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Random matrix theory of the proximity effect in disordered wires
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We study analytically the local density of states in a disordered normal-metalM)irgt ballistic distance
to a superconductors). Our calculation is based on a scattering-matrix approach, which concerns for wave-
function localization in the normal metal, and extends beyond the conventional semiclassical theory based on
Usadel and Eilenberger equations. We also analyze how a finite transparencyN@® ihierface modifies the
spectral proximity effect and demonstrate that our results agree in the dirty diffusive limit with those obtained
from the Usadel equation.
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I. INTRODUCTION long disordered quantum wire, which suppadstpropagating
modes at the Fermi levét.. The elastic scattering mean
It is widely acknowledged that a piece of a normal metalfree pathl in the wire is assumed to be much larger than the
that is in good contact with a superconductor acquires someermi wave length\g, which corresponds to the weak dis-
superconducting properties. This phenomenon, named trrder. The superconductor is assumed to be clean and char-
proximity effect, has already been studied by Cobjpethe  acterized by the bulk valua of the amplitude of the pair
early 1960's. Since then many theoretical and experimentapotential. The superconductor order parameter is assumed to
investigations have been carried uduch owed to the re- be constant\ in the superconductor and zero in the normal
cent progress in the fabrication technology of nanostructuregetal. This approximation is referred to in the literature as a
there is a revived interest to the proximity effect in the last“rigid boundary condition.”®
decadée. One remarkable evidence of this effect is the for- We calculate the mean LDOS or, more precisely, its en-
mation of a spectral gap in the normal metal, which stronglyvelope, at a distance on the normal-metal side of thH¥S
affects the low-temperature transport properties of thenterface as shown schematically in Fig. 1. The envelope is
normal-metal—superconductorNg) junctions. The key obtained by averaging the LDOS over distances of the order
mechanism responsible for the appearance of the gap is tieé the Fermi wave lengtih. The spatial averaging smears
Andreev reflection at thé&l'S boundary, which converts the out the Friedel type oscillations and makes the LDOS inde-
dissipative  electrical current into  dissipationlesspendent on the position across the wire.
supercurrent.Similar mechanisms act in superconductor fer- We study in detail the case that the distances small
romagnet junctions which have become an object of intenseompared to the scattering mean free patbo thath g <x
study recently.® <I|, while the ratio between the superconductor coherence
An effective experimental technique which allows for length é&=%v:/A and | remains arbitrary. The resulting
spatially resolved measurements of the electronic density imean LDOS found by averaging over disorder does not de-
the nanostructures is the scanning tunnelling microscopy. lpend onx and is a smooth function of energy everywhere
provides both a unique sub-meV energy sensitivity and am@xcept ate=A (the energye is measured from the Fermi
atomic spatial resolution. Several recent measurements of tisirface.
local electronic density of state$LDOS) in the NS Our calculation is organized as follows. In Sec. Il we
junctions®87turned out to be in very good agreement derive a general relation between the one-point Green func-
with the predictions of quasiclassical thetfy’ of “non-
equilibrium” superconductivity, based on the Usadel equa-
tion for the diffusive transpoff and the Eilenberger equation =
for the ballistic transport? ~N
The interplay of ballistic and diffusive transport becomes
important when one studies local properties at short distance
to anNSinterface in a disordered system. Quasiparticles are
then transferred to the interface by ballistic transport, while « \
they explore the rest of the system diffusively. This situation
is not covered by conventional quasiclassical theo.ry. Quasi- 5 1 The geometry of ahl'S junction consisting of a long
classics also _cannot ?‘CCPU”t for the nonperturpatlve foeCTr?ormal-metal disordered wirll, a clean superconduct@ and a
of wave-function localization, which 0”'3_/ can be included by giejectric tunnel barriet in between. The mean local density of
a fully phase-coherent approach. In this paper we present @ateq(LDOS) is calculated at the distaneefrom theN S interface,
theory that goes beyond the quasiclassical description angith \ .<x<l. The matrixr, relates the plane-wave components in
apply it to calculate the local density of states inNiBwire  the process of reflection from the normal-metal disordered wire.
geometry near the interface, at zero temperature and vanisiihe matrix rr describes the reflection from the tunnel-barrier—
ing magnetic field. superconductor part of the junction. The mean LDOS is found by
In our model the normal metal is shaped in the form of theaveraging over the disorder-induced fluctuations of the matrix
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FIG. 2. The mean LDO%25) in an N-channel normal-metal wire near an ideally transmitthh§ interface. The curves are calculated
from Eqgs.(24),(25). The thick solid(dotted line corresponds to the limiting case of the m(gitngle-channel wire. The thin lines are for the
finite number of channel =2, 3, and 4. The figures correspond to the clean redime= 3, the intermediate regimer,=1, and the dirty
regimeArs=0.3.

tion in a quantum wire and the reflection matriags rg. nounced in the dirty regime<¢ or Arg/A=<1. The results
These matrices relate the plane-wave components of the quaf our calculation for the diffusive wire in the intermediate
siparticle wave function in the process of reflection from theregimel = ¢ are summarized in Fig. 3 for different values of
parts of the wire to the left and to the right part>of I'. We observe that the LDOS increases monotonously to its
We apply this result in Sec. Ill in order to calculate the bulk constant value around the enedglj?/ 7, and reveals a
mean LDOS in the neighborhood of an ideally transmittinghigh and narrow peak close to=A.
NS interface. The matrices , rg of the size A X2N de- The monotonous reduction of the pseudogap is attributed
scribe the reflection of the electronlike and holelike quasiparto the quasiparticles which experience normal reflection at
ticles. The left reflection matrixr, is diagonal in the the tunnel barrier and therefore do not see the NS boundary.
electron-hole representation and depends on the disorder The formation of the peak is due to the quasiparticles re-
the normal metal. The right reflection matribg is off-  flected from the superconductor.

diagonal(in absence of the tunnel barrjend is fixed within When the distancg increases beyond the mean free path
the model considered. | a competing effect takes place. That is the suppression of
In the region e<A we obtain the disorder-averaged the pseudogap due to the back scattering on the weak disor-
LDOS der potential in the normal-metal segment of length front
of the interface. The estimated size of the pseudogap due to
F(x,s)z 7p.(bp), Ppa=arccos/A, (1) this effect ish D/x?, whereD is the diffusion constant in the

normal metal. In this case the LDOS considerably overshoots

where the functiorp,(#) is the probability density of the its bulk value. around: =#D/x?, which is. in contrast to the
eigenphase of the matrix correlatog(e)ro(—¢e)'. The re- ~ monotonous increase du_e to the tunneling into the supercon-
flection matrixr () relates the plane-wave amplitudes of ductor. We therefore anticipate that the effect of the tunnel
the electron wave function in the process of reflection fromparrier still can be seen in the shape of the LDOS provided
the semi-infinite normal-metal wire. The probability density 7#D/x*>#1T?/7g, or equivalentlyx<I/T". Namely, at dis-
p.(¢) has been studied in Ref. 21. Apart from energy and

34

phase it depends on the number of chanhéénd the mean Atg=1
scattering timers=1/vg . According to Ref. 21 one can dis- 25

tinguish localized, diffusive and ballistic regimes in the form

of the functionp,(¢) depending on the value ef. We ob- 21

serve the effect of Anderson localization in the linear in- W

<
crease of the LDOS for energies smaller than the Thouless e 1.51
energye.=#/N27,. We also find that the curves calculated

: . . - 11
for different number of channels in the wire are lying close

to each other at any ratid¢ (see Fig. 2. This suggests that 0.5

the weak-localization correction to the LDOS is small in the !

case of the ideally transmitting NS interface. 0+ - - - - - - -
In Sec. IV we generalize the model to include a tunnel 0 02 04 06 08 1 12 14

barrier at the interface, parametrized by a tunnel probability e/A
per model’. We calculate analytically the LDOS near the g 3. The mean LDOS in a diffusive normal-metal wire in the
interface in the extreme cases of a localized Wrel and a  yicinity of an NS interface of finite transparency. The curves are

diffusive wire N>1. _ _ _ calculated from Eqg(54),(57) for A7,=1 and the effective tunnel-
The effect of the tunnel barrier consists of a reduction ofing probabilityT" varying from 0.1 to 1 in steps of 0.1. The thick
the pseudogap in the normal metal. This effect is most protine corresponds t& =0.5.
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tances smaller thahlT" the LDOS may acquire the steplike where the integration is carried out over a cross-sectional
feature at the value=#1%/75, which is fixed by the NS areaA. Hence the LDOS

interface transparency rather than by the distance to the in-
terface.

A qualitatively similar phenomenon has been indeed ob-
served in experiments by Leet al® in the Cu barrier pin ) )
wires near a\N(Cu)-S(NbTi) boundary. wheree is the energy measured frqm the Fermi surface. For

On the contrary, at large distances-|/T" the barrier is & two-?llm_ensmnal wire of the widthd we haV?<P|”}
not effective in the sense that its presence cannot be distir= (2/d)Y*sin(mnp/d). In what follows we shall omit the in-
guished in the energy dependence of the LDOS. This is cori€X R, assuming everywhere the retarded Green function.
sistent with a general semiclassical critefowhich states Let us formally cut the wire in the pointinto two pieces
that the barrier is not effective for a given observable if the@nd treat the left and the right part separately. We decompose
most of the relevant trajectories hit theS interface more the potentiaN=Vg+V, , whereVy is the disorder poten-
thanT ~! times before the electron-hole coherence is lost. Ifidl in the right and the left part of the wire, respectively. We
the case of the LDOS this criterion is fulfilled fee1/T . also introduce the left and the right Green functionGag,

The tunnel barrier acts differently for the single-channel= (E+i7—Ho—=V, g)~". According to Fisher and Le@Ref.
wire. In the dirty regimel<¢ the size of the pseudogap 27) We have
'l 74 scales linearly withl due to the Anderson localiza- 1
tion. This results in a different shape of the LDOS compared _
to the diffusive caseN>1). The difference becomes more GL rinm(X,X) i /_vnvm[5Hm+rL,R;nm(X)]a (4)
and more pronounced with decreasing rafié or tunneling , .
probability T'. In Sec. V we compare the LDOS for the dif- Wherevn=Kka/m is the channel velocity and, g are the
fusive case I>1) found from our theory to the LDOS cal- reflection matrices from the left and the right part of the wire,

culated from the Usadel equatith. respectively. , _ ,
The Green functions obey Dyson equations which can be

written in the matrix form as

N 1 I
n(r,e)==—1m2 (mlp)p|n) Gl (xx), (3

Il. GREEN FUNCTION IN A WIRE GEOMETRY

In our model of the NS junction the normal metal is G(X’X):GO(X’XHﬁxdy GO yIVYIGly ), (58

shaped in the form of a semi-infinite quasi-one-dimensional

disordered wire. The properties of such a system is well un- . x . N .
derstood in the framework of the scattering thédprovided G(x,X) =Gg(X,x) + J dy Gr(x,y)VL(Y)G(Y,X),
the weak disorder limil\g<<l. The detailed statistical de- -

scription of the disorder scattering is based on the Dorokhov- (5b)
Mello-Pereyra-KumafDMPK) equatior?*? This is a scal- A A _— o

ing equation for the probability distribution of the scattering G(x,x):GL(x,x)+J dy G (X,¥)Vr(Y)G(Y,X),
matrix of a segment of the wire. Below we derive a general X (50

relation between the one-point Green function and the reflec-

tion matricesr, , rg for two parts of the wire. The single- \yhere the elements of the matiik are given by

channel counterpart of this relation has been used recently to

reconsider the problem of LDOS fluctuations in one- . -

dimensional(1D) normal-metal wire$® Vom(X) = fAdP<”|P><P|m> V(r), (6)
The disordered wire has the Hamiltonib=Ho+ V(r),

where V(F) is a disordered potential. We parametriEe

=(x,;§), wherex is the coordinate along the wire apdis
the vector in the transversal direction. We first discuss the Sam ,
case of “spinless” electrons, assumittfy=—(1/2m,)V?, Gonm(X,X") = Fe'k“lx_x } 7
=1, and include holelike quasiparticles in Secs. Ill and IV. .

In the absence o¥ the quantization in the transversal We also take advantage of the following relatidhs:
direction gives rise to a set & propagating modes charac-

terized by the transverse momentugp. The total energy

and the ballistic Green functiofin absence of the potentjal
reads

Gra(x,y)=e MG (x,x) for y<x, (8a)

E=(1/2m)(|q,|?+k2), where thex mor.nenF;[umkn is con- G, n(xy)=e MG L (x,x), for y>x, (8b)
served. The retarded Green functioB™~(E)=(E+i»n ' ’
— H)—l is written in the channel representation as in the disorder-free regions in order to eliminate the integral

terms in Eq.(5). As a result we obtain the matrix equality

1 1 1 1
~ + — = + = .
G(x,X)  Go(X,X) Ggr(X,x) GL(X,X)

SR )= [ | dpai (lpyp ImirIeT), @) ©
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Using Eqgs.(4) and(7) we finally get 2 *
n(x,e)=1+=— ReTrY, (r.rp)", (14)
1 1 1 2N n=t
Gx,x)= \/?(1+VR)1 ~ (1+rL)\/71 (10 wherer_is the electron-hole reflection matrix for the long
v “Mifr v normal-metal wire, whilery is that for the ideaNS inter-

- ) ) . face. These reflection matrices are conveniently parametrized
where vis the diagonal matrix of channel velocities, .

Together with Eq(3) this equation defines the LDOS via the by
reflection matrices. In the case of uncorrelated disorder the ro(e) 0 [0 1
reflection matrices| and rg are statistically independent, FL_( 0 r (_8)*>- rk=¢€ "'/’A(l 0
which makes Eq(10) useful for practical calculations. 0
In general the LDOS oscillates on the scale\ef(due to ~ where ¢p=arccox/A is the Andreev phase andy(e)
the prevailing contribution of one particular quantum state X[ry(e)*] is NXN reflection matrix of the electronlike
These Friedel-type oscillations can play a crucial role espetholelike] quasiparticles for the normal-metal wire. The ma-
cially in one dimension. In what follows we are concernedtrix productr, rg is block off-diagonal, hence only the even
with the smoothed version of the LDOS that does not changgowers n contribute to the trace in Eq14). From Egs.
on the scale of the Fermi wave length and, therefore, also nd@tL4),(15) we obtain
in the transversal direction. For this purpose we introduce the
spatially averaged LDOS

, (19

2 ” '
n(x,e)=1+ N ReTrE [ro(e)rg(—e)*]"e~2nda,
n=1

n(x,a)zﬁV’lj n(r,e) dr, (12) (16)
v The right-hand side of Eq16) is completely determined by
where the integration is carried out over a voluféaround  the eigenvalues of the correlatog(e)ro(—«)*, which is a
the point &,p). The linear size of the volumaV is assumed unitary matrix. Its eigenvalues are conveniently parametrized

to be much larger than the Fermi wave length and mucf?Y €XP(@¢), j=1,2,... N, where the phaseg; are re-
smaller than the mean free pathFor [x—x’|<I the reflec- stricted to the interval (@;). The joint probability density

tion matrices defined at the cross sectidnare related to  Pe(®1,®2, - - . ,¢n) is @ symmetric function with respect to

those defined at by any permutation of its arguments because of the statistical
equivalence of the channels. This function has been studied

rL(X/):e—nz(x—x/)rL(X)e—iﬁ(x—x'), (123 in detail in Ref. 21. Our calculation is restricted to the mean

LDOS n(x,e)={n(x,&)), where the angular brackets corre-
rR(x’)=e“z(x‘x/)rR(x)e”z(X‘x'), (12b) spond to the average over the disorder potential in the wire.

In order to perform the average in E{.6), it is enough to
with k=m.v. Expanding the right-hand side of EG.0) ina  Know only the probability density,(¢) of a single eigen-
geometric series in_, rg we notice that only the terms with phase. It is instructive to compare E46) with the similar

equal numbers of, andrg matrices do not oscillate on the representation of the integrated density of states in the case

scale of the Fermi wave length and have to be kept Addi-Of the normal-metal wire of finite length, which has been
' nalyzed recentl§?

tionally the averaging in the transversal direction mixes u . .
y ging When the Andreev phasg, is real, i.e., fore<A, the

the different modes so tham|p)(p|n)=dmniN Eq. (3. Asa o0’ DOS is found from Eq16) as
result we obtain

1+rgr, n(x,e)=mp,($a), e<A, (17)

n
n(x,e)= WO ReTro———, (13 where the eigenphase densiiy(¢) is assumed to be nor-
Rt malized to unity on the interval (&). The probability den-
whereng is the bulk value of the LDOS in the normal metal, sity p.(¢#) acquires its simplest form in the cabie>1 of a
which is set to unity in the rest of the paper. In what follows large number of channéfs
we apply Eq(13) to calculate the LDOS in the normal-metal
wire in the immediate vicinity of aiNS interface.

pe(d)= Im J(e7)?+isry(1—e 7% (18

1
 Sinf ¢
Ill. LDOS NEAR THE IDEAL NS INTERFACE and in the single-channel cdagt

The relation(13) applies straightforwardly to the model of
the NS junction discussed in the Introduction. The only eTs [ exp(—eTgt)
modification is the doubling of size of the reflection matrices pe(P)= fo 2 Sir2p—t sin 26+ 1
due to particle-hole conversion. We still denote the number
of electron channels in the wire BY, so that the size of the The scattering time of the DMPK scaling equation differs
particle-hole reflection matrix is nowN2. Equation(13) can by a numerical factofdependent on the dimensionalityof
be written in the form the Fermi surfacefrom the mean scattering time of the

(19

™
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transport theory 7. Namely, 7s=cy7i, Where cq4 g0 (N1
=2,m2/4,8/3, for the dimensionality=1,2,3, correspond- p(o)= T nE [L(O)(U)]Z——L(O) (oL (o)
ingly. -
Note, that the integrated density of statd30S v 1 -
=L"1f5n(x,&) dx in the infinite disordered wird. —o is + ZL(Nlll(U) fo dzele 920 (o) |, (24

given by the relatioff v=m(9/9&)[ep,(0)], which is simi-
lar in spirit to Eq.(17). For wires with on-site disordeiin  whereL")(¢) is the generalized Laguerre polynomial.
standard universality classethe value ofmp,(0) equals to We substitute the parametrizatid82) in Eq. (20) and

unity irrespective of energy; however it can have a singu- average over disorder with the help of the den$tfo}).
larity at e=0 for wires with a specific disorder symmetry. The result reads

So far we were only concerned with the mean LDOS for
e<A. However, the resultl7) can be easily extended to the a?(w)—1

energies above the pair potential value with the help of the % 2(N+1)(MS‘T
analytical continuatior =i . On the other hand the analyti- n(x,e)= Ref dop(o) >
: . . 0 a‘(w)+1
cal continuation has another crucial advantage. It transforms — " 5
the dynamical correlatory(e)ro(—¢)* into the essentially 2(N+ Vot | L or
static objectrg(iw)ro(im)*. In the absence of a magnetic (25

field the time-reversal symmetry is preserved and the refle
tion matrix ro is symmetric, hencey(iw)* =ro(iw)’. The
eigenvalues exp(a;) of the matrixry(e)ro(—e)* are trans-
formed to the real eigenvalueRR; of the matrix
ro(iw)ro(iw)*, which are the probabilities of the reflection

“this equation extends EL7) to energies larger tha. It
can also be applied for arbitraiy. In the largeN limit the
distribution p(o) can be approximated By

1 /4
from the long disordered wire in the presence of a spatially lim Np(gN)— —\/=—1, 0<(<4. (26)
uniform fictitious absorption. N—o0 ¢
o Z?]\e/asllljgsmatlon in Eq(14) is performed in terms of the Substituting this expression into E(R5) we reproduce the
9 results of Eqs(17),(18) for s<A. In the limit e—0 this
\ leads to the square root behavior of the LD@&,e—0)
E 1-Rja 2(w) =Re\—ieTts In the extremely dirty regimé r,—0 we re-
n(x,e) “ 1+R. az(w) 7_i€+0+’ (20 produce the result of the conventional BCS theory
H(X g)=Ree/\Je?— A% (27)

where 0" is an infinitesimally small positive imaginary part

of energy which ensures the retarded Green function requireBihe Thouless energy.=1/N?7, however, remains unre-
in Eg. (3). We have also introduced solved within the multichannel approximatig®6). In order

to fix the scales. one has to take advantage of another
limiting relatior™®

a(w)=ie =1+ (w/A)’— w/A. (21
lim p(¢IN)=33(210) = Jo(2/0)Ix(20)

The joint probability density of the eigenvalués for the N—o0
infinitely long wire is given by the stationary solution of the 1
DMPK equation. In the parametrization + (210 7130(2VD)31(2VD) (28)

whereJ,(z) are Bessel functions. In the limit—0 one can

o] safely puta(w)=1 in Eq.(25) and take the real part explic-
R 2N Dar, €07 @2 ity
_ * 1
this solution takes the simple form n(x,e =f dop(o . 29
(x.8) 0 g )1+0'2[(N+1)87'S]_1 29

N To leading order ire/ e the functionp(o) in Eq.(29) can be
Poh=cnIl e ] |oy—oyl, (23)  approximated by its value at the origin(0)=1/2, which
I=1 k=] holds forc<N~! [see Eq(28)]. We therefore obtain

which we recognize as the orthogonal Laguerre ensemble of — w(N+1) T

random matrix theor§¥ (with normalization constanty). n(x,e)=—7——ers~y(elec), e<ec. (30
This ensemble corresponds to the cl@dsin the classifica-

tion scheme of Ref. 34. The probability densigne-point  The factor 1IN in the last expression reflects the fact that
function) p(o), normalized to unity in the interval (®), is  only a single channel is responsible for the nonvanishing
given by LDOS at energies lower thasy, .
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In Fig. 2 we plot the mean LDOS given by E{5) rot, u O 1-T i\ u 0
against the ratie/A for different numbers of channels in the ( ) =( T . ) ( ) ,
ty r, 0 U, I\/F 1-T 0 v

moderately dirty regimé\ 7,=0.3, the intermediate regime
A7,=1, and the moderately clean regimer;=3. We ob- (34)
serve that the curves are lying close to each other in all caseghereu, , v, are some unitary matrices, which depend on a
(This suggests that the LDOS near the ideally transmittingarticular realization of the barrier, ard is the diagonal
interface is quite insensitive to phase-coherent effedise  matrix of the tunneling probabilitieE; . Time-reversal sym-
situation changes in the case of a finite transpardicyl of  metry in the segmeritis assumed. Once the dependence on
the NSinterface. energy in the matrices, , v, and[I is disregarded we obtain
from Eqgs.(33),(34) the right reflection matrix
IV. EFFECT OF A TUNNEL BARRIER

u 0\[ eXxcoss —ieXsing\(ul 0
A. Model rg= o ) }
_ , , _ 0 ur/\—ie*sing eXcoshd /0 uf
We now introduce the simplest model of a dielectric tun- (359
nel barrier at the ideaNS interface. The mean LDOS is
calculated in the normal-metal at a ballistic distancel sing=T{[1-e?¢A(1-T)][1—e 2% 1-T)]} 12
from the interfacgsee Fig. 1 (35b)
We describe the segmeindf the wire between the chosen
cross section and the idehlS interface (this segment in- e?X=(1-T—-e?’s)[1-e??(1-T)] . (350

cludes the tunnel barrigby its S matrix ] o ]
The left matrixr, is given by Eq.(15) and describes the

rhoth reflection from the disordered wire. Taking advantage of the
= , (31 polar decomposition we can write

thorh
. . . . i T
where each block itself consists of block-diagonal matrices o= U 0})(¢ 0 U 0 (36)
in the particle-hole representation 1o us/l o e?/\o ug '
ryoe) 0 whereug is a random unitary matrix ang is the diagonal
r= 0 fA—e)* )’ (3289  matrix of the eigenphases. We see that all information con-
1,

tained inu, disappears statistically from the eigenvalues of

(,[1’2(8) 0 ) r_rg because the produchuo can be regarded again as a

L= (32  random unitary matrix. Thus the disorder-averaged LDOS

depends only on the transmission eigenvalligsf the tun-
nel barrier. Below we calculate the mean LDOS for a single-
channel wire and for a multichannel wire provided the tun-
neling probabilities are the same for all channels, i8§.,

0 tif-8)*

and the matrices; ), t1 J(g) areNXN electron reflection
and transmission matrices corresponding to the segiment
The right matrixrg in the fundamental formulél4) de-

pends on theS matrix of the segment [see Eqs(31),(32)] =r.
and on the scattering matrix for Andreev reflectisee Eq.
(15)]. A straightforward algebraic calculation givés B. Single channel wire
" We start with the calculation of the mean LDOS for
= ro(e)  —te(—e) (339 <A inthe case of the single-channel wike=1. Fors<A
t(e) r(—e)* )’ the phaseg and 6 defined in Eq.(35) are real and botn,
_ and rg are unitary %2 matrices. We denoteu;u,
to(e)=e" At (—&)*M(e)ty(2), (33D =exp(y), wherey is a random phase distributed uniformly
, in the interval (0,2r). We insert the reflection matrices from
re(e)=ri(e)+e 2%t (e)r (—)*M(e)ty(e), Egs. (353,(36) directly to Eq.(13). The matrix (1-r rg)

(330 can be easily inverted. Taking the real part we notice that the
2 gae) R zeroes of det(%r rg) define the exact positions of the qua-
M(e)=[1—e “Ary(e)ra(—e)* 17" (33d  gjparticle bound states far<A. The result reads

In general, if the segment contains some weak disorder . B
(which is the case, for example, fer>1) the correlations N(x,e) = sin(¢-+x) 5 cose cosy—cod ¢+ x)], 37)

between the matrices, , andt, , for electronlike and hole-

like quasiparticles are nontrivial. We consider here the caswhere the argument of the Dira® function corresponds to
that the segment contains no disorder, but a sufficiently the quantization condition for the bound states. The mean
steep tunnel barrier which makes no difference in the tunneltDOS is given by the average over the phasewith the

ing probability of electrons and holes. In this case we carprobability densityp.(¢) of Eqg. (19), and over the uni-
omit the energy dependence in the matricgsandt; ,. In  formly distributed phasey. The integration ovey is readily
what follows we take advantage of the polar decompositionrdone with the result
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— m—0-x sinlp+x) | e At =008, T=0.1 :
n(x,e) J;}X d¢ p£(¢) \/C0320—0052(¢+X). 2.5 e ATg=0.5, T'=0.5 |
(38) S Atg=15 T=1 ;:

In the limit ’—1 of the vanishing tunnel barrier one ob- ©
serves thay— m/2— ¢, and — /2, so that the area of the E 151 i
integration in EQ.(37) shrinks to the small vicinity of¢ 14 L
= ¢, and the functiorp_.(¢#) can be substituted by its value
in this point. The integral approachesand we recover the 054 &
result of Eq.(17) for the ideally transmitting interface. 2

In the opposite extreme of a high tunnel barri€r—¢0) 0 , . , , . , ,
both # and y go to zero, so that the integration area is not 0 02 04 06 08 1 12 14
restricted and the value of the integral tends to unity because e/A

of the normalization condition for the probability density
p:(#). In the limit e<A we can sety=0 and reduce Eq.
(38) to the following form:

FIG. 4. The mean LDOS41) in a single-channel disordered
wire at ballistic distance from an NS interface of finite transparency.
The parameterda r, andI'=0.5 are chosen to fix the combination
—12 A7y(2-T)/T~1.5. The curves are close to each other for

i s)=Refwdte‘t 1— sing H(t—2ier) e<A where Eq.(39) is applicable.
’ 0 (875)° o1
(39 . ®(0)+1-T
| | T (a2b
where sing=I"/(2—T"), according to Eq(35h). From Eq.(39) 1+ a“(w)(1-T)
we find that . . . .
whereR=diag(R4, . . . ,Ry) is the diagonal matrix of reflec-
2-T I tion probabilities for the disordered wire with a fictitious

> T (400  absorptionw. In the parametrizatiof22) the joint probabil-
ity density of R; is related to the orthogonal Laguerre en-
which coincides fol’=1 with the result of Eq(30) for N Semble(23). Note that the quantitiep, R;, and a(w) take
=1. In the dirty limit A<~ * and for a high tunnel barrier @l values in the interval (0,1) wheais real. _
I'<1 the result of Eq(39) is applicable almost up to the _ 1he basic expressio(l4) for the mean LDOS is mani-
value ofe =A. It describes the formation of the pseudo-gapfe_St'y invariant under an arbitrary unitary rotation of the ma-
near the energy; ‘T due to the normal reflection from the X Productr rg. From Egs.(35a,(36) we obtain
barrier.

F(X,S):WSTST, eT<<

The exact expressio(B8) additionally accounts for the UTrLrRUO:( \/p_R 0 )(co.sa- U i sing
peak ate=A. This expression can be further generalized for 0 0 JpR/|—ising coso UT)’
energies higher thaA by means of the analytical continua- (439
tion e =iw, with the result

U=ujuuug, Ug=diagug,ud), (43b)
F(x )= —Refxdapl(a) sinh Q() (413 where we take advantage of the quantities defined in Eq.
' 0 Jsint? Q(o)+sin20’ (42). The matrixug is a random unitary matrix which is
uniformly distributed in the unitary grougprovided the
1 @) +1-T 1 - weak d.isorderkFI>1).. Hence by con.structio(|43b),_U is
Qo)==Ih———— 4> In———, (41p the unitary symmetric random matrix. We substitute Eq.
2 1+d¥w)(1-T) 2 otdors (433 into Eq.(14) to express the mean LDOS as
where the functiorp,(o) = (1/2)exp(o/2) is the probabil- _ 1 1-pR
ity density (24) for a single-channel wire, the functian( ) n(x,e)= N Re Tf< 1r <F(0080)>u> , (449
is defined in Eq(21), and the continuation to the real ener- P R
giesw— —ie+0" is performed(see Fig. 4. where
C. Multichannel wire 1

The disorder-averaged LDOS fdd>1 can be found F2) 1-2(\/CLU\C,+CuTCy) ' (459
straightforwardly for the case of equivalent tunnelling prob-
abilitiesI'j=1T". Then the diagonal matricesand x in Egs. PR 1
(35h),(350 can be regarded as scalars. It is convenient to Cl:m- C2:1+pR' (45D

make use of the analytical continuatier-iw and define
' ' The average over disorder in E@4) is decoupled into two
a(w)=ie'%r, R=e??, (423  independent steps: the average--), over the group
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spanned by the unitary symmetric matrices and the average

(---)r over the orthogonal Laguerre ensemble of the reflec- 224 = — + 2 _../\@. + z»o/M

tion eigenvaluesy; . (F) 1 T, JCLH 4G, 3, JCF)
In the case of the finite number of channels the calculation

of average over the unitary matricesis technically difficult

and cangot be done analztically. However, for ¥he diffusive =W (@ +z W, (@*@@ +

wire, N>1, the calculation can be done by means of the Z: VTN, VELFINST, WE(FINC) JCLFINT,

diagrammatic technique developed in Ref. 37.

Let us briefly quote the basic substitution rules of the w @”W @ @*@ .
. \ =W, ,

diagrammatic technique
g d T, SOUBWNE,  AEKENE, BT, JEEE,

— @emee- * gt . . .
Ujj =%, Uij =&, FIG. 5. Diagrammatic representation of the Dyson equa#dh

C,=-5», 6 5, =—. (46) for (F(2))y.

1

1
Here the matrix element;; is represented by the black and h(s):nzl Whps" 1:2_3( VN?+4s—N), (49
white dot connected by the dashed line. The black dot stays
for the first indexi and the white dot for the second indgx which may be used to reduce Eg.7) to
The conjugated matriXJ* is marked by an asterisk. The
other matrices are denoted by thick solid arrows. The sum-  (F(z))y=1+z?h(z%8;5,)(5;C1+5,C2)(F(2))u
mation over a matrix index in a dot is indicated by the at-
tachment of a solid line. The average over the unitary sym- S1o=TrC1AF(2))y. (50)

metric matrices is symbolically performed by pairing in all 110 matrix(F (z)), has to be eliminated from the Dyson

possible ways all black and white dots belongingXdo all - oqyations(50). After that it is very convenient to transform
black and white dots belonging 10*. This pairing is de- 5 the new scalar variables

noted by the thin solid line, which corresponds to the Kro-

necker symbol. The result of the averaging is found by in- S,—S; S,+5;

spection of the closed circuits in the diagram which consist X= N Y= N (51
of alternating thick and thin solid linesT(circles. Each

diagram is weighted by a factor, which is obtained by inspecwhich obey the equations

tion of the closed circuits of alternating thin solid and dashed

lines (U circles. X+1 1 1

We expand the matri¥(z) (45) into a geometric series > N S Ir m (529
and keep only the terms with equal numberlfand UT
matrices. In the larg®¥ limit we have to take into account Y2 sir?6+ X2 cofh=1, (52b)

the diagrams with the largest number ®fcircles®’ This
amounts to the summation of the “rainbow” diagrams, or with
diffusion ladders, depicted symbolically in Fig. 5. The corre-

sponding Dyson equation is (1—X)(Y+X)
) f(X,Y)—m, (53
F)u=1+2z3,C(F)y+z2,Cx(F)y, (473
(Flu 1Cx(Fhy 2C2(F)u where we have substituted= cosé and the matrice€,, C,
- from Eq. (45b).
S,= S W2 U TrC(F) " TrC(F), 1" L, In terms of the variableX andY the mean LDOS44) is
1= 2 Woz" Y[Tr Co(F) ][ Tr Co(F)u ] simplified £
(47 - -
n(X,e)=ReX(®)|y_ ictr0+s (54)
S,= 2 W,z" [ Tr C(F)y ][ Tr Co(F)y1" 3, where the bar standsf_or the average over the ensemble of the
n=1 479 reflection probabilitieX=(X)g.

Let us first consider the case of equal reflection probabili-
tiesR;=R. The matrixU in Eq. (45 commutes withC, and
C, and can be diagonalized, hence the problem becomes
equivalent to that of a single channel wire. The solution of

where the weight factors

—2)1
W, =N1=27(— 1)n1—(|2(n 21))" +O(N™2M (48 the self-consistent equations E§2) is given by
nl(n—1)!
. . - sinhQ 1
have been found in Ref. 37. Taking the coefficieMgto the X=————— Q==InpR (55)
leading order irN we define the generating function Vsint? Q+sirfé
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which coincides with the result of the exact integration over In some limiting cases Ed57) allows for a transparent
U. This proves that the set of diagrams which we took intoanalytical solution. In the absence of the tunnel barkier
account in Eqs(47) is sufficiently complete. The substitution =1 we obtain

of Eqg. (65 in Eqg. (54) and the additional average over the

reflection probability of a single channel wire yields the — o?
mean LDOS of Eq(41). X=1—21+a2(1+9—¢5v2+9) ,

In the multichanneldiffusive) limit N>1 the reflection Q—wrg/(1+a?)
probabilitiesR; are, in fact, not equal. Moreover they effec- (58)

tively repel each other according to Ed&2),(23). In this  \yhich coincides upon the substitution in E@&4) with the
case Eq.(52) can no longer be solved in closed form. In oyt of Eq.(25) in the largeN limit. In the limit Arg

other words, the averages over the random matrand over <T'2, Eq.(57) leads to the BCS result for the local density,
the reflection eigenvalug®; cannot be performed separately. g 27).

In order to proceed one has to take advantage of the self- i:or small energiesp<A, we can pute(w)=1 and ob-
averaging property of the variablesand Y in the limit N tain
>1. Indeed both variables are defined via the trazgsand

can be thought as the arithmetic meansNoffluctuating — o4 Sifo+ ore— wrg
guantities. From a physical point of view the variaildes = - . (59
proportional to the one-point Green function, therefore it is 2 sirfg
self-averaging in a diffusive metal. __ The mean LDOS54) for e<A is then given by
Thus we can construct the self-consistent equationXfor
by taking the average ovét on both s@es of Eq.523. We _ &7 &7
assume a fixed value 6f X,Y(X)]=F(X) on the right side, n(x,e)=Re~\/ —i SirPo 1= 4 sirte’ (60)

neglecting the fluctuations oX. Taking advantage of the
square-root approximatiof26) of the densityp(o) we ob-  with sing=I"/(2—T'). This result describes the scaling

tain ~ 15 'T2(2—T) "2 of the size of the pseudogag with the
transparency of the tunnel barri€r, which is illustrated in
X+1 1 (4 \/4\ 20T+ Fig. 7. We observe that in the limit?<A r,<1 two differ-
—=—f di\/z-1 ———. (56)  enttypes of bound states contribute to the LDOS at energies
2 2m)o L 2wor+[1+pf(X)]¢

below A. One group of the bound states is responsible for
The integral on the right-hand side can be carried out explic'Ehe mopl()t(;nou§ increase of the LDOS to its bulk value at the
itly giving rise to the equation scaler, "' while another group gives rise to the formation

of the peak neag=A.
[a?(w)+1-T][Y(X)+X]
[1+a?(w)(1-T)I[Y(X)—X]

V. USADEL EQUATION

The aim of this section is to compare our results in the

2 _ limit N>1 to the results of the conventional quasiclassical

=1+ ——(wrs— JorsV1+X+wry), (57)  theory based on the Usadel equation. It is important to re-

1+X member that the Usadel description is justified only in the

o ) ) — ) dirty limit Ar,<1, while it is not restricted to the clean

which is an algebraic equation fof. f can be analytically  syperconducting material as is the case with our calculation.
continued to real energies=—is+0" and solved numeri- |, the quasiclassical context the superconductor as well as
cally by iteration. The disorder-averaged LDOS is deter{he normal metal are characterized by their diffusion con-

mined, then, from Eq(54). Equation(57) is obtained in the  giantsD,, D, and normal-state resistivitigs, p,,, which
quasiclassical limit of a large number of channels. This resuly;e combined into the mismatch parameter

does not change if we neglect thais symmetric or take the
unitary Laguerre ensemble in E¢R3) instead of the or- psés
thogonal one. Y= PN
The weak-localization correctiofvhich we simply define nen
as 1N correction) can, in principle, be determined within the where &, =D, s/A are the diffusive coherence lengths.
present approach. It has three different sources. First of all aHence, the comparison has to be done in the lign1,
additional class of diagrams, namely the Cooperon-like diawhere the “rigid” boundary condition is valid.
grams, have to be taken into account in the Dyson equation In the case of the perfectly transparéh® boundary and
(47). Secondly the term of subleading order in the lalkgge- vanishing mismatch parameter the LDOS at the interface
expansion of the weight factoi/, has to be included. Fi- found from the Usadel equatibi'®is simply given by the
nally the correction of orde®(N~1) to the limiting form  standard BCS formula and, therefore, coincides with our ex-
(26) of the probability densityp(o) has to be considered. pression27) in the dirty limit A7,<1. Thus, there is not too
The calculation of the weak localization correction to themuch to compare for the case of transparent boundary. How-
LDOS is, however, beyond the scope of this paper. ever, if the NS interface is not perfectly transparent’ (

(61)
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254 . one channet @ 257 - one channel ()
—— many channels —— many channels
29 . Usadel L p— Usadel
=03, At;=03 =09, Atg=5
1.51 = 154
x
[E=2 e AN
14 e W, O .
05
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
e/A elA

FIG. 6. The mean LDOS in a normal-metal wire in the vicinity of M8 interface of finite transparency. The dotted curve is found from
Eq. (41 for the single-channel wirbl=1. The solid curve is calculated from Eq54),(57) for the diffusive wireN>1. The dashed curve
represents the result of the Usadel equation, E§5),(69), calculated for the corresponding value of the parameléq:Ars(Z
—T)?/(2I")2. The figures show the energy dependence of the mean LDOS for theAdigty0.3 and the cleat 7,=5 regime.

<1), even the limit of small mismatch parameteris not  whereA(x) is the gap function(For a sake of simplicity we
completely trivial. Let us now discuss the Usadel equatiorrestrict ourselves to zero temperatiréThe functions
for this case in somewhat more detail following the calcula-G(x,x) =cos®,(x) and F(x,x)=sin®,(X) parametrize

tion of Ref. 14. normal and anomalous quasiclassical Green functions in en-
The transparency of the interface enters the theorgrgy representation, averaged over angle and disorder. The
through the parameter LDOS near the interface is given by
Rg n(0,e)=Re co ,(0). (65)
=, 62 . . ;
e Pnén (62 Far away from theNS interface the Green functions aquire

. . _ ) their bulk values
whereRg is the product of the barrier resistance and its area.

The Usadel equation in the normal metak(0) takes the )
oSO (—°)=1, oV »)=———. 66
form n(—) s() N (66)

D The finite transparency of the interface comes into play in

7”;;(x)— wsin®,(x)=0, (63  the appropriate matching conditionsxat 02
£,0/(0)=siM040)—0,(0)], (679

where w=—ie+0" is the imaginary energy, while in the eenhn 0. o(0)]
superconductor(>0) the equation reads ¥6004(0)=£:04(0). (67b

D Once the superconductor is sufficiently clean the first term in
f@’s’(x)—wSih@s(x)+A(x)cos®S(x)=0, (64) Eq. (64) can be disregarded, hend@ (x)=04(«) and

A(x)=A for x>0. This justifies the “rigid” boundary con-
ditions, which are used throughout the article.

------- At,=0.0125, T'=0.1 The first integral of Eq(63) is readily found
251 — Ar,=05 T=05 b
o] TT A4S T=L — (07017 + w cos®,(x) = const, (68)
g 154 where the constant is determined from the conditiorx at
e KN =—o and equalsw. With the help of Eq.(679 one
11 = obtains®
0.5- SiF[0,(0)—040)]
[9n(0)=04(0)] +—[cos®,(0)—1]=0, (69
0 . 4y A

0 02 04 06 08 1 12 14

N where ©4(0) is substituted by®¢() due to the “rigid”

boundary condition. In the limitv<<A the equation is sim-
FIG. 7. The mean LDOS in vicinity of aNSinterface of finite  plified to
transparency calculated from Eq&4),(57). The parameterd 7

and I'=0.1 are chosen to fix the combination3=Ar(2 2 4yie

—T)?/(2I')2~1.06. The curves coincide far<A, where Egs. (Cosn(O)—K) A [1-cos®,(0)]. (70
(60),(71) are applicable. The result of the Usadel equation, Egs.

(65),(69), is indistinguishable from the dashed line. Its solution gives rise to the LDOS far<A
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______ Usadel interface at zero temperature and zero magnetic field. Our
2591 AMT calculation is based on the scattering approach and takes into
account the spatial phase coherence in the normal metal.
21 I'=09 We derived the general formu({d0), which expresses the
D45l one-point Green function in terms of the reflection matrices.
E The formula can be applied in order to calculate the LDOS
14 Atg=15 (and its distribution in the wire at arbitrary distance to the
N NS interface. In this paper we only considered the mean
05 L LDOS at the ballistic distance to the interface so that it does
Ats=0.1 not acquire a spatial dependence.
0 . . , . . , . We obtained the relationl) between the disorder-
0 02 04 06 08 1 12 14 averaged LDOS near the idedB interface and the probabil-

e/A ity density of the eigenphases of the matrix correlator
ro(e)ro(—¢)T, wherery(g) is the reflection matrix for the
FIG. 8. The mean LDOS from the random matrix the¢sglid semi-infinite normal-metal wire.

lines), Eqs.(54),(57), is compared to that from the Usadel theory  \We also study in detail the case of the normal-
(dashed lines Egs. (65),(69), for the corresponding value of the syperconductor tunnel junction and derive the self-consistent
parametery; =A7(2—I'?)/(2I')% The curves always coincide for equation(57) that determines the LDOS in the diffusive nor-
small energies:<A. The perfect agreement in the entire energy ma| metal. In the dirty limit our expression coincides with
.rapge.i.s found in the dirty limit\ 7s— 0, where the Usadel equation {he LDOS found by Golubov and Kupriyanjé‘vfrom the
is justified. Usadel equation.
The quasiclassical analysis of the Green function at the
— \/ 4 7’%\/ 574 NS interface of finite transparency has been performed by
n(0e)=Re\ —1— 1=17= (72) many author3%14404lin connection with the boundary

conditions of semiclassical superconductivity. However, to

which_is manifestly equivalent to E¢S0) and establishes the )+ pest knowledge no counterpart to E§7) exists in the
following relation between the parameters: literature.
_1\2 In the case of an ide&l Sinterface the LDOS is found to
5 (2-T) i ) .
7B:ATS—2' (72 be almost independent of the number of channels in a wire,
4r except for very small energies, hence its insensitivity to

This relation also follows directly from the definition of , phase-coherence effects. This persists to the case of finite

up to a numerical factor, since one can effectively substitutd'ansparency provided the clean limit conditidrg>1. In
RBZ(hZ/e)(Z—F)/ZF p :(hZ/e)lfl andD :|2/7_ the dlrty limit A’TS<1 and small transparend?«l/N the
) n ) n S

We conclude that the LDOS obtained from the Usadelsitluation is different and the phase-coherent effects play a
- o ; role.
:g::ﬁuza;g\il:gjgglln(\:/I\?eezgghdgﬁto:loslipadt;r%?m?z;ﬁ; in The effect of Andersian localization is seen in the linear
Figs. 6, 7, and 8 that our result fot=1 is perfectly consis- increase of the LDOSn=(m/4)(N+1)e7(2—T)/T", for
tent with the Usadel theory in the dirty limXr.<1, where energies lower tham.=1/N?rs. In the diffusive metalN
the latter is justified. —oo, the LDOS increases as the square root of energy
One should note, however, that the agreement with the=Re\—is7,(2—1")/T". The form of the crossover in energy
quasiclassical theory becomes better with the increasing battependence of the LDOS from linear to square-root behavior
rier height. Indeed, in the perfectly transparent interfiice is given by Eq.(25) for weak disorder and perfedtS inter-
=1, the agreement is reached only in the extremely dirtyface.
limit A7,—0, while for smaller values ofF the dirty-limit
condition is less restrictivesee Fig. 63)].
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