire is given by the stationary solution of th
DMPK equation. In the parametrization

Rj5
s j

s j12~N11!vts
, s jP~0,̀ !, ~22!

this solution takes the simple form

P~$s j%!5cN)
j 51

N

e2s j /4)
k. j

usk2s j u, ~23!

which we recognize as the orthogonal Laguerre ensembl
random matrix theory33 ~with normalization constantcN).
This ensemble corresponds to the classCI in the classifica-
tion scheme of Ref. 34. The probability density~one-point
function! r(s), normalized to unity in the interval (0,`), is
given by35
02441
r

e

s

c-

y

ed

of

r~s!5
e2s

N S (
n50

N21

@Ln
(0)~s!#22

1

2
LN21

(0) ~s!LN21
(1) ~s!

1
1

4
LN21

(1) ~s!E
0

s

dz e(s2z)/2LN21
(0) ~z!D , ~24!

whereLn
(p)(s) is the generalized Laguerre polynomial.

We substitute the parametrization~22! in Eq. ~20! and
average over disorder with the help of the densityP($s%).
The result reads

n̄~x,«!5ReE
0

`

ds r~s!

12
a2~v!21

2~N11!vts
s

11
a2~v!11

2~N11!vts
s
U

v52 i«101

.

~25!

This equation extends Eq.~17! to energies larger thanD. It
can also be applied for arbitraryN. In the large-N limit the
distributionr(s) can be approximated by35

lim
N→`

Nr~zN!5
1

2p
A4

z
21, 0,z,4. ~26!

Substituting this expression into Eq.~25! we reproduce the
results of Eqs.~17!,~18! for «,D. In the limit «→0 this
leads to the square root behavior of the LDOSn̄(x,«→0)
5ReA2 i«ts. In the extremely dirty regimeDts→0 we re-
produce the result of the conventional BCS theory

n̄~x,«!5Re«/A«22D2. ~27!

The Thouless energy«c51/N2ts , however, remains unre
solved within the multichannel approximation~26!. In order
to fix the scale«c one has to take advantage of anoth
limiting relation36

lim
N→`

r~z/N!5J1
2~2Az!2J0~2Az!J2~2Az!

1~2Az!21J0~2Az!J1~2Az!, ~28!

whereJn(z) are Bessel functions. In the limit«→0 one can
safely puta(v)51 in Eq.~25! and take the real part explic
itly,

n̄~x,«!5E
0

`

ds r~s!
1

11s2@~N11!«ts#
21

. ~29!

To leading order in«/«c the functionr(s) in Eq. ~29! can be
approximated by its value at the originr(0)51/2, which
holds fors!N21 @see Eq.~28!#. We therefore obtain

n̄~x,«!5
p~N11!

4
«ts'

p

4N
~«/«c!, «!«c . ~30!

The factor 1/N in the last expression reflects the fact th
only a single channel is responsible for the nonvanish
LDOS at energies lower than«c .
0-5
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In Fig. 2 we plot the mean LDOS given by Eq.~25!
against the ratio«/D for different numbers of channels in th
moderately dirty regimeDts50.3, the intermediate regim
Dts51, and the moderately clean regimeDts53. We ob-
serve that the curves are lying close to each other in all ca
~This suggests that the LDOS near the ideally transmitt
interface is quite insensitive to phase-coherent effects.! The
situation changes in the case of a finite transparencyG,1 of
the NS interface.

IV. EFFECT OF A TUNNEL BARRIER

A. Model

We now introduce the simplest model of a dielectric tu
nel barrier at the idealNS interface. The mean LDOS i
calculated in the normal-metal at a ballistic distancex! l
from the interface~see Fig. 1!.

We describe the segmentI of the wire between the chose
cross section and the idealNS interface ~this segment in-
cludes the tunnel barrier! by its S matrix

SI5S r 1
I t2

I

t1
I r 2

I D , ~31!

where each block itself consists of block-diagonal matri
in the particle-hole representation

r 1,2
I 5S r 1,2~«! 0

0 r 1,2~2«!* D , ~32a!

t1,2
I 5S t1,2~«! 0

0 t1,2~2«!* D , ~32b!

and the matricesr 1,2(«), t1,2(«) areN3N electron reflection
and transmission matrices corresponding to the segmenI.

The right matrixr R in the fundamental formula~14! de-
pends on theS matrix of the segmentI @see Eqs.~31!,~32!#
and on the scattering matrix for Andreev reflection@see Eq.
~15!#. A straightforward algebraic calculation gives23

r R5S r c~«! 2tc~2«!*

tc~«! r c~2«!* D , ~33a!

tc~«!5e2 ifA(«)t2~2«!* M ~«!t1~«!, ~33b!

r c~«!5r 1~«!1e22ifA(«)t2~«!r 2~2«!* M ~«!t1~«!,
~33c!

M ~«!5@12e22ifA(«)r 2~«!r 2~2«!* #21. ~33d!

In general, if the segmentI contains some weak disorde
~which is the case, for example, forx. l ) the correlations
between the matricesr 1,2 and t1,2 for electronlike and hole-
like quasiparticles are nontrivial. We consider here the c
that the segmentI contains no disorder, but a sufficient
steep tunnel barrier which makes no difference in the tun
ing probability of electrons and holes. In this case we c
omit the energy dependence in the matricesr 1,2 and t1,2. In
what follows we take advantage of the polar decomposit
02441
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S r 1 t2

t1 r 2
D 5S uI 0

0 v I
TD S A12G iAG

iAG A12G
D S uI

T 0

0 v I
D ,

~34!

whereuI , v I are some unitary matrices, which depend on
particular realization of the barrier, andG is the diagonal
matrix of the tunneling probabilitiesG j . Time-reversal sym-
metry in the segmentI is assumed. Once the dependence
energy in the matricesuI , v I andG is disregarded we obtain
from Eqs.~33!,~34! the right reflection matrix

r R5S uI 0

0 uI*
D S eix cosu 2 ieix sinu

2 ieix sinu eix cosu D S uI
T 0

0 uI
†D ,

~35a!

sinu5G$@12e2ifA~12G!#@12e22ifA~12G!#%21/2,
~35b!

e2ix5~12G2e2ifA!@12e2ifA~12G!#21. ~35c!

The left matrix r L is given by Eq.~15! and describes the
reflection from the disordered wire. Taking advantage of
polar decomposition we can write

r L5S u0 0

0 u0*
D S eif 0

0 eifD S u0
T 0

0 u0
†D , ~36!

whereu0 is a random unitary matrix andf is the diagonal
matrix of the eigenphases. We see that all information c
tained inuI disappears statistically from the eigenvalues
r Lr R because the productuI

Tu0 can be regarded again as
random unitary matrix. Thus the disorder-averaged LD
depends only on the transmission eigenvaluesG j of the tun-
nel barrier. Below we calculate the mean LDOS for a sing
channel wire and for a multichannel wire provided the tu
neling probabilities are the same for all channels, i.e.,G j
5G.

B. Single channel wire

We start with the calculation of the mean LDOS for«
,D in the case of the single-channel wireN51. For «,D
the phasesx andu defined in Eq.~35! are real and bothr L

and r R are unitary 232 matrices. We denoteuI
Tu0

5exp(ic), wherec is a random phase distributed uniform
in the interval (0,2p). We insert the reflection matrices from
Eqs. ~35a!,~36! directly to Eq. ~13!. The matrix (12r Lr R)
can be easily inverted. Taking the real part we notice that
zeroes of det(12r Lr R) define the exact positions of the qu
siparticle bound states for«,D. The result reads

n~x,«!5p sin~f1x!d@cosu cosc2cos~f1x!#,
~37!

where the argument of the Diracd function corresponds to
the quantization condition for the bound states. The m
LDOS is given by the average over the phasef with the
probability densityr«(f) of Eq. ~19!, and over the uni-
formly distributed phasec. The integration overc is readily
done with the result
0-6
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RANDOM MATRIX THEORY OF THE PROXIMITY . . . PHYSICAL REVIEW B67, 024410 ~2003!
n̄~x,«!5E
u2x

p2u2x

df r«~f!
sin~f1x!

Acos2u2cos2~f1x!
.

~38!

In the limit G→1 of the vanishing tunnel barrier one ob
serves thatx→p/22fA andu→p/2, so that the area of th
integration in Eq.~37! shrinks to the small vicinity off
5fA and the functionr«(f) can be substituted by its valu
in this point. The integral approachesp and we recover the
result of Eq.~17! for the ideally transmitting interface.

In the opposite extreme of a high tunnel barrier (G→0)
both u and x go to zero, so that the integration area is n
restricted and the value of the integral tends to unity beca
of the normalization condition for the probability densi
r«(f). In the limit «!D we can setx50 and reduce Eq
~38! to the following form:

n̄~x,«!5ReE
0

`

dt e2tF12
sin2u

~«ts!
2

t~ t22i«ts!G21/2

,

~39!

where sinu5G/(22G), according to Eq.~35b!. From Eq.~39!
we find that

n̄~x,«!5p«ts

22G

2G
, «ts!

G

22G
, ~40!

which coincides forG51 with the result of Eq.~30! for N
51. In the dirty limit D!ts

21 and for a high tunnel barrie
G!1 the result of Eq.~39! is applicable almost up to th
value of«5D. It describes the formation of the pseudo-g
near the energyts

21G due to the normal reflection from th
barrier.

The exact expression~38! additionally accounts for the
peak at«.D. This expression can be further generalized
energies higher thanD by means of the analytical continua
tion «5 iv, with the result

n̄~x,«!52ReE
0

`

ds r1~s!
sinh Q~s!

Asinh2 Q~s!1sin2u
, ~41a!

Q~s!5
1

2
ln

a2~v!112G

11a2~v!~12G!
1

1

2
ln

s

s14vts
, ~41b!

where the functionr1(s)5(1/2)exp(2s/2) is the probabil-
ity density~24! for a single-channel wire, the functiona(v)
is defined in Eq.~21!, and the continuation to the real ene
giesv→2 i«101 is performed~see Fig. 4!.

C. Multichannel wire

The disorder-averaged LDOS forN@1 can be found
straightforwardly for the case of equivalent tunnelling pro
abilities G j5G. Then the diagonal matricesu andx in Eqs.
~35b!,~35c! can be regarded as scalars. It is convenien
make use of the analytical continuation«5 iv and define

a~v!5 ieifA, R5e2if, ~42a!
02441
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p5e2ix5
a2~v!112G

11a2~v!~12G!
, ~42b!

whereR5diag(R1 , . . . ,RN) is the diagonal matrix of reflec
tion probabilities for the disordered wire with a fictitiou
absorptionv. In the parametrization~22! the joint probabil-
ity density of Rj is related to the orthogonal Laguerre e
semble~23!. Note that the quantitiesp, Rj , anda(v) take
real values in the interval (0,1) whenv is real.

The basic expression~14! for the mean LDOS is mani-
festly invariant under an arbitrary unitary rotation of the m
trix product r Lr R . From Eqs.~35a!,~36! we obtain

U0
†r Lr RU05S ApR 0

0 ApR
D S cosu U 2 i sinu

2 i sinu cosu U†D ,

~43a!

U5u0
TuIuI

Tu0 , U05diag~u0 ,u0* !, ~43b!

where we take advantage of the quantities defined in
~42!. The matrix u0 is a random unitary matrix which is
uniformly distributed in the unitary group~provided the
weak disorderkFl @1). Hence by construction~43b!, U is
the unitary symmetric random matrix. We substitute E
~43a! into Eq. ~14! to express the mean LDOS as

n̄~x,«!5
1

N
Re TrK 12pR

11pR
^F~cosu!&UL

R

, ~44!

where

F~z!5
1

12z~AC1UAC21AC2U†AC1!
, ~45a!

C15
pR

11pR
, C25

1

11pR
. ~45b!

The average over disorder in Eq.~44! is decoupled into two
independent steps: the average^•••&U over the group

FIG. 4. The mean LDOS~41! in a single-channel disordere
wire at ballistic distance from an NS interface of finite transparen
The parametersDts andG50.5 are chosen to fix the combinatio
Dts(22G)/G'1.5. The curves are close to each other fo
«!D where Eq.~39! is applicable.
0-7
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M. TITOV AND H. SCHOMERUS PHYSICAL REVIEW B67, 024410 ~2003!
spanned by the unitary symmetric matrices and the ave
^•••&R over the orthogonal Laguerre ensemble of the refl
tion eigenvaluesRj .

In the case of the finite number of channels the calcula
of average over the unitary matricesU is technically difficult
and cannot be done analytically. However, for the diffus
wire, N@1, the calculation can be done by means of
diagrammatic technique developed in Ref. 37.

Let us briefly quote the basic substitution rules of t
diagrammatic technique

~46!

Here the matrix elementUi j is represented by the black an
white dot connected by the dashed line. The black dot s
for the first indexi and the white dot for the second indexj.
The conjugated matrixU* is marked by an asterisk. Th
other matrices are denoted by thick solid arrows. The su
mation over a matrix index in a dot is indicated by the
tachment of a solid line. The average over the unitary sy
metric matrices is symbolically performed by pairing in a
possible ways all black and white dots belonging toU to all
black and white dots belonging toU* . This pairing is de-
noted by the thin solid line, which corresponds to the K
necker symbol. The result of the averaging is found by
spection of the closed circuits in the diagram which con
of alternating thick and thin solid lines (T circles!. Each
diagram is weighted by a factor, which is obtained by insp
tion of the closed circuits of alternating thin solid and dash
lines (U circles!.

We expand the matrixF(z) ~45! into a geometric series
and keep only the terms with equal number ofU and U†

matrices. In the large-N limit we have to take into accoun
the diagrams with the largest number ofT circles.37 This
amounts to the summation of the ‘‘rainbow’’ diagrams,
diffusion ladders, depicted symbolically in Fig. 5. The corr
sponding Dyson equation is

^F&U51̂1zS1C1^F&U1zS2C2^F&U , ~47a!

S15 (
n51

`

Wnzn21@Tr C2^F&U#n@Tr C1^F&U#n21,

~47b!

S25 (
n51

`

Wnzn21@Tr C1^F&U#n@Tr C2^F&U#n21,

~47c!

where the weight factors

Wn5N122n~21!n21
~2n22!!

n! ~n21!!
1O~N22n! ~48!

have been found in Ref. 37. Taking the coefficientsWn to the
leading order inN we define the generating function
02441
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h~s!5 (
n51

`

Wnsn215
1

2s
~AN214s2N!, ~49!

which may be used to reduce Eq.~47! to

^F~z!&U51̂1z2h~z2s1s2!~s1C11s2C2!^F~z!&U ,

s1,25Tr C1,2̂ F~z!&U . ~50!

The matrix^F(z)&U has to be eliminated from the Dyso
equations~50!. After that it is very convenient to transform
to the new scalar variables

X5
s22s1

N
, Y5

s21s1

N
, ~51!

which obey the equations

X11

2
5

1

N
Tr

1

11pR f~X,Y!
, ~52a!

Y2 sin2u1X2 cos2u51, ~52b!

with

f ~X,Y!5
~12X!~Y1X!

~11X!~Y2X!
, ~53!

where we have substitutedz5cosu and the matricesC1 , C2
from Eq. ~45b!.

In terms of the variablesX andY the mean LDOS~44! is
simplified to

n̄~x,«!5Re X̄~v!uv→2 i«101, ~54!

where the bar stands for the average over the ensemble o
reflection probabilitiesX̄[^X&R .

Let us first consider the case of equal reflection probab
tiesRj5R. The matrixU in Eq. ~45! commutes withC1 and
C2 and can be diagonalized, hence the problem beco
equivalent to that of a single channel wire. The solution
the self-consistent equations Eq.~52! is given by

X52
sinhQ

Asinh2 Q1sin2u
, Q5

1

2
ln pR, ~55!

FIG. 5. Diagrammatic representation of the Dyson equation~47!
for ^F(z)&U.
0-8
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RANDOM MATRIX THEORY OF THE PROXIMITY . . . PHYSICAL REVIEW B67, 024410 ~2003!
which coincides with the result of the exact integration ov
U. This proves that the set of diagrams which we took in
account in Eqs.~47! is sufficiently complete. The substitutio
of Eq. ~55! in Eq. ~54! and the additional average over th
reflection probability of a single channel wire yields th
mean LDOS of Eq.~41!.

In the multichannel~diffusive! limit N@1 the reflection
probabilitiesRj are, in fact, not equal. Moreover they effe
tively repel each other according to Eqs.~22!,~23!. In this
case Eq.~52! can no longer be solved in closed form.
other words, the averages over the random matrixU and over
the reflection eigenvaluesRj cannot be performed separate

In order to proceed one has to take advantage of the
averaging property of the variablesX and Y in the limit N
@1. Indeed both variables are defined via the tracess1,2 and
can be thought as the arithmetic means ofN fluctuating
quantities. From a physical point of view the variableX is
proportional to the one-point Green function, therefore it
self-averaging in a diffusive metal.

Thus we can construct the self-consistent equation foX̄
by taking the average overR on both sides of Eq.~52a!. We
assume a fixed value off @X,Y(X)#5 f̃ (X̄) on the right side,
neglecting the fluctuations ofX. Taking advantage of the
square-root approximation~26! of the densityr(s) we ob-
tain

X̄11

2
5

1

2pE0

4

dzA4

z
21

2vts1z

2vts1@11p f̃~X̄!#z
. ~56!

The integral on the right-hand side can be carried out exp
itly giving rise to the equation

@a2~v!112G#@Y~X̄!1X̄#

@11a2~v!~12G!#@Y~X̄!2X̄#

511
2

11X̄
~vts2AvtsA11X̄1vts!, ~57!

which is an algebraic equation forX̄. It can be analytically
continued to real energiesv52 i«101 and solved numeri-
cally by iteration. The disorder-averaged LDOS is det
mined, then, from Eq.~54!. Equation~57! is obtained in the
quasiclassical limit of a large number of channels. This re
does not change if we neglect thatU is symmetric or take the
unitary Laguerre ensemble in Eq.~23! instead of the or-
thogonal one.

The weak-localization correction~which we simply define
as 1/N correction! can, in principle, be determined within th
present approach. It has three different sources. First of a
additional class of diagrams, namely the Cooperon-like d
grams, have to be taken into account in the Dyson equa
~47!. Secondly the term of subleading order in the largeN
expansion of the weight factorsWn has to be included. Fi-
nally the correction of orderO(N21) to the limiting form
~26! of the probability densityr(s) has to be considered
The calculation of the weak localization correction to t
LDOS is, however, beyond the scope of this paper.
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In some limiting cases Eq.~57! allows for a transparen
analytical solution. In the absence of the tunnel barrierG
51 we obtain

X̄5122
a2

11a2
~11V2AVA21V!U

V→vts /(11a2)

,

~58!

which coincides upon the substitution in Eq.~54! with the
result of Eq. ~25! in the large-N limit. In the limit Dts
!G2, Eq. ~57! leads to the BCS result for the local densit
Eq. ~27!.

For small energies,v!D, we can puta(v)51 and ob-
tain

X̄5
AvtsA4 sin2u1vts2vts

2 sin2u
. ~59!

The mean LDOS~54! for «!D is then given by

n̄~x,«!5ReA2 i
«ts

sin2u
A12 i

«ts

4 sin2u
, ~60!

with sinu5G/(22G). This result describes the scaling«g

;ts
21G2(22G)22 of the size of the pseudogap«g with the

transparency of the tunnel barrierG, which is illustrated in
Fig. 7. We observe that in the limitG2!Dts!1 two differ-
ent types of bound states contribute to the LDOS at ener
below D. One group of the bound states is responsible
the monotonous increase of the LDOS to its bulk value at
scalets

21G2 while another group gives rise to the formatio
of the peak near«5D.

V. USADEL EQUATION

The aim of this section is to compare our results in t
limit N@1 to the results of the conventional quasiclassi
theory based on the Usadel equation. It is important to
member that the Usadel description is justified only in t
dirty limit Dts!1, while it is not restricted to the clea
superconducting material as is the case with our calculat
In the quasiclassical context the superconductor as wel
the normal metal are characterized by their diffusion co
stantsDs , Dn and normal-state resistivitiesrs , rn , which
are combined into the mismatch parameter

g5
rsjs

rnjn
, ~61!

where jn,s5ADn,s /D are the diffusive coherence length
Hence, the comparison has to be done in the limitg!1,
where the ‘‘rigid’’ boundary condition is valid.

In the case of the perfectly transparentNS boundary and
vanishing mismatch parameter the LDOS at the interf
found from the Usadel equation13,15 is simply given by the
standard BCS formula and, therefore, coincides with our
pression~27! in the dirty limit Dts!1. Thus, there is not too
much to compare for the case of transparent boundary. H
ever, if the NS interface is not perfectly transparent (G
0-9
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FIG. 6. The mean LDOS in a normal-metal wire in the vicinity of anNS interface of finite transparency. The dotted curve is found fr
Eq. ~41! for the single-channel wireN51. The solid curve is calculated from Eqs.~54!,~57! for the diffusive wireN@1. The dashed curve
represents the result of the Usadel equation, Eqs.~65!,~69!, calculated for the corresponding value of the parametergB

25Dts(2
2G)2/(2G)2. The figures show the energy dependence of the mean LDOS for the dirtyDts50.3 and the cleanDts55 regime.
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,1), even the limit of small mismatch parameterg is not
completely trivial. Let us now discuss the Usadel equat
for this case in somewhat more detail following the calcu
tion of Ref. 14.

The transparency of the interface enters the the
through the parameter

gB5
RB

rnjn
, ~62!

whereRB is the product of the barrier resistance and its ar
The Usadel equation in the normal metal (x,0) takes the
form

Dn

2
Qn9~x!2v sinQn~x!50, ~63!

where v52 i«101 is the imaginary energy, while in th
superconductor (x.0) the equation reads

Ds

2
Qs9~x!2v sinQs~x!1D~x!cosQs~x!50, ~64!

FIG. 7. The mean LDOS in vicinity of anNS interface of finite
transparency calculated from Eqs.~54!,~57!. The parametersDts

and G50.1 are chosen to fix the combinationgB
25Dts(2

2G)2/(2G)2'1.06. The curves coincide for«!D, where Eqs.
~60!,~71! are applicable. The result of the Usadel equation, E
~65!,~69!, is indistinguishable from the dashed line.
02441
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whereD(x) is the gap function.~For a sake of simplicity we
restrict ourselves to zero temperature.! The functions
G(x,x)5cosQn,s(x) and F(x,x)5sinQn,s(x) parametrize
normal and anomalous quasiclassical Green functions in
ergy representation, averaged over angle and disorder.
LDOS near the interface is given by

n̄~0,«!5Re cosQn~0!. ~65!

Far away from theNS interface the Green functions aquir
their bulk values

cosQn~2`!51, cosQs~`!5
v

AD21v2
. ~66!

The finite transparency of the interface comes into play
the appropriate matching conditions atx5012

gBjnQn8~0!5sin@Qs~0!2Qn~0!#, ~67a!

gjnQn8~0!5jsQs8~0!. ~67b!

Once the superconductor is sufficiently clean the first term
Eq. ~64! can be disregarded, henceQs(x)5Qs(`) and
D(x)5D for x.0. This justifies the ‘‘rigid’’ boundary con-
ditions, which are used throughout the article.

The first integral of Eq.~63! is readily found

Dn

4
@Qn8~x!#21v cosQn~x!5const, ~68!

where the constant is determined from the condition ax
52` and equalsv. With the help of Eq. ~67a! one
obtains38

sin2@Qn~0!2Qs~0!#

4gB
2

1
v

D
@cosQn~0!21#50, ~69!

where Qs(0) is substituted byQs(`) due to the ‘‘rigid’’
boundary condition. In the limitv!D the equation is sim-
plified to

S cosQn~0!2
v

D D 2

5
4gB

2v

D
@12cosQn~0!#. ~70!

Its solution gives rise to the LDOS for«!D
.

0-10
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RANDOM MATRIX THEORY OF THE PROXIMITY . . . PHYSICAL REVIEW B67, 024410 ~2003!
n̄~0,«!5ReA2 i
4«gB

2

D
A12 i

«gB
2

D
, ~71!

which is manifestly equivalent to Eq.~60! and establishes th
following relation between the parameters:

gB
25Dts

~22G!2

4G2
. ~72!

This relation also follows directly from the definition ofgB ,
up to a numerical factor, since one can effectively substit
RB5(h2/e)(22G)/2G, rn5(h2/e) l 21, andDn5 l 2/ts .

We conclude that the LDOS obtained from the Usa
equation always coincides with that found from Eq.~57! for
small energies«!D. We also demonstrate numerically
Figs. 6, 7, and 8 that our result forN@1 is perfectly consis-
tent with the Usadel theory in the dirty limitDts!1, where
the latter is justified.

One should note, however, that the agreement with
quasiclassical theory becomes better with the increasing
rier height. Indeed, in the perfectly transparent interfaceG
51, the agreement is reached only in the extremely d
limit Dts→0, while for smaller values ofG the dirty-limit
condition is less restrictive@see Fig. 6~a!#.

VI. CONCLUSION

In conclusion, we computed the mean LDOS in a norm
metal disordered wire in the immediate vicinity of anNS

FIG. 8. The mean LDOS from the random matrix theory~solid
lines!, Eqs. ~54!,~57!, is compared to that from the Usadel theo
~dashed lines!, Eqs. ~65!,~69!, for the corresponding value of th
parametergB

25Dts(22G2)/(2G)2. The curves always coincide fo
small energies«!D. The perfect agreement in the entire ener
range is found in the dirty limitDts→0, where the Usadel equatio
is justified.
.
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interface at zero temperature and zero magnetic field.
calculation is based on the scattering approach and takes
account the spatial phase coherence in the normal meta

We derived the general formula~10!, which expresses the
one-point Green function in terms of the reflection matric
The formula can be applied in order to calculate the LDO
~and its distribution! in the wire at arbitrary distance to th
NS interface. In this paper we only considered the me
LDOS at the ballistic distance to the interface so that it do
not acquire a spatial dependence.

We obtained the relation~1! between the disorder
averaged LDOS near the idealNS interface and the probabil
ity density of the eigenphases of the matrix correla
r 0(«)r 0(2«)†, wherer 0(«) is the reflection matrix for the
semi-infinite normal-metal wire.

We also study in detail the case of the norm
superconductor tunnel junction and derive the self-consis
equation~57! that determines the LDOS in the diffusive no
mal metal. In the dirty limit our expression coincides wi
the LDOS found by Golubov and Kupriyanov14 from the
Usadel equation.

The quasiclassical analysis of the Green function at
NS interface of finite transparency has been performed
many authors12,39,14,40,41in connection with the boundary
conditions of semiclassical superconductivity. However,
our best knowledge no counterpart to Eq.~57! exists in the
literature.

In the case of an idealNS interface the LDOS is found to
be almost independent of the number of channels in a w
except for very small energies, hence its insensitivity
phase-coherence effects. This persists to the case of fi
transparency provided the clean limit conditionDts@1. In
the dirty limit Dts!1 and small transparencyG!1/N the
situation is different and the phase-coherent effects pla
role.

The effect of Anderson localization is seen in the line
increase of the LDOS,n̄5(p/4)(N11)«ts(22G)/G, for
energies lower than«c51/N2ts . In the diffusive metal,N
→`, the LDOS increases as the square root of energn̄
5ReA2 i«ts(22G)/G. The form of the crossover in energ
dependence of the LDOS from linear to square-root beha
is given by Eq.~25! for weak disorder and perfectNS inter-
face.
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