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Abstract

This thesis concerns the development of a numerical software tool for propagating
and visualising orbits of artificial bodies orbiting the Earth and the calculation
of magnetic conjunctions between these objects and the ground. The developed
toolbox Vis Sat enables the users to visualise the trajectories of satellites under
different parameters and to estimate the visibility of a satellite to maintain efficient
satellite ground communication links. The trajectory predictions enables the user
to visualise the magnetic conjunctions for “space weather” studies by plotting the
northern and southern footprint of the magnetic field line.

The satellite’s motion results from the analysis of all forces which have an effect on
the trajectory of the satellite. The resultant of all forces acting on a satellite is pro-
portional to its acceleration, so it is possible to describe the trajectory of a satellite
in the central force field it is acting in. In this case the main acting force is the gravi-
tational force. This force is very variable in the near Earth space due to the effect of
the Earth’s flattening and is therefore very variably marked; it could be characterised
by the zonal harmonics. The equations to describe the motion of a satellite arises
from Kepler’s empirically laws and Newton’s mathematical description afterwards.
The major focus here lies on Newton’s law of universal gravitation and Newtons
second law of motion. These laws leads to a description of the orbital motion by
using differential equations, which are only possible to solve analytically when an
ideal gravitational force field could be assumed but the Earth is known to neither
have an even mass distribution nor be a perfect sphere. Therefore in order to get
a precise description of the orbital motion the physical laws have to be expanded.
This is done by using the Simplified General Perturbation Model (SGP4/SDP4)
which was developed by the North American Aerospace Defense Command (NO-
RAD) and implementing the methods, described in this model, in MATLAB r© . The
determination of the magnetic conjunction is performed by Tsyganenko’s magnetic
field model (Tsy’03). By means of this model and the numerical representation in
MATLAB r© the magnetic connection between the satellite and the ground station
can be determined.

All these models are summarised in three basic functions of Vis Sat in order
to facilitate a fast numerical calculation of the given equations of motion and field
descriptions, so it is possible to receive accurate results which agree with the theory
in the context of computed precision.

The toolbox Vis Sat , the online documentation and all functions can be down-
loaded from the following websitehttp://www.vissat.net.ms

Also there is an attached CD-ROM with all functions and models used in the
thesis.

http://www.vissat.net.ms
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Glossary

Altitude
The angular distance from the observer’s horizon, usually taken to be the hori-

zon that is unobstructed by natural or artificial features (such as mountains or
buildings), measured directly up from the horizon towards the zenith.

Angular Momentum
Angular momentum measures an object’s tendency to continue to spin. The

angular momentum of a particle of mass m with respect to a chosen origin is given
by the vector product between the direction vector and the impulse vector.

Apogee
The point where (and when) an object’s orbiting a huge massive body is farthest

to this body.

Arc minutes
There are 60 minutes (denoted as 60’) of arc in 1 degree. In the sky, with an

unobstructed horizon (as on the ocean), one can see about 180 degrees of sky at
once, and there are 90 degrees from the true horizon to the zenith. The full moon is
about 30’ (30 arc minutes) across, or half a degree. There are 60 seconds (denoted
60”) of arc in one minute of arc.

Azimuth
Angular distance measured clockwise around the observer’s horizon in units of

degrees; north to be 0 degrees, east to be 90 degrees, south to be 180 degrees, and
west to be 270 degrees.

Besselian year
A quantity introduced by F.W. Bessel (*1784-†1846) in the nineteenth century

that has been used into the twentieth century. Bessel introduced a system whereby
it would be convenient to identify any instant of time by giving the year and the
decimal fraction of the year to a few places, but the starting times of the year was
not convenient for dynamical studies that utilise Julian dates (see definition for
Julian date), differing by 0.5 day, and the Besselian year varies slowly. The recent
change to Julian year usage in dynamical astronomy (and the J2000.0 equinox) took
effect in solar-system ephemeris of the Minor Planet Center and Central Bureau for
Astronomical Telegrams on Jan. 1, 1992 (See Julian year).

Celestial sphere
An imaginary sphere of great (or infinite) radius that is centered on the Earth

and is used for practical purposes in astronomical observing. Since stars are very
distant from the Earth, they make up a background that is essentially unchanging
from year to year; over a period of years, the closer stars will move very slightly and
factors such as precession cause a change in the appearance of the stars in the skies
over many years. Therefore it is necessary to create a map grid on the celestial sphere
for identifying, referring to, and locating objects in the sky; some of these map grids
include equatorial coordinates (right ascension and declination), ecliptic coordinates
(ecliptic longitude and latitude), and galactic coordinates (galactic longitude and
latitude) - which refer to the Earth’s rotation, the Earth’s revolution about the Sun,
and the Milky Way galaxy’s plane, respectively.
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Degree
A unit used in the measurement of angles. Due to ancient Babylonian mathe-

matics, a circle is still divided into 360 even units of arc and each of these units are
called one degree. The entire sky, therefore, spans 360 degrees. Up to about 180
degrees of the sky is visible from any given point on Earth with an unobstructed
horizon (as measured from, east to west, or north to south). The degree is used to
make measurements of distance, or position (as with declination) in astronomy. In
turn, a degree is composed of 60 minutes of arc, and also of 360 seconds of arc.

Drag Term (BSTAR)
The drag term BSTAR is an SGP4 type drag coefficient. In aerodynamic theory

every object has a ballistic coefficient B that is the product of its coefficient of drag
cw and its cross sectional area A divided by its mass m. The ballistic coefficient
represents how susceptible an object is to drag - the higher the number, the more
susceptible. BSTAR is an adjusted value of B using the reference value of atmospheric
density q0 in the SGP models.

Ecliptic
The apparent path of the Sun against the sky background (celestial sphere);

formally, the mean plane of the Earth’s orbit about the Sun.

Elongation
Angular distance of a celestial object from the Sun in the sky. In standard

ephemeris, this is usually denoted by the greek letter epsilon ǫ (or by the abbreviation
“Elong”). A celestial (usually solar-system) object’s “phase angle” is the elongation
of the Earth from the Sun, as would be seen by an observer on that third celestial
object.

Epoch
Time of the Keplerian elements, the Keplerian elements describe the orbit and

the epoch times describes the time in which the satellite was at the exact position in
respect to the Keplerian elements which are stated in the TLE format. The Epoch
time standard in the NORAD TLE data is yyddd.ffffffff, where the yy is equal
to the last two digits of the year, so 00 <yy≤ 56 corresponds to 2000-2056 above 56
corresponds to the years 1957-1999. The ddd is the number of the day in this year,
the .ffffffff corresponds to the fraction of this day.

Equinox
Either of the two points (vernal, autumnal) on the celestial sphere where the

ecliptic intersects the celestial equator. Due to precession, this point moves over
time, so positions of stars in catalogues and on atlases are usually referred to a
“mean equator and equinox” of a specified standard epoch. For the propagation
purposes of the positions of objects the positions are always given for “equinox
J2000.0”, meaning that the reference system is that at the beginning of the year
2000; prior to 1992. The B and J preceding the equinox years indicate “Besselian”
and “Julian”, respectively. See separate definitions for Besselian year and Julian
year. The differences in an object’s position when given in equinoxes 1950.0 and
2000.0 amounts to several arc minutes.

Heliocentric
Referring to the Sun. A heliocentric orbit is one based on the Sun as one of the
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two foci of the (elliptical) orbit (or as the center of a circular orbit); a heliocentric
magnitude is the brightness of an object as would be seen from a heliocentric distance
of 1 astronomical unit (which means a distance of 1 AU from the Sun).

Julian date (JD)
The interval of time in days (and fraction of a day) since Greenwich noon on

Jan. 1, 4713 BC. The JD is always half a day off from Universal Time, because the
current definition of JD was introduced when the astronomical day was defined to
start at noon (prior to 1925) instead of midnight. Thus, 1995 Oct. 10.0 UT = JD
2450000.5.

Julian year
Exactly 365.25 days, in which a century (100 years) is exactly 36525 days and in

which 1900.0 corresponds exactly to 1900 January 0.5 (from the Julian-date system,
which is half a day different from civil time or UT). The standard epoch J2000.0,
now used for new star-position catalogues and in solar-system-orbital calculations,
means 2000 Jan. 1.5 Barycentric Dynamical Time (TDB) = Julian Date 2451545.0
TDB. When this dynamical, artificial “Julian year” is employed, a letter “J” prefixes
the year.

Orbit
The path of one object about another (used here for an object orbiting a massive

body in the central force field of its gravity).

Orbital elements
Parameters (numbers) that determine an object’s location and motion in its

orbit about another object. In the case of solar-system objects such as comets and
planets, one must ultimately account for perturbing gravitational effects of numerous
other planets in the solar system (not merely the Sun), and when such account is
made, the “osculating elements” (which are always changing with time and which
therefore must have a stated epoch of validity) are determined. Six elements are
usually used to determine uniquely the orbit, with a seventh element (the epoch,
or time, for which the elements are valid) added when planetary perturbations are
allowed for; initial (“preliminary”) orbit determinations shortly after the discovery
of a new comet or minor planet (when very few observations are available) are
usually “two-body determinations”, meaning that only the object and the massive
body are taken into account) work with only the following six orbital elements: time
of perihelion passage (sometimes taken instead as an angular measure called “mean
anomaly”); perihelion distance, eccentricity of the orbit; and three angles (for which
the mean equinox must be specified) - the argument of perihelion, the longitude of
the ascending node, and the inclination of the orbit; these orbit elements are called
the Keplerian elements.
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Perigee
The point where (and when) an object’s orbit about a massive body is closest

to this body.

Perturbations
Gravitational influences (“tugging” and “pulling”) of one astronomical body on

another. Comets are strongly perturbed by the gravitational forces of the major
planets, particularly by the largest planet, Jupiter. These perturbations must be
allowed for in orbit computations, and they lead to what are known as “osculating
elements” which means that the orbital element numbers change from day to day
and month to month due to continued perturbations by the major planets, so that
an epoch is necessarily stated to denote the particular date that the elements are
valid. Also different forces have to be considered as cause of perturbations like the
atmospheric drag, solar radiation and the geopotential.

Precession
A slow but relatively uniform motion of the Earth’s rotational axis that causes

changes in the coordinate systems used for mapping the sky. The Earth’s axis of
rotation does not always point in the same direction, due to gravitational tugs by
the Sun and Moon (known as lunisolar precession) and by the major planets (known
as planetary precession).

Right ascension
One element of the astronomical coordinate system on the sky, which can be

though of as longitude on the Earth projected onto the sky. Right ascension is
usually measured eastward in hours, minutes, and seconds of time from the vernal
equinox. There are 24 hours of right ascension, though the 24-hour line is always
taken as 0 hours. More rarely, one sometimes sees right ascension in degrees, in
which case there are 360 degrees of right ascension to make a complete circuit of the
sky.

Sidereal Time
The sidereal time is the time measured by the apparent diurnal motion of the

vernal equinox. Sidereal time is defined as the hour angle of the vernal equinox.
When the meridian of the vernal equinox is directly overhead, local sidereal time is
00:00. Greenwich sidereal time is the hour angle of the vernal equinox at the prime
meridian at Greenwich. Greenwich sidereal time and UT1 differ from each other by
a constant rate 1.00273790935.

Simplified General Perturbation
The Simplified General Perturbation model is an advanced model of a Keplerian

orbit model. Ideally a satellite - once put into orbit - would precisely repeat its
orbit forever. In reality the satellite will slowly lose energy due to gravity forces and
atmospheric drag which it encounters. The Simplified General Perturbation model
takes this into account (further details see [20]).

Subsatellite Point
Point where a straight line drawn from a satellite to the center of the Earth

(position vector ~r) intersects the Earth’s surface.

Terrestrial Dynamical Time (TDT or TT)
Time scale used in orbital computations; TDT is tied to atomic clocks (Inter-

x



national Atomic Time, TAI), whereas Universal Time is tied to observations. Prior
to 1992, Ephemeris Time (ET) was used in publications of the ICQ/CBAT/MPC;
since then, TT has been used. The difference between TDT and UTC in 1994 was
60 seconds (i.e., UT + 60 seconds = TDT).

Universal Time (UT, or UTC)
A measure of time used by astronomers; UT conforms (within a close approx-

imation) to the mean daily (apparent) motion of the Sun. UT is determined from
observations of the diurnal motions of the stars for an observer on the Earth. UT is
usually used for astronomical observations, while Terrestrial Dynamical Time (TDT,
or simply TT) is used in orbital and ephemeris computations that involve geocentric
computations. Coordinated Universal Time (UTC) is that used for broadcast time
signals (available via shortwave radio, for example), and it is within a second of UT.

Vernal equinox
The point on the celestial sphere where the Sun crosses the celestial equator

moving northward, which corresponds to the beginning of spring in the northern
hemisphere and the beginning of autumn in the southern hemisphere (in the third
week of March). This point corresponds to zero hours of right ascension.

xi
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Introduction

1 Introduction

Challenging or frustrating, fascinating or confusing - no matter how they are de-
scribed, space satellites certainly have added a new dimension to Communication
Systems and the modern society. The up and down link connections between the
ground and the “cyberelectric” cocoon that envelopes the entire planet are essential
for our modern society. An accurate knowledge of the position of a satellite over
the ground is necessary to establish a reliable link between the ground station and
the spacecraft. The basis of the satellite’s motion are the laws from celestial me-
chanics which are based on the simpler physical laws of motion. The visualisation
of such motions have become indispensable in modern science, the visualisation is a
tool to show complex mathematical issues in a simpler way. So it is possible to use
these visualisations to get a deeper insight in procedures and to simulate different
behaviours under special circumstances.

One of the basis of these visualisations is the numeric which acts as a link between an
analytical equation which characterise a scientific problem and the calculation on a
computer. These methods describe therefore the reality by numbers. These numbers
are feasible for computer or for the mathematic but unmanageable for a human
being. Therefore it is necessary to preprocess the data. For this purpose technical
software packages like MATLAB r© (for MATrix LABoratory) by MathWorks are in
use to solve numerical problems and to visualise the huge amount of data in an
understandable way. Here it is essential to find the right numeric method for a
given physical problem because the methods differ in accuracy, stability, efficiency
and velocity. This is one major task of this thesis, to solve the differential equations
of motion in a fast and stable way by using pre existing numerical functions and
models. A complex physical problem could be solved by combining different methods
in a sequential or interlinked way but a little change in the physical circumstances
could result in a total different way of solving the problem.

The main field of application for this thesis is to visualise the motion of satellites in
a near Earth environment and to develop a toolbox in MATLAB r© which provides
functions for tracking the satellites over the ground. In order to do so known equa-
tions from celestial mechanics are used and the virtual trajectory of a satellite is
simulated in MATLAB r© . Orbital mechanics, as applied to artificial Earth satellites,
is based on celestial mechanics, a branch of ordinary mechanics which started with
Newton and Kepler. A quantitative analysis of the motion is based on Newton’s law
of universal gravitation and Newton’s second law of motion. The fundamental prop-
erties of the orbits are summarised in Kepler’s three laws of planetary motions which
are also applicable for artificial bodies in space orbiting a huge mass body. These
laws contains the differential equations which have to be considered and solved in
order to simulate the trajectories of the satellites orbiting the Earth. The first part
of this thesis shows the theory and equations used to solve the mathematical two
body problem for artificial satellites. The second part shows how these equations
can be applied in a software tool. In addition to the motional visualisation this tool
also provides a function to estimate magnetic footprints. The satellites are exposed
to the Earth magnetic field in their orbits, here the cross section of these exposed
areas with the magnetic field lines are of interest. With pre existing models it is
possible to visualise footprints of these field lines on the ground during the orbit
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period.

The programVis Sat forms the end of this thesis and the functionality description
and program documentation is the last part of this thesis. This program/toolbox
is capable of calculating the trajectory of a satellite by using a graphical user in-
terface. The stand alone functions contained in the toolbox could also be used in a
command line way in the MATLAB r© environment for a future development. VisSat is a scientific tool to study the satellite/ground station conjunction and also
to study the magnetic conjunction. The GUI of Vis Sat acts as a link between
the parameterised physical equations and a descriptive visualisation of the motions.

2
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2 Satellite Orbit Dynamics and Kinematics

Figure 2.1: Sputnik 1, the first arti-
ficial satellite (source: [28])

Since the first laws of celestial mechanics were
developed by Johannes Kepler (*1571 - †1630)
and Sir Isaac Newton (*1642 - †1727) mankind
has been fascinated by space and the physics be-
hind the processes in space. Since this time it
was a dream to create artificial satellites and to
bring them in an orbit around the planet but
until the launch of Sputnik 1 this was just the-
oretical possible. The ascent of Sputnik 1 (see
fig. 2.1), on the 4th October 1957 ushered in
the space age [32] “... the satellite that inspired

generations”. From this day on a lot more satellites have been launched and today
they form a complex “cyberelectric” cocoon (first mentioned in [1], Laboratory for
Atmospheric and Space Physics) that envelopes the entire planet. Modern satellites
perform various task from navigation, broadcasting, imaging, scientific to communi-
cation and even spy purposes. It is not possible to imagine life in a modern society
without these satellites. Nowadays communication around the globe is possible by
using various up and down link connections, scientific satellites explore the near
Earth environment and even deep space. But all satellites, artificial or not, obey
the basic physical laws of celestial mechanics. With these basic laws it is possible
to pre calculate the position of a body in orbit.

At the beginning these physical laws should be introduced to form the theoretical
background. The first part deals with the mathematics of satellite orbits, starting
with the basics of Newton’s laws and the original Keplerian orbit model, the classic
orbital elements and the calculations to describe the orbit. Derived from this ba-
sic model, the NASA and the US Space Command derived the Simplified General
Perturbation models (SGP). These models are more advanced than the Keplerian
model, in that they take into account forces beyond the Earth’s gravitation (exact
description of the additional forces see section A.1, A.2 and A.5), which cause per-
turbations in the actual orbit. The primary models, SGP and SGP4/SDP4 will be
described in detail. This chapter will also give a description of the NORAD two-line
element data (TLE), its relation to the Keplerian elements and how they will be
used in the calculations. In order to get a deeper insight of the flight mechanics it is
necessary to have a closer look at the forces which acts on a satellite in orbit and how
they can influence the trajectory. In order to build up such theoretical models it is
initially necessary to have a closer look at the frames of references which have to be
used. The last part of this thesis deals with the implementation in MATLAB r© and
the graphical representations.

2.1 Coordinate Systems

In order to describe the dynamics and kinematics of satellites it is necessary to
declare a (quasi-) inertial frame of reference (cf. [16, 17]). This means it is a
frame in which the observers move without the influence of any accelerating or
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decelerating force. In case of the Earth satellite system the inertial frame is a space-
time coordinate system that neither rotates nor accelerates. With this inertial frame
it is possible to compute the satellite’s trajectory by using vectorial transformations.
With such frames of reference it is possible to achieve solvable equations of motion.

2.1.1 Earth Centered Inertial - ECI

Figure 2.2: Earth Centered
Inertial coord. system

The Earth Centered Inertial (ECI) coordinate system
has its origin in the Earth’s center. The x-axis is in
the equatorial plane and points to the vernal equinox,
the z-axis points to the north pole of the Earth and
is parallel to the rotation axis of the Earth. The y-
axis supplements the two other axes to a right-handed
coordinate system. The ECI system is used as a ref-
erence system for the attitude description. Most of
the attitude quaternions are calculated with respect
to the ECI frame, e.g. the current nadir quaternion
or the current target pointing quaternion.

2.1.2 Earth Centered Earth Fixed - ECEF

The origin of the Earth Centered Earth Fixed (ECEF) coordinate system is also
located at the geocenter. The x-axis is in the equatorial plane and points in the
direction of the Greenwich meridian. The z-axis points to the north pole and is
parallel to the rotation axis of the Earth. The y-axis supplements the two other
axes to a right-handed coordinate system. The ECEF system is important for the
calculation of the sight times, the ground track of the satellite or the current target
position.

2.1.3 Topocentric Horizon Coordinate System

Figure 2.3: Topocentric Horizon co-
ord. system

The Topocentric Horizon Coordinate System is
important for visibility considerations of the sat-
ellite. The origin is located in a certain position
on Earth, e.g. target position or ground sta-
tion position, thus the system moves with the
Earth’s rotation. Unfortunately two slightly dif-
ferent definitions exist for this coordinate sys-
tem. Using the first, the z-axis is defined by the
nadir direction at the given position which is the
geocentric radius vector. Thus, the z-axis is the
normal vector to a plane that defines the hori-
zon on a sphere. In this plane the x-axis points
south and the y-axis points east. The second definition defines the z-axis as the
normal vector to the local horizon plane. Thus, the z-axis is the geodetic radius
vector. The x- and y-axis are defined as aforementioned. This coordinate system is
particularly useful for the calculation of sight times and look angles.
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2.1.4 Orbit Coordinate System

The origin of the Orbit Coordinate System is in the satellite’s CoM. The z-axis points
in the direction of the nadir point, i.e. in the direction of the negative position vector
of the satellite in the ECI system. The y-axis is perpendicular to the orbital plane
and the x-axis point supplements the system to a right-handed orthogonal system
and points in the flight direction (note that the x-axis is not necessarily parallel to
the velocity vector for non-circular orbits).

Figure 2.4: Orbit coord. system

2.2 Newton’s laws

All motions are summarised in the physical field of mechanics, a branch of this field
is celestial mechanics which makes use of the frames of reference stated above. The
first mathematical exact laws in this field were developed by Isaac Newton, Newton’s
laws of motion, together with his law of universal gravitation and the mathematical
techniques of calculus, provided for the first time an unified quantitative explanation
for a wide range of physical phenomena such as: the motion of spinning bodies,
motion of bodies in fluids; projectiles; motion on an inclined plane; motion of a
pendulum; the tides; the orbits of the Moon and the planets. These basic laws are
still valid and they are essential to describe the motion of satellites in orbit.

2.2.1 General Considerations

The fundamental laws of physics upon which the theory of orbital mechanics is based
are Newton’s law of universal gravitation and Newton’s law of motion. The law of
gravitation states that the gravitational force attraction between two bodies varies
as the product of their masses M and m (here ME and ms) and inversely as the
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square of the distance |r| between them and is direct along a line connecting their
centers. Thus

~F = −GMm

|r|2
~r

|r| (2.1)

where G = 6.67 ·10−11 Nm2/kg2 is the universal gravitational constant1. The second
law of motion states that the acceleration of a body is proportional to the force acting
on it and is inversely proportional to its mass, this leads to

~F = m~̈r (2.2)

where ~̈r is the acceleration. The vector ~r is from M to m and the force is on m.
These equations can also include terms for non gravitational disturbances such as
atmospheric drag or they could also include additional gravitational perturbations
which results from the non spherical shape of the Earth. But these additional forces
could be very complex and a closed form solution for these kind of equations is
impossible. That is why a lot of numerical computer models are available to include
such disturbances (see appendix A.1, A.2, A.5 and [33]). In order to keep the
theoretical considerations as simple as possible these additional disturbances could
be considered as a time depending constant (see details in SGP model). However

Figure 2.5: Geometry of the two body problem

for artificial Earth satellites many important results can be found by considering the
two bodies (cf. fig. 2.5) in a special reference frame. The reference frame is X, Y, Z
as one in which Newton’s law applies.

2.2.2 Two body Problem

In order to analyse the two body problem the two bodies (here the Earth and the
satellite) are considered one with the mass M (Earth) and the mass m (satellite).

1first measurement by Cavendish 1798 with a torsions balance
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Then with equation (2.1) and equation (2.2) it can be written

~Fm = m~̈rm = −GMm

|r|2
~r

|r| (2.3)

~FM = m~̈rM = +
GMm

|r|2
~r

|r| (2.4)

(2.5)

where ~r = ~rm − ~rM . Subtraction yields to

~̈r = −G(M +mcorr)

|r|3 ~r . (2.6)

This is the basic vector differential equation for the two body problem which specifies
the acceleration of the body of mass mcorr = Mm/(M+m) with respect to the body
of mass M . This problem can then be solved using different frames of reference (see
in section 2.1). For the next considerations it can be assumed that the mass of a
satellite is m≪M and G(M +m) ≈ GM . Equation (2.6) then becomes

~̈r = −GM|r|2
~r

|r| (general equation of motion) . (2.7)

All models for satellite propagation are based on this “simple” equation but this
equation can be hard to solve. It can be seen that the two body problem is equivalent
to a central force problem where the potential is the gravitational force f (~r) =
−GM/|r|2, therefore in order to find an analytical solution it can be written

~̈r = f (~r)
~r

|r| . (2.8)

At first it is necessary to show that the movement in such a central force is plain
in order to simplify the differential equation. To show this, the position vector ~r is
multiplied

~r × ~̈r = f (~r)
~r × ~r

|r| = 0 . (2.9)

The left hand side of this equation can be written as the derivation of the vector
product between position and velocity vector

∂

∂t

(

~r × ~̇r
)

=
(

~r × ~̈r
)

= 0 . (2.10)

So it is shown that the vector product is time independent and can be integrated
for t and this yields to a conservation equation

~r × ~̇r = ~C . (2.11)

This conservation equation verifies that the motion of the satellite is in a constant
plane and that this plane is determined by the position vector ~r and the velocity
vector ~̇r, it is perpendicular to the vector ~C the integration constant, this is shown
in fig. 2.6. The constant vector ~C determines the first necessary elements in order
to describe the orbit. It can be seen that the plane of motion is inclined to the
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Figure 2.6: Plane Motion; motion in a central force problem

plane which is determined by the unity vector in the X and Y direction. This
parameter is the inclination i of the motion. The angle between the unity vector
in X direction and the cross section is the right ascension of ascending node Ω
(RAAN). The adjustment vector of the motion plane could be written as

~C0 =





sin (i) sin (Ω)
− sin (i) cos (Ω)

cos (i)









eX

eY

eZ



 (2.12)

where eX , eY and eZ are the unity vectors for the axes. This result can be used to
simplify equation (2.7) to that effect that just a two dimensional motion has to be
considered. This can be reached by using the following transfer matrix and splitting
up in a parallel and perpendicular motion (cf. [11] section 2)





r̈‖
r̈⊥
C0



 =





1 0 0
0 cos (i) sin (i)
0 − sin (i) cos (i)









cos (Ω) sin (Ω) 0
− sin (Ω) cos (Ω) 0

0 0 1









ex

ey

ez



 . (2.13)

Using this transformation it is possible to proceed in two dimensions only and write
the position vector ~r in rectangular components in the plane of motion (polar coor-
dinates)

~r = |r| (cos (ν)x+ sin (ν)y) . (2.14)

The general equation of motion can be rewritten and yields to

~̈r × ~C = −GM|r|2
~r

|r| ×
~C = −GM

(

~r ~̇r

|r|3 ~r −
~r 2

|r|3 ~̇r
)

. (2.15)

For the scalar product ~r ~̇r it can be written ~r ~̇r = |~r||~̇r| cos
(

~r, ~̇r
)

. The value

|~̇r| cos
(

~r, ~̇r
)

is the projection of the velocity vector on the direction vector. So
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it can be written
∂

∂t

(

~̇r × ~C
)

= GM
∂

∂t

(

~r

|r|

)

. (2.16)

The integration yields to

~̇r × ~C = GM
~r

|r| + ~A . (2.17)

The integration constant ~A is a linear combination of ~r and the vector product ~̇r× ~C
such that ~A lies in the plane of motion and can therefore be written as ~A = |A|x.
A scalar multiplication with ~r yields to

~C
(

~r × ~̇r
)

= GMr

(

1 +
A

GM
x
~r

|r|

)

(2.18)

Rearranging this formula by taken into account that x~r/|r| = cos (ν) brings the
solution of the general equation of motion and the radial distance between the
satellite and the center of mass (CoM) depending on ν

~r =
~C2/GM

1 + A
GM

cos (ν)
=

p

1 + e cos (ν)
, (2.19)

where p = ~C2/GM and e = A/GM . This equation is the polar equation for a
conic section with parameter p and eccentricity e. It can be an ellipse, parabola
or hyperbola depending on whether e is less than 1, equal to 1 or greater than 1
respectively (see fig. 2.7). Building an orbit propagator on the basis of equation

(a) ellipse 0 ≤ e < 1 (b) parabola e = 1 (c) hyperbola e > 1

Figure 2.7: Conic Section as a family of solutions for the two body problem

(2.7) and (2.19) is possible (numerical description of such algorithms can be seen
in [11, 40]), but impractical as it does not incorporate known regularities of an
orbit. Before Newton described the laws of motion in a mathematical way Kepler
discovered three basic laws of orbital motions empirically based on conclusions drawn
from observations by Tycho Brahe2. The next section describes these laws and how
they can be proven by Newton’s laws.

2danish astronomer/astrologer (*1546-†1601) built Uraniborg one of the first astronomical /
astrological observatory in denmark, “Astronomiae Instauratae Mechanica”, Wandsbek 1598.
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2.3 Kepler’s laws

The fundamental properties of orbits are summarised in Kepler’s three laws of plan-
etary motion.

1. The orbit of each planet is an ellipse, with the Sun at its focus.

2. The line joining the planet to the Sun sweeps out equal areas in equal times.

3. The square of the period of a planet is proportional to the cube of its mean
distance from the Sun.

Although they were stated for planetary motion around the Sun they are equally
applicable to satellites around the Earth with one modification. The orbit is not
limited to an ellipse, but can be any conical section (cf. section 2.2.2). The laws
of Kepler are valid under the assumption that the satellite and the Earth are point
masses, and that gravitational forces are the only forces acting on the two bodies. It
is also assumed that the two masses are not under influence of gravitational forces
from other celestial bodies than each other (this assumption is for a first description
applicable because the forces on a satellite from other celestial bodies are minute
see [36]). The satellites orbit will, as it is not leaving the Earth gravitational force,
be an ellipse with the center of the Earth at one of the foci. In order to get a deeper
insight in Kepler’s laws the next sections shows how these laws can be proven with
Newton’s mechanics and how these laws can be used to simplify the general equation
of motion.

2.3.1 Determination of the orbit shape

All fundamental properties which were stated by Kepler are basic solution of New-
ton’s law of motion (2.7). Kepler’s first law is proven by the solution of the two body
problem. It states that the radial distance r between the satellite and the CoM de-
pending on ν is an ellipse, parabola or hyperbola. Kepler’s first law summarised
this in an empirically way.

2.3.2 Conservation of Energy

In order to prove Kepler’s second law it is necessary to consider the same assumption
made in section 2.2.2, that the satellite with the mass m is much less massive than
the Earth’s mass M so that the massive body sits in the foci of the elliptical orbit
path while the much lighter satellite is in an orbit around it, confer fig. 2.8 (a)/(b).
It can be seen that in the circular motion the velocity is tangential to the path
taken by the satellite and the acceleration of the satellite is given by equation (2.7),
this acceleration ~̈r is anti parallel to the radial vector. These observations could be
used to show that the angular momentum of the motion is conserved. The angular
momentum of the system can be written as

~L = ~r ×
(

m~̇r
)

= m
(

~r × ~̇r
)

. (2.20)
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(a) Orientation of the orbit defined by the
right ascension of the ascending node (RAAN)
Ω, the Inclination i

(b) 2 dimensional view of the orbit ellipse
which is defined by the first Kepler law and
proven by the solution of the two body prob-
lem, conic section with 0 ≤ e < 1

Figure 2.8: Keplerian Orbit explanations

To show that the angular momentum is conserved it is necessary to look at the
time evaluation of ~L. According to the assumptions made in section 2.2 there is no
additional external torque. So it can be written for the time evaluation

∂

∂t
~L =

∂

∂t
m
(

~r × ~̇r
)

∂

∂t
~L = m

(

~̇r × ~̇r + ~r × ~̈r
)

= 0 = const. (2.21)

So the angular momentum is constant since the gravitational force is a central force,
namely the acceleration points towards the center of the path defined for the satellite
by the force and the satellite’s velocity. So ~L is conserved and ~L is equal to the
integration constant ~C in the considerations above. The vector points to a fixed
direction in space, ~r is perpendicular to it. To show that the areas swept out by
~r in equal times are equal, the area dA swept out by the radial vector due to the
displacement ~̇r has to be considered

dA =
1

2
~r(t) × ~r(t+ dt) =

1

2
~r(t) ×

(

~r(t) + ~̇r(t)dt
)

=
1

2
~r(t) × ~̇r(t)dt , (2.22)

a geometric interpretation is shown in fig. 2.9. The area which is swept out by the
radial vector in a given time t1 and t2 can be described by the time integral of dA

A =

t2
∫

t1

dA =
1

2

t2
∫

t1

~r × ~̇r dt
eq. (2.11)

=
1

2
~C (t2 − t1) . (2.23)

So it can be seen that the motional integral (2.11) contains the conserved sweeping
velocity.

dA

dt
=

1

2
~C Kepler’s second law . (2.24)
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(a) general vector product (b) area in a vector
product

(c) area in an orbit

Figure 2.9: Geometric Interpretation of the Motional Integral for the Angular Momentum

Functionally what this means is that the velocity of the satellite in orbit must be
fast when it is near the center of its orbit and slow when it is in the part of its orbit
that is further away from the center so that the rate of area swept out is always
constant this is parameterised in section 2.3.4. Apart from the angular momentum
there is a second conservation equation which can be described by the semimajor
axis a of the ellipse, therefore it is necessary to consider the energy in a central
gravitational force field in consideration of an energy constant h

1

2
m~̇r −m

GM

|r| = mh . (2.25)

The square of the velocity can be written as

~̇r 2 = GM

(

2

|r| +
2h

GM

)

= GM

(

2

|r| −
1

a

)

, (2.26)

where h = −GM/2a. In this case the semimajor axis of the ellipse has the meaning
of an integration constant and describes the total energy of the body in an orbit.

2.3.3 Time derivation of the orbit

Kepler’s third law stated that the square of the period of a satellite is proportional to
the cube of its mean distance from the Earth. This can be shown by using equation
(2.23). The period T of the elliptical orbit can be found by noting that the total
area of the ellipse is A = πab where a is the semimajor axis and b is the semiminor
axis. Since the areal velocity is constant

dA

dt
=
A

T
=
πa2

√
1 − e2

T
(2.27)

and
dA

dt
=

1

2
~C =

1

2

√

GMa (1 − e2) . (2.28)

Therefore combining equations (2.27) and (2.28) it can be written

T 2 =
4π2

GM
a3 Kepler’s third law. (2.29)
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In order to get a deeper insight in the evolution of time considering the motion
in the orbit equation (2.11) should be considered with a time derivation of ~r =
|r| (cos (ν)x+ sin (ν)y), then it can be written

~r × ~̇r = |r|2ν̇ x× y = |r|2ν̇ ~C . (2.30)

Comparing equation (2.11) and (2.30) under consideration that ~r can still be written
in polar coordinates this yields to

ν̇p2

(1 + e cos (ν))2 = C (2.31)

p2

(1 + e cos (ν))2 dν = C dt . (2.32)

The indefinitely integration yields to

ν
∫

ν0

p2

(1 + e cos (ν))2
dν = C (t− t0) . (2.33)

The integral can be solved in a closed from, but it is not possible to get values for
every numerical eccentricity e. To solve the integral for orbits with an eccentricity
e < 1 the eccentric anomaly E has to be introduced [24]. In order to perform this
operation it is necessary to use a variable change from ν → E [34, 37], in fig. 2.10
the equation for E can be determined

|r| cos (ν) = a cos (E) − ae . (2.34)

Figure 2.10: Illustration of the Eccentric Anomaly E

By changing |r| with the polar equation of |r| it can be written

p cos (ν)

1 + e cos (ν)
= a (cos (E) − e) . (2.35)
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Using the relation between a and e for an ellipse it yields to

cos (ν) =
cos (E) − e

1 − e cos (E)
(2.36)

sin (ν) =

√
1 − e2 sin (E)

1 − e cos (E)
. (2.37)

It follows that

tan2
(ν

2

)

=
1 − cos (ν)

1 + cos (ν)
=

1 + e

1 − e

1 − cos (E)

1 + cos (E)
=

1 + e

1 − e
tan2

(

E

2

)

(2.38)

or

tan
(ν

2

)

=

√

1 + e

1 − e
tan

(

E

2

)

. (2.39)

This equation determines the true anomaly ν for a given eccentric anomaly. It is
sometimes called the Gauss equation. By differentiate equation (2.36) and using
equation (2.37) it can be written

dν

dE
=

√
1 − e2

1 − e cos (E)
. (2.40)

By integrating this equation and combining it with equation (2.33) it is possible to
get a connection between the time t and the eccentric anomaly E

E − e sin (E) =
C

a2
√

1 − e2
(t− t0) =

√

GM

a3
(t− t0) = M , (2.41)

where M is the mean anomaly. This is Kepler’s equation, one of the most celebrated
in orbital mechanics. This equation gives the relation between the polar coordinates
of a celestial body (here the satellite) and the time elapsed from a given initial point.
By solving this transcendental equation3 it is possible to get for every given time t
the eccentric anomaly. The mean anomaly M contains the mean motion n of the
satellite

M =

√

GM

a3
(t− t0) = n (t− t0) . (2.42)

This means when a satellite in a central force field would orbit around the CoM
with such mean velocity the satellite would achieve the same exact position after
one orbit as before. In contrast to this mean velocity it is necessary to calculate the
real angular velocity in order to get a precise orbit propagation, therefore it can be
written

ν̇ =
C

p2
(1 + e cos (ν))2 (2.43)

the true angular velocity is thus changing according to the true anomaly ν only for
e = 0 the velocity is constant.

The general consideration of the Kepler problem shows that there are six different

3Transcendental equations cannot be solved in a closed form, thus solving means using a numeri-
cal iterative method. An exact solution was developed by Lagrange in the form of the trigonometric
series (see [37]).
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2.3 Kepler’s laws Satellite Orbit Dynamics and Kinematics

integration constants which are necessary to propagate the orbit. These integration
constant should be defined in detail in the next section.

2.3.4 Keplerian Elements

In the previous sections it was shown that an orbit of an artificial satellite can
be determined by using basic equations from celestial mechanics. The closed form
solution of these formulae are often difficult to achieve or even impossible. That is
why in order to create an orbit propagation tool it is necessary to simplify these
formulae. This is possible by using geometrical characteristic of the orbit. These
characteristics appeared in the sections above as the integration constants these
constants specify completely the properties of an elliptical orbit.

Symbol Name Meaning

Semimajor axis a Shape of the Orbit
Eccentricity e Shape of the Orbit
Inclination i Orientation of the Orbit
Right ascension of ascending node Ω Orientation of the Orbit
Argument of Perigee ω Orientation of the Orbit
Epoch t0 Time of Perigee
Mean Anomaly M = n (t− t0) Position in the Orbit

Table 2.1: Keplerian Elements

If only the gravitational force as assumed by Newton’s law is acting on the satellite
the first five parameters are constant and the orbit is an ideal Keplerian orbit (see
orbit calculations in [6]). Only the true anomaly of the satellite changes its value
due to the undisturbed movement in the orbit. If disturbance forces are present the
motion becomes an osculating orbit. Due to the disturbance forces the shape and the
orientation of the orbit will change. Thus the Keplerian elements will change their
values. If the orbital motion then should be described by the Keplerian elements,
these elements now become time-variant (details see appendix A.3).

Figure 2.11: Keplerian Elements, param-
eters defining the position of a satellite in
orbit

These six integration constants are defined
for a specific point in time t0, known as the
epoch time. The position of the satellite in
orbit is then determined using these values
as reference (see fig. 2.11). The semimajor
axis a is an expression of the size of the or-
bit, or altitude of the satellite and can be
derived from the mean motion n and the
eccentricity e. The eccentricity describes
the shape of the ellipse (cf. fig. 2.7). The
inclination i represents the tilt angle in de-
grees of the orbital plane with respect to
the Earth’s equatorial plane (further de-

tails see section 2.5). The RAAN Ω is the angle from the vernal equinox defined
as the X-axis in the geocentric inertial system to the ascending node, defined as
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2.3 Kepler’s laws Satellite Orbit Dynamics and Kinematics

the point where the orbit intersects with the equatorial plane. The argument of
perigee ω is defined by the angle between the aforementioned ascending node and
the perigee of the orbit. The mean anomaly M describes the position of the satellite
in its orbit relative to the perigee. At perigee the mean anomaly is zero increasing
to 180◦ at apogee then back to perigee at 360◦. Figure 2.11 shows these elements
in an intermediate reference frame known as a perifocal coordinate system. This is
an orthogonal axis system with the orbital plane as the fundamental plane and its
origin at the Earth’s center. The P -axis points towards perigee, the Q-axis is also in
the orbit plane in the direction of the satellite motion and the K-axis completes the
right-hand set. Using this frame of reference and the mathematics which is stated
above it is possible to calculate the the precise position ~r and the velocity ~̇r of the
satellite. This is demonstrated in the following flow-chart.

16



2.3 Kepler’s laws Satellite Orbit Dynamics and Kinematics

Calculation of the mean angular velocity n

n =
√

GM
a3

Determination of E at time t on the base of
Kepler’s equation (2.41)

n (n− t0) = E − e sin (E)

Determination of the true anomaly ν for time t

cos (ν) = cos (E)−e
1−e cos (E)

sin (ν) =
√

1−e2 sin (E)
1−e cos (E)

or with

tan
(

ν
2

)

=
√

1+e
1−e

tan
(

E
2

)

Calculation of r and the integration constant C

r =
a (1−e2)
1+cos (ν)

C =
√
GM p

Determination of the perifocal unity vectors

~P =





cos (Ω) cos (ω) − sin (Ω) sin (ω) cos (i)
sin (Ω) cos (ω) + cos (Ω) sin (ω) cos (i)

sin (ω) sin (i)





and

~Q =





− cos (Ω) sin (ω) − sin (Ω) cos (ω) cos (i)
− sin (Ω) sin (ω) + cos (Ω) cos (ω) cos (i)

cos (ω) sin (i)





Determination of position ~r and velocity ~̇r
(

~r

~̇r

)

=

(

r cos (ν) r sin (ν)

−C
p

sin (ν) C (cos (ν)+e)
p

) (

~P
~Q

)

or
~r = ~R (Ω, i, ω) ~q (a, e, M) ~̇r = ~R (Ω, i, ω) ~̇q (a, e, M)

where

~R =





P1 Q1 C0,1

P2 Q2 C0,2

P3 Q3 C0,3



 ~q =





a (cos (E) − e)

a
√

1 − e2 sin (E)
0



 =





r cos (ν)
r sin (ν)

0





and

~̇q = na
1−e cos (E)





− sin (E)√
1 − e2 cos (E)

0



 = na√
1−e2





− sin (ν)
e+ cos (ν)

0





?

?

?

?

?
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or vice versa (calculation of the Keplerian elements)

Determination of the inclination i an the RAAN Ω

~r × ~̇r = ~C → C0 =





sin (i) sin (Ω)
− sin (i) cos (Ω)

cos (i)



→ i, Ω

Determination of a semimajor axis

a = 1
2
|r|

− ~̇r 2

GM

ellipse: a > 0 → 2
|r| >

~̇r 2

GM
circle: ~̇r 2 = GM

|r|

parabola: a = ∞ → 2
|r| = ~̇r 2

GM
hyperbola: a < 0 → 2

|r| <
~̇r 2

GM

Determination of the numeric eccentricity e

p = C2

GM
e =

√

a−p
a

Determination of the true anomaly ν for time t

cos (ν) = p−r
er

sin (ν) =
p(~r~̇r)
erC

Determination of the perifocal unity vectors
(

~P
~Q

)

=

(

e+cos (ν)
p

− r sin (ν)
C

sin (ν)
p

r cos (ν)
C

)

(

~r

~̇r

)

K = cos (Ω)X + sin (Ω)Y

Determination of ω

cos (ω) = ~K ~P sin (ω) = − ~K ~Q

Determination of the eccentric anomaly E for time t

cos (E) = ~r ~P
a

+ e sin (E) = ~r ~Q

a
√

1−e2

Determination of Epoch time t0

M = e− e sin (E) t0 = t−M
√

a3

GM

?

?

?

?

?

?

?
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However, the Keplerian elements and with them the Keplerian orbit model is an
ideal one, based on the assumption that the motion of the satellite is a result of the
gravitational attractions between two bodies. For a first approximation it is reason-
able to make this assumptions, but for precise orbit calculations other forces must
be taken into account. Although these forces are sometimes minute (appendix A.5
and [36, 43]) in comparison to the main force which determines the orbit they are
still present and could lead to errors in the orbital calculations.

In order to avoid such errors in the propagation of satellites the North Ameri-
can Aerospace Defense Command (NORAD) maintain general information about
the perturbation on all space objects and a Simplified General Perturbation Model
(SGP) developed by C.G. Hilton and J.R. Kuhlman (1966) described in the Space-
track Report No. 3 [20] (see also [9]). This perturbation elements and the SGP
model are described in the next section and used by Vis Sat . Although these
complex models are based on the first principles in celestial mechanics.

2.4 NORAD Orbit Propagation

NORAD maintains general perturbation element sets on all resident space objects.
These element sets are periodically refined so as to maintain a reasonable prediction
capability on all space objects. In turn, these element sets are provided to users,
providing them with a means of propagating these element sets in time to obtain a
position and velocity vector of the space object (Vis Sat includes the data sets
published in 2005 in a txt-file format).

The most important point to be noted is that not just any prediction model will
suffice. The NORAD element sets are mean values obtained by removing periodic
variations in a particular way. In order to obtain accurate predictions, these periodic
variations must be reconstructed (by the prediction model) in exactly the same
way they were removed by NORAD. Hence, inputting NORAD element sets into a
different model (even though the model may be more accurate or even a numerical
integrator) will result in degraded predictions. The NORAD element sets must be
used with these models in order to retain maximum prediction accuracy. All space
objects are classified by NORAD as near-Earth (period less than 225 minutes) or
deep-space (period greater than or equal 225 minutes). Depending on the period,
the NORAD element sets are automatically generated with the near-Earth or deep-
space model.

2.4.1 NORAD Two-Line Orbital Element Set (TLE)

NORAD uses a generalised form of data sets, the data for each satellite consists of
three lines in the following format

AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN
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Line 0 is a twenty-four character name (to be consistent with the name length in
the NORAD SATCAT). Lines 1 and 2 are the standard two-line orbital element set
format. The format description is the following (cf. [12]).

Line 1

Column Description
01 Line Number of Element Data
03-07 Satellite Number
08 Classification (U=Unclassified)
10-11 International Designator (Last two digits of launch year)
12-14 International Designator (Launch number of the year)
15-17 International Designator (Piece of the launch)
19-20 Epoch Year (Last two digits of year)
21-32 Epoch (Day of the year and fractional portion of the day)
34-43 First Time Derivative of the Mean Motion
45-52 Second Time Derivative of Mean Motion (decimal point assumed)
54-61 BSTAR drag term (decimal point assumed)
63 Ephemeris type
65-68 Element number
69 Checksum (Modulo 10)

Line 2

Column Description
01 Line Number of Element Data
03-07 Satellite Number
09-16 Inclination [Degrees]
18-25 Right Ascension of the Ascending Node [Degrees]
27-33 Eccentricity (decimal point assumed)
35-42 Argument of Perigee [Degrees]
44-51 Mean Anomaly [Degrees]
53-63 Mean Motion [Revs per day]
64-68 Revolution number at epoch [Revs]
69 Checksum (Modulo 10)

This generalised data is produced for the SGP models and only with this models it
is possible to obtain accurate propagation of the orbit. It can be seen that the first
line contains various identification data sets and also the perturbation influences
by the geopotential and the drag forces. The second line contains the Keplerian
elements (cf. section 2.3.4) to describe the orbital plane, the only parameter which
is missing is the semimajor axis a but this parameter can be determined by the
mean motion (see equation (2.42)). The next section describes the SGP model and
how the Kepler calculations are contained in this model.
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2.4.2 Simplified General Perturbation Model

Given the Keplerian elements for a single point in time, the estimation of the future
position becomes straight forward (refer to flow chart on pages 17 and 18). How-
ever, it should be mentioned that the assumptions on which Keplers laws are based
are not accurate, certain improvements utilising known irregularities can be made.
The biggest source of error is due to the fact that the Earth is not being perfectly
circular. The deformation is often parameterised by the geopotentional function as
described in appendix A.1 (see also [56]). The deformation can be described by
using the zonal harmonic coefficients Ji for i’th order deformations. Gravitational
forces from the Sun and the Moon, tidal Earth and ocean, and different electromag-
netic radiations, also have more or less influence on the perturbations of a satellite
orbit confer appendix A.5. The perturbations are usually divided into secular, short
period, and long period perturbations. The short period perturbations are periodic
with a period shorter than the satellites orbital period, while the long period pertur-
bations have a longer period than the satellite. Secular perturbations are those that
cause elements to steadily diverge over time. Periodic perturbations are those that
impart a sinusoidal variation in elements over time. Figure 2.12 (a) shows a simple
orbit propagation of Keplerian elements plotted with latitude against longitude in
comparison figure 2.12 (b) shows how are the elements change due to the different
perturbations.

(a) undisturbed Keplerian Orbit (b) perturbated Kepler elements

Figure 2.12: Keplerian Orbit with Perturbations

This section describes the additional perturbations and how they are considered in
the models, only the essential formulae are shown here for details see appendix A.4.

2.4.2.1 Perturbations due to Geopotential
The Earth is not spherical, in fact it has a bulge at the equator, is flattened at
the poles and is slightly pear-shaped. This leads to perturbations in all Keplerian
elements. The second order deformation of the Earth considers the fact that it
is slightly flattened. According to the Lagrange planetary equations, the flattening
factor, J2, results in the following time derivatives of the right ascension of ascending
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node, and the argument of perigee (cf. appendix A.4.1).

∂Ω

∂t
= −3

2
J2
R2

E

p2
0

n0 cos (i0) (2.44)

∂ω

∂t
=

3

4
J2
R2

E

p2
0

n0

(

5 cos2 (i0) − 1
)

(2.45)

where RE is the Earth radius, and the numerical value of J2 for the Earth is 1.08284·
10−3. Both of these first order time derivatives are smallest for circular orbits, e = 0,
but have their minimum for different inclinations.

imin, Ω̇ = cos−1(0) = 90◦ (2.46)

imin, ω̇ = cos−1

√

1

5
≈ 63.43◦ or 116.57◦ (2.47)

2.4.2.2 Perturbations due to the Sun and the Moon
The Sun and the Moon causes periodic variations in all Keplerian elements, but
secular perturbations only to the right ascension of ascending node and the argument
of perigee. For nearly circular orbits, an approximation suggested in [56] yields to

Sun:
∂Ω

∂t
= −1.54 · 10−3 cos (i0)

k
(2.48)

Moon:
∂Ω

∂t
= −3.38 · 10−3 cos (i0)

k
(2.49)

and

Sun:
∂ω

∂t
= 0.77 · 10−3 5 cos2 (i0) − 1

k
(2.50)

Moon:
∂ω

∂t
= 1.69 · 10−3 5 cos2 (i0) − 1

k
(2.51)

where k is the number of revolutions per day and Ω̇ and ω̇ are given in degrees per
day (cf. [31]). These perturbations have their minima for the same inclinations, i, as
the non spherical Earth perturbations and become larger for higher altitude orbits.

In accordance with these perturbations the Keplerian elements have to be modified
but the basic calculations are still valid. The orbit can be defined by using the steps
shown in the flow chart on page 17.

2.4.3 Simplified General Perturbation Model Version 4

The SGP4 model was an extension of the SGP model in order to get a more precise
estimation new aspects of the perturbations are included (details see appendix A.4.2,
for the deep space version see appendix A.4.3). The atmospheric drag could be
estimated by using the ballistic coefficient B∗ in the TLE data sets and a term for
the perturbations due to solar radiation.
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2.4.3.1 Perturbations due to Atmospheric Drag
The atmospheric drag is a force creating an acceleration, ~̈rDrag, in the opposite
direction of the satellites velocity.

~̈rDrag = −1

2
q0

(

cwA

m

)

~̇r2 = −1

2
q0B

∗~̇r2 (2.52)

where q0 is the density of the atmosphere, cw is the drag coefficient, A the cross
section area and m the mass of the satellite. The atmospheric drag is a breaking
force and hence removes energy from the satellite in orbit. This leads to a decrease
in orbital height, but at very low rates.

2.4.3.2 Perturbations due to Solar Radiation
The acceleration caused by solar radiation has a magnitude of

~̈rsolar = −4.5 · 10−6 (1 + χ)
A

m
(2.53)

where χ is a reflection factor between 1 and 0. The perturbations due to solar
radiation is in the same magnitude as atmospheric drag perturbations for altitudes
at 800 km, and less for lower orbits.

The purpose of this SGP model in combination with the TLE sets is to propagate the
orbit of a satellite by using the mathematics described in section 2.3.4. The SGP4
utilises the way in which the TLE was constructed. This means that the periodic
variation, and the way that they were removed, is taken into consideration when the
orbit is reconstructed and propagated. The SGP4 model reconstructs all periodic
perturbations, both the short period ones and the long period ones. For orbits with
a period longer than 225 minutes additional deep-space perturbations have to be
considered, this is done in the SDP4 model (see appendix A.4.3). These perturbation
models are implemented in Vis Sat and the TLE sets are also included (newer
TLE data sets can be obtained by subscribing on the TLE data set web page:
http://www.space-track.org). Taken this mathematical bases into account, the next
section shows typical satellite orbits and what are their characteristics.

2.5 Satellite Orbits

The orbit of a satellite is described by the Keplerian elements and its orbital motion
by the consideration of all forces acting on the satellite. The main motion results of
a balance between the gravitational force and the centripetal force which is directly
proportional to the velocity ~̇r of the satellite. In order to get a deeper insight of
the satellite dynamics and which orbits are characterised by the Keplerian elements,
this section describes different orbits and what are the distinctive characteristic
Keplerian elements.

All orbital motion around the planet could be summarised in three groups of orbit
types.
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2.5.1 Synchronous Orbits

When the satellites are synchronous, it is necessary to declare the reference frame
in which they are synchronous. These orbits can be subdivided into two different
orbits, on the one hand the Earth synchronous orbits and on the other hand the
Sun synchronous orbits.

2.5.1.1 Earth Synchronous
Earth synchronous orbits known as geostationary orbits, satellite in these orbits
circle the Earth at the same rate as the Earth spins. The Earth actually takes
23 hours, 56 minutes and 4.09 seconds to make one full revolution (one sidereal
day 23.9344696 hours). Due to Kepler’s law, the orbit can be described with an
eccentricity e ≈ 0 and an inclination i ≈ 0◦ which means that it is above the Earth’s
equator. The altitude is about 35,790.00 km ≈ 6.62 RE and the satellite travels at
3 km/s. In this case the satellite will appear to hover in the same place in the sky
to a stationary observer on the Earth’s surface (cf. fig. 2.13 (a)).

Another orbit in which the satellite is synchronous in the reference frame of the
Earth is when its completes one circuit around the Earth in one day and appears in
the same position above the Earth surface. The duration of one orbit of the satellite
is the same as the Earth’s rotation period. The inclination and eccentricity of such
orbits could differ from zero but the eccentricity will never be bigger than 0.3 (cf.
fig. 2.13 (b)).

(a) Geostationary Orbit (b) Synchronous Orbit

Figure 2.13: Earth Synchronous Orbits

2.5.1.2 Sun Synchronous
In a Sun synchronous orbit the direction of the rotation of the orbital plane and the
period are the same as the Earth’s orbital period. These orbits allows a satellite
to pass a section of the Earth at the same time of the day. These satellites have a
revolution time of one year and the orbital plane and the orientation of the Sun are
always the same. These orbits have an inclination about 80◦. The altitude normally
lies between 700 and 800 km.
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2.5.2 Polar Orbits

In a polar orbit the satellite generally flies at low altitudes and passes over the
planet’s poles on each revolution. The polar orbit remains fixed in space as the
Earth rotates inside the orbit. The inclination of these orbits therefore is i ≈ 90◦.

2.5.3 Recurrent Orbit

Figure 2.14: Recurrent Orbit

A recurrent orbit is an orbit in which the satellite
returns to the same position over the surface of the
Earth within 24 hours, regardless how many orbit
is has made in that time. The orbital period of
the satellite is an integral fraction of the Earth’s
rotation period. If the perigee is about 600 km
and the apogee about 40,000 km the satellite will
follow an elongated elliptical orbit with a period of
about 12 hours (cf. fig. 2.14).

2.6 Summary

The consideration made in this section are to get a deeper insight in the math-
ematical equations and methods in order to describe a satellite’s motion in orbit
around the Earth. The focus has been on outlining the origins of the theory and the
application of these theories in a model. With the consideration of Newton’s laws
and Kepler’s empirical observations and including perturbations due to the different
forces which acts on a satellite, it is possible to create a numerical propagation tool.
In order to describe the motion of a satellite the basic equations for a body in a cen-
tral force field was analysed and the two body problem was solved analytically. The
solution of the two body problem are the empirical observations made by Kepler.
The description of the orbit by using Kepler’s laws yields to a parameterised way to
characterise an orbit. The Keplerian elements are six parameters who characterise
an orbit precisely. By knowing these parameters it is analytical possible to calcu-
late the exact position of a satellite in an ideal central force field. Due to the fact
that the satellite’s motion is not in an ideal field, different perturbations have to be
considered. The SGP4/SDP4 model published by NORAD in 1988 provides such a
numerical model to take the different perturbations due to the effect of gravity, at-
mospheric drag and solar radiation into account. The satellite’s dynamic processes
and calculations are implemented in the functions SatPOS and SatTRACK of the VisSat toolbox.
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3 Magnetic Coupling ModelVis Sat provides in addition to the orbit propagation also the functionality to
study the magnetic conjunction between the ground and the satellite. Therefore,
the satellite trajectory (here the position vector ~r) which is calculated by using the
mathematic equations described above, is used as input parameter for the Tsyga-
nenko model [49] - [54] of the Earth’s magnetic field. The model is developed by
Andrei Nikolai Tsyganenko (Nikolai.Tsyganenko@gsfc.nasa.gov) and under [55] the

FORTRAN code for Tsyganenko’s GEOPACK can be found. The GEOPACK library consists of

subsidiary FORTRAN subroutines for magnetospheric modeling studies, including the cur-

rent International Geomagnetic Reference Field (IGRF) and past Definitive Geomagnetic

Reference Field (DGRF) internal field models, a group of routines for transformations

between various coordinate systems and a field line tracer. These FORTRAN routines

have been translated to MATLAB r© by Paul O’Brien (Paul.OBrien@aero.org) and have

been modified for Vis Sat , the present set of subroutines is intended as a sub-
sidiary package for calculating the geomagnetic field components at any point of
space within the Earth’s magnetosphere up to the Moon’s orbit. Upon specifying
the universal time and day of year as input parameters, it automatically performs all
the necessary rotations and specifications needed. The newest edition of GEOPACK
which is official released by NASA and which is approved is the 2003 version of
the GEOPACK, nevertheless under [55] the newest version 2005 is available but still
in the test phase. That is why here the version 2003 is used, for future work it is
then necessary to replace the GEOPACK routines with the newer versions. In order to
ensure the compatibility with Vis Sat , the toolbox contains a GEOPACK.m file as
a description of the used interface functions (details [55]). With this description it
is possible to modify the future releases of GEOPACK due to the Vis Sat internal
structure which is shown in the schematic on page 35 and described in section 4.

This section gives a briefly introduction into the IGRF and Tsyganenko’s model in
order to explain the mathematics and the simplifications made. The detailed MAT-
LAB r© files for the translation from the original FORTRAN files are included on the
attached CD-Rom.

3.1 Earth Magnetic Field

Magnetic field models can be utilised to predict advantageous constellations of satel-
lites and their conjunctions with ground stations but therefore it is necessary to
define the Earth’s magnetic field. In order to define this field in a mathematical way
it is necessary to have a closer look what causes the magnetic field and then how
it could be determined. The main cause of the magnetic field is the inner structure
of the Earth’s core and the related processes. The inner core consists of fluid iron,
these iron is due to the effect of convection circulating and together with the spin
motion of the Earth the iron forms streams parallel to the Earth’s axis (known as
α-effect). In addition to these parallel streams there is a turbulent flow of iron which
is anti parallel to the Earth axis (known as ω-effect). So in this case, the convection
drives the outer core fluid and it circulates relative to the Earth. This means the
electrically conducting material moves relative to the Earth’s magnetic field. If it
can obtain a charge by some interaction like friction between layers, an effective
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current loop sustains the magnetic dipole type field of the Earth. It is the self
induction of these circulations in combination with the magnetic field which keeps
the field up. These effects are called the geodynamo (see details [10]) who is the
cause of the magnetic field which reaches out into space. In a first approximation,
this field could be described as a dipole field but due to the effect of the turbulent
streams the dipole field gets disturbed. The processes in the inner core could be de-
scribed by equations from hydrodynamics and combining them with magnetostatic
physical laws (see [10]). These consideration could be summerised in a numerical
magneto hydrodynamics (MHD) model which describes the shape of the magnetic
field without perturbations due to the effect of the solar wind. This was done at the
Pitsburgh Supercomputer Institute by G. Glatzmaier [15] and can be seen in fig.
3.1

(a) 3D magnetic field lines (inside) (b) 3D magnetic field lines (dipole character)

Figure 3.1: Three Dimensional Structure of the Earth’s Magnetic Field (source: [15])

It can be seen that the shape of the magnetic field lines which reach out in space
have nearly a dipole character. Such a field could be described from the Earth’s
surface by

~Br, θ = −µ0mdm

4πr3

(

2 cos (θ)
sin (θ)

)

(3.1)

where mdm = 7.94 · 1022 Am2 is the magnetic dipole moment, µ0 = 4π · 10−7 m kg /
A−2s−2 is the magnetic permeability. But due to the effect of the solar wind pressure
and the current system which is produced by the magnetic field, the field is far from
static and therefore its average variations also need to be described, e.g. effects of
varying solar pressure of the solar wind and the angle between the Earth’s dipole
axis and the Sun-Earth direction. All these effects changes the shape of the dipole
field and makes it difficult to describe the field in an exact mathematical framework.
A sketch of the dipole field with perturbations is shown in fig. 3.2.

It can be seen that due to the fact of perturbations the dipole characteristics is
changed dramatically. On the day side the field is compressed to a few Earth radii
and on the night side the field is stretched to a magnetic tail with a range of a
few hundred Earth radii. Therefore it is necessary to find a model to describe this
structure. The IGRF model is such a model which describes the magnetic field
empirically. It is recommended for scientific use by the International Association of
Geomagnetism and Aeronomy (IAGA) from the year 2000 and forward. The model
consist of a series of truncated spherical harmonic series describing the main field
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3.2 Tsyganenko’s Magnetic Field Model Magnetic Coupling Model

(a) dipole field with perturbations under low
solar wind conditions

(b) dipole field with perturbations under high
solar wind conditions

Figure 3.2: Earth’s Dipole Field under different outer Conditions (source: [8])

and its variations. It is based on empirical data from several different sources such
as land based measurements, ships, planes and satellites [23]. The magnetic field ~B
is described in the IGRF model by the gradient of the scalar potential V

V = RE

N
∑

n=1

n
∑

m=0

(

RE

r

)n+1

(gm
n cos (mφ) + hm

n sin (mφ)) ~Pm
n cos (θ) (3.2)

where RE is the mean radius of the Earth, φ is the latitude and θ = 90◦ − φ the
colatitude and ~Pm

n cos (θ) are the quasi Schmidt- normalised associated Legendre
functions (see appendix A.6.1). The coefficients gm

n and hm
n are spherical harmonic

coefficients determined by the empirical measurements. The main contribution in
the spherical harmonic expansion arises from the terms with n = 1. It can be iden-
tified with the field produced by a dipole (cf. fig. 3.1) with center coininciding with
the center of the Earth and a dipole axis which is inclined with respect to the polar
axis. The contributions of the other terms can be considered to be perturbations of
the main dipole field. So in this case this model enables the user to obtain estimates
of the strength and direction of the internally generated terrestrial magnetic field
at a given location, including information such as L-value (the equatorial crossing
distance of a given field line) for given values of latitude, longitude, altitude and
time (epoch).

The Tsyganenko model extends the IGRF by including magnetic field contributions
from both internal and external mechanisms. These include realistic definitions of
the magnetopause and large-scale current systems and handling of IMF variations.
The model is essential for the mapping of field lines in the distant magnetosphere, in
this thesis it is used for ground satellite conjugate studies. The model is described
in the next section.

3.2 Tsyganenko’s Magnetic Field Model

Tsyganenko developed a geomagnetic model in order to create a realistic represen-
tation of the Earth’s internal magnetic field (e.g. DGRF or IGRF) and the total
magnetic field in the magnetosphere. The form of the magnetosphere is a combina-
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3.2 Tsyganenko’s Magnetic Field Model Magnetic Coupling Model

tion of the self induced field due to the circulations in the inner core and a current
system high above the Earth’s surface. This current system is mainly influenced by
the Sun’s activity. The Sun emits a steady stream of particles as it burns its nuclear
fuel. These high energetic atomic particles (electrons and protons) are charged, giv-
ing the solar wind an associated magnetic field, which interacts with the Earth’s
own magnetic field by producing a current system (see details [38]). In the section
above it was described, that the magnetic field shape without perturbation can be
assumed as a dipole field. According to this assumptions Mead and Fairfield (1975)
developed a first numerical model of the geomagnetic field based on large sets of
magnetic field data to include the perturbations. Based on this model Tsyganenko
and Usmanov developed an advanced empirical magnetic field model of the Earth’s
magnetosphere using in situ magnetic field data. The bases of these models are in
situ measurements with more than 28,000 vector field averages. With these data sets
and the mathematical descriptions of the current system it is possible to describe
the geomagnetic field.

Figure 3.3: Magnetosphere (source:
[44])

In order to describe the perturbations on the
dipole field and the related influence of these
currents in respect to the dipole field it is neces-
sary to have a closer look at the currents which
are present in the different regions of the magne-
tosphere (see fig. 3.3). The total magnetic field
which is produced by extraterrestrial source and
deforms the dipole field can be described as the
combination of the magnetic field produced by
these different currents namely the ring current,
the magnetic tail current and the magnetopause
current. With the mathematical description of

the current systems [46, 49] and the adjustments due to the in situ measurements,
Tsyganenko developed a very precise model of the geomagnetic field. The outer
boundary of these model is defined as a paraboloid shaped cavity of the dipole field
due to the effect of the solar wind pressure. The magnetic field ~B expected at a
given time and location in space can then be predicted with this model. The field
can be expressed by ( ~B = −~∇V ) as

Br =
N
∑

n=1

(n+ 1) (RE/r)
n+2

n
∑

m=0

(gm
n cos (mφ) + hm

n sin (mφ))

~Pm
n cos (θ) (3.3)

Bθ = −
N
∑

n=1

(RE/r)
n+2

n
∑

m=0

(gm
n cos (mφ) + hm

n sin (mφ))

~Pm
n cos (θ)/∂θ (3.4)

Bφ =

N
∑

n=1

(RE/r)
n+2

n
∑

m=0

m (gm
n sin (mφ) − hm

n cos (mφ))

~Pm
n cos (θ)/ sin (θ) (3.5)

where r, θ, φ are the geocentric spherical polar coordinates. A visualisation of the
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field under different outer conditions is shown in fig. 3.4.

It can be seen that the field varies in time due to the effect of the solar wind and the
position of the Earth. Therefore when a satellite is in orbit around the Earth the
magnetic conjunction between the satellite and the ground varies also with time and
with the outer conditions. In fig. 3.4 the satellite is shown in a typically distance of
about 6.62 RE. Depending on time and tilt of the Earth’s axis the conjunction is
different. In order to calculate the magnetic conjunction of the satellite in respect
to the magnetic field the field lines which crosses the satellite path have to be traced
back to the surface. This is done by the function MagPOS by using Tsyganenko’s
field line tracing algorithm which is described in the next section.

3.3 Field Line Tracing

The main field of application for the GEOPACK in this thesis is the numeric com-
putation of the field lines and how they could be traced. The GEOPACK subroutine
TRACE traces a filed line from an arbitrary point of space to the Earth’s surface or
to any specified boundary. Here the algorithm structure and the mathematical de-
scription of the tracing is presented. A field line of the general magnetic field which
is described above could be expressed as follows

∂r

Br

=
r∂θ

∂Bθ

=
r sin (θ)∂φ

Bφ

=
∂s

B
(3.6)

where ∂s denotes an element of arc length along a magnetic field line and B =
(

B2
r + B2

θ +B2
φ

)1/2
. The field ~B here is described as −~∇V (cf. equation (3.2)). For

the axis symmetric part the internal geomagnetic field can be rewritten

∂r

Br

=
r∂θ

∂Bθ

(3.7)

here Bφ = 0. To trace along a magnetic field line, the subroutine performs a
numerical calculation based on the conditions that the tangent at each point of the
field line is parallel to the magnetic field at the same point. This fact is stated in
eq. (3.6) and can be rewritten in vector form as

∂~r/∂s = ~B/|B| = ~b (3.8)

where ~r is the position vector measured from the center of the Earth, s is the arc
length along the magnetic field line, ~B is the magnetic field vector and ~b is an unit
vector parallel to the magnetic field line. With this expression it is possible to
determine the next point on the field line by ~r + ∂~r the new position is given and
the process is repeated until the boundary condition is reached. In order to estimate
the stepsize ∂~r, ~b and ∂s must be known. The vector ~b is defined by ~B/|B|, here
the Tsyganenko model used the extended IGRF model to estimate the magnetic
field. The value ∂s requires some assumptions about the shape of the field line, as a
first assumption ∂s could be assumed as a linear connection but more accurate is to
consider also the curvature of the field. In the subroutine it is assumed that the field
line is dipolar between certain points, so that the field line traced is a succession of
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3.3 Field Line Tracing Magnetic Coupling Model

(a) Earth’s axis with zero tilt

(b) Earth’s axis with upwards tilt

(c) Earth’s axis with downwards tilt

Figure 3.4: Tsyganenko’s Geomagnetic Field Model (source: NASA/GODDARD Space
Flight Center)
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dipolar elements of arc length ∂s. The task of the subroutine then is to trace the
field line along these small paths.

- Start Trace
r, θ, φ

- ~Br, θ, φ

at the given point

obtain colatitude
2 cot (ϑ) = tan (i)

obtain c1 from

c1 = r/ sin2 (ϑ)
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This is accomplished by determining first the
location of the given point with respect to the
dipole axis by calculating the corresponding di-
pole colatitude ϕ from the relation 2 cot (ϑ) =
tan (i) where i is the inclination of the dipole
field. With ϕ known the position of the next
point is found by the change in ϕ that corre-
sponds to ∂s. The increment can be calculated
by

dϕ =
r

RE

(

2 sin (ϕ)
√

3 cos2 (ϕ) + 1

)

∂s

RE

, (3.9)

where r is the geocentric distance of the point.
A value of ∂s is required but this remains fixed
during the trace. With these parameters it is
possible to trace the field line step by step but
for every step the values for r, θ, φ are changing
and have to keep updated for the ~Br, θ, φ calcu-
lation. Therefore the following equations have
to be processed

r = c1 sin2 (ϕ+ dϕ) (3.10)

θ = θ + cos (ψ)dϕ (3.11)

φ =
sin (ψ)

sin (θ)
dϕ (3.12)

where ψ is the magnetic declination. The struc-
ture diagram of these algorithm is shown on page 32. With these tracing it is possible
to calculate the magnetic conjunction between a satellite and the ground station and
to produce magnetic footprints. It should also be mentioned that the assumptions
made in this section and by the model itselfs leads to uncertainties in the tracing in
comparison to the measured points in space of about 5-10% see [39].

3.4 Summary

The Earth’s magnetic field is both expansive and complicated. It is generated by
electric currents that are deep within the Earth and high above the surface. The
main field is caused by the geodynamo inside the Earth’s core the hot and fluid iron
in the core reacts due to its circulation like a self inducted dynamo and produces in
combination with the currents above the surface due to charged particle motions,
the magnetic field. The magnetic field of the Earth is often times described as being
approximately dipolar, with field lines emanating from the south geomagnetic pole
and converging at the north geomagnetic pole (see fig. 3.5 (a)).

32
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The shape of the geomagnetic field then is influenced mainly by the Sun. The Sun
generated its own tangled magnetic field that extends out into interplanetary space,
also the Sun emits a wind of charged particles, a plasma that flows outwards into
space and which carries with it the heliomagnetic field. These effects interacts with
the Earth’s magnetic field and deform the dipole structure. Because of the pressure
exerted by the solar wind on the geomagnetic field, the field is compressed on the
day side and elongated on the night side of the Earth (see fig. 3.5 (b)).

(a) dipolar character (b) stretched dipole field due to the effect of the
solar wind

Figure 3.5: Simple Shapes of the Earth’s magnetic field (source: U.S. Geological Survey)

This shape is highly variable and far from stable, so the only way of describing
such a field is by numerical computer models, which extrapolate the shape from
magnetic measurements. Such a model is the IGRF model or as extension the
Tsyganenko model which is used here. With such mean mathematical models it is
possible to describe the shape of the field during solar events or to propagate the
position of magnetic field lines. This is used in this thesis, the GEOPACK routines from
Tsyganenko enables the user to simulate the geomagnetic field. So it is possible to
calculate the magnetic conjunction between a satellite in a specified orbit around the
planet and its magnetic conjunction. This is implemented in the function MagPOS.
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4 Program/Toolbox (Vis Sat)
The first sections dealt with the theory behind the motion of satellites in the near
Earth space and the description of the environment they are exposed to.

The motions could be described by Newton’s laws of motion and the Keplerian
orbit elements. The mathematical expressions should now be used to develop a
program/toolbox to visualise the trajectories of satellites in space. The Tsyganenko
model (see section 3.2) of the magnetic field is used to present the conjunction be-
tween the satellites and the Earth magnetic field by producing latitude and longitude
of the magnetic footprints in the northern and southern hemisphere respectively.

In addition to the visualisation, the functions in Vis Sat have also the function-
ality to be used in a command line way to enable the user to involve the func-
tions in further studies (e.g. communication links or space weather studies). VisSat is meant to be an open-source satellite tracking and orbital prediction pro-
gram written under MATLAB r© and C/C++ 4 for scientific purpose to enable the
user to study satellite/ground conjunctions. Users may redistribute it and/or mod-
ify it under the terms of the GNU General Public License. The incorporated models
(SGP4/SDP4/TSY’03) underlie comparable open-source licenses.

The main Vis Sat program combines the functions SatPOS for the satellite po-
sition over ground (see section 4.1.3), SatTRACK tracking of the satellite position
(see section 4.1.4) and MagPOS for conjunctions between the satellite and the mag-
netic field (see section 4.1.5) in a graphical user interface (GUI). The GUI uses the
functionality of MATLAB r© to produce three dimensional plots of the position and
the orbit and two dimensional plots for the footprints. Also in addition to this the
GUI has an external input tool to enable the user to specify Keplerian elements by
hand. This tool converts the osculating classical Keplerian orbital elements to the
standard TLE format to process the calculations with these data.

The contained functions are downwards compatible with MATLAB r© 5.3 Release 12,
for the GUI MATLAB r© 7 Release 14 is required.

4.1 Structure and Implementation

This section deals with the overall structure of Vis Sat and how the models
described in section 2 and 3 are fitted into this structure. The mathematical models
described in the sections above represents the mathematical theory for the numerical
calculations. Therefore the motion of a satellite is described by the SGP4/SDP4
models and the magnetic conjunction is described by Tsyganenko’s model. The
schematic on page 35 shows how the input data are processed during the calculations
and which additional input data are necessary.

4here Microsoft Visual C++ 6.0 was used, in order to be able to convert the C/C++programs to
a MEX function, the function is written in a not object orientated way, this speeds up the calculation
time
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It can be seen that the original input data can be obtained from the NORAD TLE
data sets (cf. section 2.4.1) which contains the Keplerian elements to determine the
orbit. These data have to be processed according to the SGP4/SDP4 model specified
by NORAD. So it is possible to calculate the Keplerian elements with respect to the
perturbations and according to the flow chart on page 17. The position vector ~r in an
ECI system and the velocity ~̇r can then be calculated by using Kepler’s equation for
any given time . The function SatPOS then calculates with ~r the subsatellite point
(SSP), the surface location on the Earth between the satellite and the geocenter,
in geographical latitude and longitude. In addition to the SSP the functions also
returns the position and velocity vector for further analysis. The function SatTRACK

calculates the elevation and azimuth angle between a given ground station position
and the satellite, in order to calculate when the satellite of interest will rise over the
horizon and the appropriate azimuth angle at which the receiving antenna or dish
must be pointed. The function MagPOS calculates the magnetic footprint in latitude
and longitude of the satellite in the northern and southern hemisphere respectively.

Also some special design and implementation patterns should be mentioned here.
The flow chart above shows the general structure of the calculation process. The
change of the Keplerian elements due to perturbations can be calculated by the
SGP4/SDP4 model and has to be done for all three functions. In order to pro-
vide maximum flexibility and to be in line with the guidelines from the GNU Gen-
eral Public License all three functions contains the MATLAB r© MEX function orbit.
This function is an MEX implementation of the SGP4/SDP4 models which are imple-
mented in C/C++ to obtain a minimised computation time (here the SDP4 model
was corrected by using [5, 29]). The compiler to create the MEX function was set on
the gcc-compiler from Cygwin5. The function orbit is contained in all functions to

5Cygwin is an UNIX environment for Windows c© which is distributed by RedHat. The main
component is a dynamic link library (dll) with basic UNIX functions and to use these function in
a Windows c© environment (www.cygwin.com)
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ensure a maximum of flexibility. This design enlarges the scope of applications.
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It can be seen that the MEX (see appendix B.1) function orbit calculates the actual
position ~r of a satellite and the velocity ~̇r, with these information and different
transformation in respect to the aspired frame of reference, the functions calculate
the satellite dynamic.

4.1.1 Read NORAD TLE

In order to provide the functions with the initial data and to perform the different
transformations,Vis Sat contains an auxiliary function which performs this task.Vis Sat contains implementations of the SGP4 and SDP4 model in the MEX

function orbit, in order to provide this function with the data from the NORAD
TLE data sets the data have to be extracted from the files. The standard form
of distribution of the TLE data is in form of txt files (due to new availability
restrictions for TLE data Vis Sat contains several TLE data sets). The data
structure is described in section 2.4.1 and can be read into MATLAB r© and stored
in an array of struct. The function norad2kep (see appendix B.2) reads a TLE data
set from a txt file using the fgetL function to read line by line. The call syntax of
the function is shown below

>> satellite=norad2kep(file,name)

where file is the filename with suffix and name is the name of the satellite both as
strings, the returning statement of the function is an array of struct.

satellite.name [string]

satellite.tle [1x11 double]

satellite.epoch [datevec, NORAD date]
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The field satellite.tle contains the NORAD data to calculate the orbit posi-
tion ~r and the velocity ~̇r by using the SGP4/SDP4 model. These elements are
mainly the Keplerian elements and the additional values to calculate the distur-
bances, here the first and second time derivations of the mean motion. The or-
der of the elements in the field is shown in table 4.1 (the index 0 indicates that
these values are the initial values read from the TLE data). This data struc-

Position Math. Symbol Meaning

tle(1) t0 epoch as Julian date
tle(2) ṅ0 1st derivation of mean motion
tle(3) n̈0 2nd derivation of mean motion
tle(4) B∗ ballistic coefficient
tle(5) i0 inclination
tle(6) Ω0 right ascension of the ascending node
tle(7) e0 eccentricity
tle(8) ω0 argument of perigee
tle(9) M0 mean anomaly
tle(10) n0 mean motion
tle(11) rev revolution number at epoch

Table 4.1: Array structure of TLE

ture is used in the main functions to pass the needed elements to the function
orbit. The function norad2kep is a stand alone function, it contains a conversion
from the standard TLE epoch format to the Julian date standard tle(1). This
function was validated by using the U.S. Naval Observatory Julian date converter
(see http://aa.usno.navy.mil/data/docs/JulianDate.html). In addition to the Julian
date, the array of struct contains also a field with a MATLAB r© conform datevec

with a structure of [YYYY MM DD hh mm ss] in an universal time (UT) frame and a
field which contains the original NORAD set yyddd.ffffffff. This provides a wide
range of flexibility just as time calculations with software tools are often difficult to
handle.

4.1.2 SGP4 and SDP4 implementation (MEX Function orbit)

The MEX implementation of the SGP4 and SDP4 model in the function orbit is
rudimentary for the propagation process6. This function allow it to calculate the
position ~r and velocity ~̇r of a satellite at any given time by using the TLE data
(cf. section 2.4.2). The implementation is done in two steps. The first step is to
convert the models which are specified in the Spacetrack Report No. 3 [20] from
the original FORTRAN code to C/C++ , in respect to the corrections made during
the years, especially in the SDP4 subroutine DEEP (see appendix A.4.3). The im-
plementation is a straight forward implementation, to ensure full compatibility with
further applications, the C/C++ code contains the same variable names and struc-
tures as in the original FORTRAN routines, this ensures that further investigations
or changes in the models in newer Spacetrack Reports could be implemented in the

6the orbit.dll produced from the C/C++code is executable under Windows c© , for a
LINUX/UNIX system the mex-compiler of this system has to be used >> mex [options] orbit.c
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C/C++ code without making great changes. The conversion from FORTRAN to
C/C++ is chosen because of some incompatibilities (see also section 5 future work)
of the FORTRAN/MEX interface. This conversion to C/C++ is necessary for the
second step, a MATLAB r© MEX function as a wrapper around the C/C++ code in
order to create an interface to MATLAB r© . The interface structure and the data
flow is shown in the schematic on page 38.

'

&

$

%
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[r,rdot] = . . .
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A detailed description of the the MEX function syntax can be seen in appendix B.1 the
realisation in the function orbit can be seen in appendix B.3. The TLE parameters
are passed into the prhs pointer and assigned to the tle structure in the C/C++ file.
The C/C++ code contains a structure for the TLE elements like the structure in
norad2kep to provide the data for the orbit calculations.

/* Two-line-element satellite orbital data

structure used directly by the SGP4/SDP4 code. */

typedef struct {

double epoch, xndt2o, xndd6o, bstar, xincl,

xnodeo, eo, omegao, xmo, xno;

int revnum;

} tle_t;

During the MEX call, these variables are assigned with the elements read from the
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TLE file (see schematic page 38). In the C/C++ code the original variables from
the FORTRAN routines are used, therefore here the assignment structure from the
function norad2kep to the C/C++ structure is shown in table 4.2. The variable

MATLAB r© field C/C++ variable Meaning

sat.epochN epoch epoch as NORAD date
sat.tle(2) xndt2o 1st derivation of mean motion
sat.tle(3) xndd6o 2nd derivation of mean motion
sat.tle(4) bstar ballistic coefficient
sat.tle(5) xincl inclination
sat.tle(6) xnodeo right ascension of the ascending node
sat.tle(7) eo eccentricity
sat.tle(8) omegao argument of perigee
sat.tle(9) xmo mean anomaly
sat.tle(10) xno mean motion
sat.tle(11) revnum revolution number at epoch

tsince tsince time since epoch

Table 4.2: Assignment Structure between MATLAB r© and C/C++

tsince is not defined by the norad2kep but by the Vis Sat functions itself, the
time is calculated by using the external given time (see dataflow on page 35) and
the extracted epoch time.

The main body of the function orbit contains the two following “main” functions

SGP4(double tsince, tle_t * tle, double *position, double *velocity)

and

SDP4(double tsince, tle_t * tle, double *position, double *velocity)

this functions implement the models described in section 2.4.2. The variable tsince
is the time since epoch in minutes, tle is a pointer to a tle_t structure with
Keplerian orbital elements and position and velocity are three dimensional vector
structures returning ECI satellite position and velocity. These two vectors are the
left hand side values of the mexFunction and returned to MATLAB r© .

In the original Spacetrack Report No. 3 [20] it was mentioned that the model
should be used according to the orbit time period, SGP4 for under 225 minutes and
SDP4 for orbit periods over 225 minutes, it can be calculated by equation (2.29).
Nevertheless the Spacetrack Report No. 6 stated, that this definition in combination
with the SDP4 model is not quiet accurate enough, because this definition does not
take into account the other orbital elements. Therefore a new empirically definition
is used (here the C/C++ implementation is shown)

if (twopi/xnodp/xmnpda>=0.15625)

SetFlag(DEEP_SPACE_EPHEM_FLAG);

else

ClearFlag(DEEP_SPACE_EPHEM_FLAG);
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4.1 Structure and Implementation Program/Toolbox (Vis Sat)
where DEEP_SPACE_EPHEM_FLAG is a flag which indicates the SDP4 model has to be
used. According to the if clause it is set when the condition is true or cleared oth-
erwise. The condition can be rewritten by using orbital parameters in the following
way

2π

1440

(

c1n
1/2
0 (3 cos2 (i0) − 1)

c
3/2
2 a2

0

+
1

n0

)

≥ 0.15625 (4.1)

where c1 and c2 are empirically constants. The 1440 indicates the minutes per day.
Using this if clause the distinction between the two models is more accurate. The
C/C++ code of the implementation is shown in appendix B.3. All GO TO statements
in the original FORTRAN code are replaced by the use of FLAGs. The function orbit

is a stand alone function and can be used for different orbit propagations, the input
and output structure is documented in orbit.m, nevertheless it should be mentioned
here, that the C/C++ code has no own exception handler, in respect to the MEX-
handler here it was forbear to using own exception handler. Therefore the function
can only be used in direct assignment of all input statements and it must be insured
that all input variables are correct. In the Vis Sat structure the orbit function is
encapsulated in the functions SatPOS, SatTRACK and MagPOS these function contain
the normal JAVA exception handler and control the input of errors by using JAVA
msgbox(...) to control the data flow. This encapsulation is described in the next
section.

4.1.3 Satellite Position Footprint (SatPOS)

The function SatPOS calculates the subsatellite point in geographical latitude and
longitude. It encapsulates the function orbit and controlls the input and output
data of the orbit propagation. The input variables are an array of struct, which
contains the satellite TLE data, read in by the norad2kep function, and the actual
time for which the SSP has to be calculated. This date and time must be given in
a MATLAB r© datevec standard to calculate tsince the minutes between the epoch
and the given time. This is done by

% time since epoch in minutes

tsince=(jd-sat.tle(1)).*1440

where jd is the given time in a Julian date and sat.tle(1) is the epoch time in
a Julian date format. The time conversion of the given datevec to a Julian date
format is done in a subfunction of SatPOS.

This time difference and the Keplerian orbit elements recovered from the array of
struct is passed to the orbit function to calculate the position and velocity of the
satellite due to the time since epoch. The function call is the follows

[r,rdot]=orbit(sat.epochN,sat.tle(2),sat.tle(3),sat.tle(4),sat.tle(5),...

sat.tle(6),sat.tle(7),sat.tle(8),sat.tle(9),...

sat.tle(10),sat.tle(11),tsince);

where the sat.tle(...) structure is passed to the MEX function and assigned in this
function in accordance with table 4.2. The SGP4/SDP4 implementation returns the

40
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three dimensional position vector in r (~r) and the velocity in rdot (~̇r). Then with
the position of the satellite in an ECI reference frame the latitude and longitude can
be calculated. Therefore the ECI state vector has to be transformed to a geodetic
system. This is done by converting the ECI coordinates into spherical coordinates
in respect to the Earth’s latitude and longitude graduation, where the latitude is
from -90◦ to 90◦ with the equator as zero degrees and the longitudes from 0◦ to 360◦

with the Greenwich meridian as zero degrees. This is shown in fig. 4.1.

(a) general cartesian to spherical
coordinate transformation (source:
MATLAB r© )

(b) taken into account the Greenwich Mean
Sidereal Time (GMST)

Figure 4.1: ECI to Geodetic Conversion

The azimuth theta/θ and the elevation phi/φ are angular displacements in radians
measured from the positive x-axis, and the x − y plane, respectively and r is the
distance from the origin to the satellite’s position. These values can be calculated
by

theta = actan2 (y, x) (4.2)

phi = actan2
(

z,
√

x2 + y2
)

(4.3)

r =
√

x2 + y2 + z2 (4.4)

where x, y and z are the position elements of the satellite’s ECI vector and the
actan2 is the four-quadrant arcus tangents (this is shown in fig. 4.1 (a)). The x-axis
of the ECI system is pointed to the vernal equinox (cf. section 2.1.1) to transform
the ECI system to the geodetic system the GMST thetaG/θG has to be taken into
account (see fig. 4.1 (b)). The GMST can be calculated as follows

thetaG = 280.46061837 + 360.98564736629 (JD − 2451545.0)

+0.000387933T 2 − T 3/38710000 (4.5)

where T = (JD − 2451545)/36525 and JD is the Julian date. This calculation was
specified by the International Astronomical Union (IAU) in 1980. With this GMST
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hour angle in radians it is possible to correct theta/θ and to correct the longitude
by this factor. The latitude is given by phi/φ but has to be corrected due to the
effect that the Earth is not a sphere, therefore a flattening factor f is introduced.
To calculate the subsatellite point by approximating phi/φ with phi’/φ′ and loop
to the following calculations specified by IAU

φ = φi (4.6)

c =
1

√

1 − e2 sin2 (φi)
(4.7)

φ = arctan
(

z + caEe
2 sin2 (φi)

)

(4.8)

until |φ− φi| is within the desired tolerance, here 1e-10. The implementation is
shown in appendix B.4, the computation time analysis (accomplished with the in-
built tic and toc command) shows that the complete function SatPOS needs less
than 0.01 seconds to calculate the footprint of the satellite at one specified time.
These results were achieved on a Windows c© PC AMD XP-M1800+, with 512MB
400 MHz DDR-RAM in MATLAB r© Version 6.5 (Release 13).
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Figure 4.2: Geodetic Position Footprints

The function was validated with the GODDARD Space Flight Center SSC Locator,
the Locator component provides tabular information about the coordinate location
of specified spacecrafts (see http://sscweb.gsfc.nasa.gov/). The validation shows
that the implemented orbit calculation and ECI conversion corresponds with the
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high precision orbit calculation in the Locator up to the second decimal place and
up to three month in advance simulation. The accuracy of the predictions is de-
pendent upon several factors. Firstly, a satellite’s orbit is affected by the tenuous
upper atmosphere which creates a small, but continuous drag force. This drag is
proportional to the density of the ionosphere, which is notoriously difficult to pre-
dict. Solar activity can increase the density by over a hundred times more than its
average value. Secondly, because of this residual air drag, some active satellites re-
boost themselves to a higher orbit. These boost manoeuvres are also unpredictable
in the mathematical models.

The orbit predictions are essentially calculated by taking the actual measured posi-
tion and velocity of a satellite at a given point in time (the epoch), and propagating
forwards in time taking account of the major forces, which are the Earth’s gravita-
tional attraction and the air drag. Given the uncertain nature of the air drag force
acting on the satellite, the further the orbital position is predicted into the future, the
more inaccurate it will become. This means that the latest orbital parameters should
always be used. Because of this fact it is necessary to keep the TLE data (included
in Vis Sat for Aug. 2005) updated at least every 3 month to achieve accurate
positioning (the data sets can be downloaded from http://www.space-track.org).

TLE data from the 12th August 2005 have been used to calculate the different
footprints shown in fig. 4.2.

It can be seen that every satellite has a

Figure 4.3: Three Dimensional Simu-
lated Trajectory of Molniya 3-39 satellite
with Earth satellite conjunction and or-
bit path

characteristic orbit footprint which depends
on its purpose. The footprint of OSCAR 17

shows that the satellite is reachable most
of the time in the latitude range from -50◦

to 50◦ for communication purposes and cir-
cles the whole Earth in about 90 minutes.
The molniya orbits with a typical inclina-
tion of about 60◦ shows that the satellite is
a long period reachable from Russia due to
the fact of an apogee of over 38,000.00 km.
The perigee lies by 1,000.00 km, therefore
the satellite stays longer times in the apogee
position and provides longer visibilities over
Russia. The Helios satellite is a polar orbit
satellite for imagery purposes, the satellite
can survey the whole of the Earth’s surface.
The Astra 1C satellite is in a geostationary
orbit for broadcast purposes. It is fixed on
a longitude position of 19.2◦ east (see also http://www.ses-astra.com/satellites/-
fleet/index.shtml). The latitude variation is due to the effect, that the orbit is not
direct in the equatorial plane. These footprints should be representative for the
functionality of SatPOS and shows how the data calculated could be processed. In
addition to the two dimensional plots MATLAB r© also provides three dimensional
plots to visualise the position of the satellite in respect to the Earth. This is shown
in fig. 4.3 and is an element of the Vis SatGUI.
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4.1.4 Ground Station Tracking (SatTRACK)

In addition to the geodetic position of the subsatellite point it is necessary to cal-
culate the visibility of a satellite from a given point on the Earth’s surface in a
topocentric horizon coordinate system (see section 2.1.3). Therefore in accordance
with the schematic on page 35 it can be seen that for these calculations the position
of the ground station is needed in addition to the time of calculation. Due to the
given time the position of the satellite can be calculated analogues to the calcula-
tions made in SatPOS (see section 4.1.3) with the position of the satellite and the
given ground station position it is possible to calculate the azimuth and elevation
of the satellite in respect to the ground station.

The input of the position of the ground station is conform to the European Space
Agency (ESA) standard in latitude and longitude with decimal places. For latitudes
positive numbers indicates degrees north and negative numbers south (−90◦ - +90◦),
for the longitude positive values indicate west and negative east (−180◦ - +180◦).
The ground station altitude is given in meters with respect to the World Geodetic
System (WGS) reference ellipsoid. At the first step these geodetic coordinates have
to be converted to an ECI frame. In general this transformation can be described
as follows (see also [7])

rB = TB
A

(

rA − rB
A

)

(4.9)

where TB
A is the transformation matrix between the two different reference frames,

here in general A and B and rB
A is the origin of frame B with respect to frame A.

According to this reference frame transformation the azimuth θ and the elevation φ
to an object in the reference frame B are given by the following equations

rB
x =

∣

∣rB
∣

∣ cos (φ) sin (θ) rB
y =

∣

∣rB
∣

∣ cos (φ) cos (θ) rB
z =

∣

∣rB
∣

∣ sin (φ) (4.10)

θ = actan2
(

rB
x , r

B
y

)

φ = arcsin
(

rB
z /
∣

∣rB
∣

∣

)

. (4.11)

(a) skymap geometry (b) skymap plot

Figure 4.4: Skymap

So it is possible to calculate the elevation and azimuth angle for a given ground
station in respect to the satellite’s position at a given time. These angles can be used
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to align the dish of the ground station according to the path of the satellite above it
to ensure a reliable up and down link connection. Figure 4.4(a) shows the geometry
between the satellite and the ground station. To visualise these conjunctions with
respect to the alignment angles, so called “skymaps” are used. These are polar plots
which indicates the elevation and azimuth of an antenna see fig. 4.4(b).

The outermost circle in the plot represents the horizon 0◦ elevation. The center of
the skyplot is 90◦ elevation, or directly overhead. The degree graduation represents
the azimuth angle. Therefore north is at the top of the skyplot, east to the right,
south at the bottom, and west to the left. With these plots it is possible to predict
the visibility of a satellite over the local horizon, the calculation produces negative
elevation angles when the satellite is under the local horizon and therefore not
visible. In the skymap plots this could not be represented due to the fact, that
the outermost circle represents a 0◦ elevation angle. This elevation and azimuth
position determination of the satellite is also reflected in the general engineering
design of ground stations for tracking satellites (see fig. 4.5).

(a) schematic of a ground station with ro-
tation axes

(b) ESA ground station in New Norcia,
western australia (ESA c©)

Figure 4.5: Ground Station

It can be seen that the stations have two rotation axes for their pan and tilt motion
to track the satellite. The pan motion (the rotation about the z-axis) represents the
azimuth position of the satellite. The tilt motion (the rotation about the y-axis)
represents the elevation of the satellite position. This two degrees of freedom enables
the ground station to follow the path of the satellite over the ground. The schematic
in fig. 4.5(a) shows an ideal model of a ground station with a 360◦ mobility around
the z-axis and a 180◦ mobility around the y-axis. This is often due to the real design
(cf. fig. 4.5(b)) not possible, therefore the antenna elevation and azimuth limitations
have to be taken into account when visualising the data from the function SatTRACK

for a special device. Figure 4.6 shows three generalised skymap plots produced
with the data calculated with SatTRACK. So the calculated data can be used for
recalibration or tracking satellites over the ground.

It should be mentioned here, that the function SatTRACK calculates the direct visi-
bility of the satellite not the direct communication path. The calculations and plots
here are only representative for communication conjunctions when the satellite has
antennas directed to the Earth’s center. Satellite could also have different squint
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Figure 4.6: Skymap plots to track Satellites

angles of their antennas to cover different areas, this squint angles could be ob-
tained from several data bases and have to be taken into account by calculating the
visibility criterion (see [31], http://www.satcom.co.uk/), especially for geostation-
ary broadcast satellites these squint angles have to be taken into account for the
elevation of the dishes.

The function SatTRACK and the aforementioned function SatPOS represents the flight
dynamic part of the toolbox. These functions enables the user to calculate the geode-
tic position of the SSP or the satellite track over the local horizon. Both functions
are tested and validated with GODDARD Space Flight Center data and both pro-
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duce high accuracy propagations. The SatTRACK function is secondary tested by
elevation and azimuth calculators for geostationary broadcast satellites. The tests
with the BNN Communication System Engineering (see http://www.bnncom.com/-
satellite azimuth elevation.htm) shows good matches, nevertheless these broadcast
calculations are for home satellite devices and not very accurate, they take just the
mean values into account.

In addition to the flight dynamics and the motional conjunction, the toolbox also
contains a tool to calculate the magnetic conjunction by using a numerical model of
the Earth magnetic field (cf. section 3.2), the next section describes the implemen-
tation in MATLAB r© .

4.1.5 Magnetic Footprint (MagPOS)

The sections above described how the satellite’s flight dynamic footprints could be
calculated and how they could be visualised. In addition to these satellite ground
conjunctions Vis Sat also contains a function to study the magnetic conjunc-
tion of a satellite and the ground by considering the Earth’s magnetic field (see
fig. 3.4) and the position of the satellite in this field. Therefore the Tsyganenko
model of the Earth magnetic field (revised Version 2003 based on the 1996 GEOPACK)
is implemented in MATLAB r© and the GEOPACK subroutines are used to trace field-
lines. The function MagPOS encapsulates the GEOPACK routines and represents the
MATLAB r© interface for the TSY’03 model and here all necessary coordinate trans-
formations are processed. These transformations and the dataflow is shown in the
schematic on page 47.

orbit.m ECI ECEF GSM

coord. transformation

- - -

x, y, zx, y, z~r

GEOPACK

magnetic
field lines
algorithm

page 32
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The orbit MEX-function provides the position vector ~r of the satellite in respect to
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the TLE data and the time since epoch. This position vector has to be preprocessed
before passing to the GEOPACK routine TRACE. The vector is in an ECI reference frame
and has to be transformed to a Geocentric Solar Magnetospheric system (GSM, the
x-axis is defined from the Earth to the Sun, the y-axis is defined to be perpendicular
to the Earth’s magnetic dipole, so that the x-z plane contains the dipole axis) in
order to start the calculations in the TSY’03 model. This is done in two steps, first
the ECI vector elements are transformed to an ECEF frame of reference and then
to the GSM elements. Then this vector is passed to the TSY’03 model where the
field line is traced from the location of the satellite to an altitude of 100 km (default
value could be changed) above the surface. The function TRACE traces the fieldline
up to the given position above the surface. The output is also in an GSM reference
frame. In order to calculate the latitude and longitude position of the footprint, the
coordinate transformation is done reversed (cf. [42]). The algorithm used in the
function TRACE to trace the fieldline is described in section 3.3, due to the fact that
there are incompatibilities between the MATLAB r©MEX-function for FORTRAN,
here the direct implementation of the code is chosen which leads to a disadvantage
in the computation time in comparison to a direct MEX implementation. The function
MagPOS needs to calculate the northern and southern B-field trace between 2 and
10 seconds (measured with tic and toc). This problem is further discussed in
section 5. The function needs as additional input also IGRF coefficients, Kp-values
and By,z-field strengths respectively. The IGRF coefficients are calculated by the
GEOPACK_IGRF_GSM the Kp and By,z respectively could be given as a parameter
during the call

[latN,lonN,latS,lonS]=MagPOS(ctime,sat,r0,parmod,iopt)

where ctime represents the UT for which the footprint should be calculated, sat
represents the satellite data extracted from the TLE data set with the function
norad2kep, r0 represents the the given height above the surface to which the field
line should be traced (default 100 km), iopt can be used for specifying an option
of the external field model here by an interval of the Kp indexes (default dummy
parmod is used) and parmod containing parameters needed for a specification of the
external field. The vector contains the solar wind pressure in nPa (1st position), the
disturbance storm time index (DST) in nT (2nd position), the B-field component in
y-direction in nT (3rd position) and the B-field component in z-direction in nT (4th
position). The default values are 3 nPa for the solar wind, -20 nT for the DST, 3 nT
for the By component and -3 nT for the Bz component (for details see [11, 38, 44],
the average values are based on [57]). The values can be set according to actual
measurements and can be downloaded from the internet.

The function is validated with the SSC LOCATOR (used same default values) and
shows minor differences in the B-field trace in the second decimal place.7. The
longitude and latitude footprint of the satellite is given in latN and lonN for the

7due to an email from Paul O’Brien this is caused by the fact that the SSC Locator uses the
Tsyganenko model in its 1989C version but with newer IGRF coefficients, the model implemented
here is the 2003 updated version which is based on the Tsyganenko model version 1996. Due to
the fact that neither measurements nor high precision orbit calculators could be such precise, here
the comparison between the SSC Locator and the MagPOS calculations are considered as accurate
enough
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northern hemisphere and latS and lonS for the southern hemisphere, a footprint
visualisation analogous to the SSP footprint is shown in fig. 4.7 (validation data
can be seen in appendix B.7).
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Figure 4.7: Magnetic Conjunction Footprint

The calculated values can be used to study space weather effects. Here in special
it will be used in further studies about the cusp regions and to interpolate data
between satellite measurements and ground station data.

These functions form the mathematical framework of the toolbox and can be used
in various ways to study satellite ground conjunctions. Vis Sat combines these
three functions in a GUI to provide a first introduction how the functions could be
used and how the data could be presented. The GUI and its handling is described
briefly in the next section. It should also be mentioned here, that the stand alone
functions are downwards compatible with MATLAB r© 5.3. The GUI is only written
for MATLAB r© 7 (Release 14) and is due to changes in the callback structure not
upwards compatible.

4.2 Graphical User Interface

All function contained inVis Sat are stand alone functions and could be used due
to the open-source character and under the GNU General Public License conditions
for all satellite applications. In order to get familiar with the functionality and the
data calculated by the toolbox functions, Vis Sat contains a GUI which enables
the user to get a first insight in the handling of the functions and how different input
parameter influence the orbit of a satellite. This section describes briefly the GUI
and the functionality.
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The GUI enables the user to control the complex functions contained in the toolbox
by using familiar objects like “icons”, “buttons” etc. to control the simulation
without knowing the exact detailed syntax of every function. It is not necessary
to have a deeper insight in the mathematical framework or the numerical model
structures to use the GUI to produce first simulation results and to save these results
for further use in MATLAB r© . The GUI itself is divided into two separate files, the
fig file which contains the GUI layout (here vissat.fig) and the counterpart in
an m file, this design is used from MATLAB r© Version 5.3 Release 12 upwards. The
vissat.m file implements the function calls for the GUI elements, this function is the
interface like the name said between the toolbox functions and the “icons”, “buttons”
and “radiobuttons”. The main program vissat contains the files vissat.m and
vissat.fig which were created with GUIDE (GUI Development Environment) for
MATLAB r© . This tool can be used in MATLAB r© with the call

>> guide

The tool enables the user to edit directly graphical operation elements and their
attributes8. The functions which are called by the graphical elements are callback
functions, these functions are contained in the counterpart of the fig file. The GUI
then can be started in MATLAB r© with

>> vissat

MATLAB r© combines then automatically the fig file layout and the callback func-
tions in the m file. All files described here and mentioned above are contained on the
attached CD-Rom, here also an HTML documentation of the simulation (Microsoft
IE, Netscape and MATLAB r© compatible) is attached.

After the call >> vissat the GUI shown in fig. 4.8 will appear in a new MAT-
LAB r© figure.

Figure 4.8: Graphical User Interface startup figure

The control elements on the right side enables the user to set the different parameter
which are needed as input of the functions described above. All control elements in

8for detailed descriptions about the GUI elements see P. Marchand [30] Chapter 10 Elements
of GUI Design
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this GUI have an executable part defined in the m file. The executable functions in
the m file have the same MATLAB r© syntax as if the stand alone functions would be
performed without the framework of the GUI. So all the function calls in the m file
represent the interface structure of the GUI.

4.2.1 Operation and functionality

The GUI is subdivided in four major parts to control the footprint functions. The
first part in the upper right hand corner provides the satellite and ground station
data. The first line controls the norad2kep function and stores the extracted TLE
data in global variables into the workspace of MATLAB r© , so it is possible to access
these data in all subfunctions of the GUI. To control the function norad2kep the
name of the satellite and the tle file have to be given. The default values are already
stored in the workspace, with the load button the new TLE data will be loaded
from the given tle file and stored in the workspace. The epoch time is not settable,
when a new TLE data set is loaded it will show the Julian date of this data set.
This provides the user with an additional security system to see if the right data are
loaded. The ground station position is needed for the skymap plots as input for the
SatTrack function.

The next part of the GUI enables the user to set satellite data by hand, the simula-
tion time and the parameter for the Tsyganenko model. Each button will open an
additional GUI to read in the data. In the following descriptions when it is referred
to the main GUI it is the initial vissat GUI shown in fig. 4.8.

4.2.1.1 Satellite Input Data

Figure 4.9: Satellite Data

The satellite data interface, shown in fig.
4.9 enables the user to set the main Keple-
rian elements by hand. The default values
are given by the satellite which is specified
in the main GUI. In order to avoid data
deadlocks, the satellite data GUI will up-
date the given orbital elements only when
the name of the satellite is changed. If the
name of the satellite is not changed all val-

ues are set to the default values again. In order to be compatible with the NORAD
format the osculating values given in this GUI have to be transformed to their
mean orbital elements. The transformation is based on the processes described in
the Spacetrack Report No.3. The behaviour of a typical orbital elements consists
of short period, medium period, long period and secular components, this was de-
scribed in section 2.4.2. Short, medium and long period perturbations are referred
to periodics and each refers to the frequency of the respective perturbation. The
short periodics have frequencies that are multiples of the satellite’s orbital period
and long periodics have frequencies which are proportional to the period of the satel-
lite’s argument of perigee. The frequency of medium periodics are proportional to
the Earth’s rotation period relative to a satellite’s line of nodes. So short period
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4.2 Graphical User Interface Program/Toolbox (Vis Sat)
variations of the orbital elements are functions of the varying mean anomaly through
trigonometric relations (see fig. 4.10).

The long period variations are functions of the varying argument of perigee through
trigonometric relations. This is explained in detail in the SGP4 and SDP4 model.
Here in order to transform the osculating elements into the mean elements which
are needed for the model calculations, the classical osculating orbit elements could
be described as functions of the mean orbital elements and the short period contri-
butions

a = am + asp (am, em, im, ωm, Mm) (4.12)

e = em + esp (am, em, im, ωm, Mm) (4.13)

i = im + esp (am, em, im, ωm, Mm) (4.14)

ω = ωm + ωsp (am, em, im, ωm, Mm) (4.15)

Ω = Ωm + Ωsp (am, em, im, Ωm, Mm) (4.16)

M = Mm +Msp (am, em, im, Ωm, Mm) (4.17)

Figure 4.10: Osculating Ele-
ment Perturbation

The osculation orbital elements define the ideal Kep-
lerian orbit in absence of all outer perturbations. In
order to solve this equations for the mean elements
in terms of the osculating elements a numerical iter-
ation has to be done. This is done in an subfunc-
tion of satellite.m and is mainly done by the inver-
sion of the numeric described in the SGP4 and SDP4
model. Due to this iterations it is possible to de-
termine the mean values of the orbit. These values
are stored in the satellite structure given by the
norad2kep function. It should be mentioned here,

that this method could not calculate the first time derivation of the mean motion,
the second time derivation of mean motion and the ballistic coefficient, these SGP4/-
SDP4 orbital elements are set to 0 for the calculations, so sat.tle(2,3,4)=0. The
derivations could be determined with performing a differential correction or orbit
determination process but in respect to the computation time this is not imple-
mented.

This GUI allows the user to study footprints of given satellites in an Keplerian
notation and to study which effect which parameter has on the orbit. If a satellite
orbit should be studied by known mean orbit elements, these have to be stored in a
txt file in the NORAD standard format and could be read by the main GUI.

4.2.1.2 Time Settings

The functions SatPOS, SatTRACK and MagPOS calculates the position of the footprints
for one single time. In order to study the motion of a satellite over a period, the
GUI timeset enables the user to specify the timeperiod and the stepsize for this
period. The default values are the epoch time of the satellite and a range of five
minutes with a timestep of 5 minutes. The GUI stores the start and end time of the
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simulation period in a MATLAB r© datevec structure. These times are then passes
through the functions to perform the calculations at the given time. In respect to
the computation time, the maximum time rage is set to 20 days.

Figure 4.11: Time Setting

4.2.1.3 Magnetospheric Parameters

The MagPOS button opens the the GUI to set the magnetospheric conditions for the
Tsyganenko model. The solar wind pressure in nPa, the DST index in nT, the By

and Bz-fieldstrength in GSM coordinates in nT. These values describe the magnetic
field at the given time range, the default values are set in accordance with [57] and
represents mean values.

Figure 4.12: Magnetospheric Setting

4.2.1.4 Simulation and View

The third and fourth part of the main GUI is to control the simulation and controls
the different views. The radiobutton structure corresponds to the main toolbox
functions, with SSP a two dimensional footprint on a geographical map is produced
to show the location of the SSP at the given time. The calculations are done with
SatPOS and the input parameter for the functions are controlled by the GUI ele-
ments mentioned above, the plots produced with these settings could be seen in
section 4.1.3. The SKYMAP setting produce the visibility plots shown in section 4.1.4.
The calculations are done by the function SatTRACK. The 2D MAG setting produce
the magnetic footprint in the northern and southern hemisphere on a two dimen-
sional geographical map, the data are calculated by MagPOS. The setting 3D uses the
position vector ~r which is returned by the function SatPOS to show the satellite and
the Earth in a three dimensional view.

The simulation can be controlled by the fourth part the control buttons, with START

a simulation is started, the call function in the main vissat.m file calls the setting
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parts of the GUI to get the values required for the calculations depending on which
radiobutton is set. The STOP button interrupts the simulation, this could be done
because every process in the GUI is in parallel and not sequential. The ADD button
allows the user to add another satellite path to the simulated one, this function
is only possible if the view setting for the additional satellite is the same as the
already presented one. The CLEAR button clears the axis element, in case to many
plots are made. The HELP button starts the online documentation which contains
a brief overview of the models implemented in Vis Sat and how they could be
used.

The description made in this section should be representative for the functionality
of the GUI and should be a brief introduction, they described how the interface
connects the toolbox functions with graphical control elements. The GUI represents
the link between the mathematical complex models and their simple use in the
MATLAB r© environment by using common control elements. All files for the GUI
are attached on the CD-Rom.

4.3 Plot Functions

The plots and the representation of the data in the GUI are produced in MATLAB r© 7
(Release 14) with the map data included in the main MATLAB r© environment. In
order to produce the plots also without the GUI, Vis Sat contains as support
three simple plot functions to present the calculated data in a way shown in the
sections above and in the GUI. These functions shows how to process and present
the data and should support the user to get familiar with the toolbox and with the
data format.

4.3.1 Plot on 2D Map (plot2dmap)

The plot2dmap function represents the data calculated by SatPOS and MagPOS on a
two dimensional geographical map of the Earth. The syntax is

>> plot2dmap(lon,lat,border,opt)

where lat is a vector of latitudes calculated by one of the main functions and lon

is a vector of calculated longitudes. The third value specifies if political border
lines should be shown or not, if border is a positive value the political borders are
shown otherwise not. The last value opt is a line specification that determines line
type, marker symbol, and color of the plotted latitudes and longitudes, default is
’r.’. The plots shown in section 4.1.3 are produced by this function. In the MAT-
LAB r© environment then it is possible to add the plot different additional information
analogous to the MATLAB r© built in function plot (e.g. title, legend etc.).

4.3.2 Plot on Blue Marble Maps (plotonmarble)

In order to present the data on high resolution maps like the maps provided by NASA
in the Blue Marble project (see [18]) Vis Sat contains a function plotonmarble.
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The syntax is

>> plotonmarble(lon,lat,map)

where where lat is a vector of latitudes calculated by one of the main functions and
lon is a vector of calculated longitudes. The variable map is the bluemarble map
as a jpg. The function then takes the resolution of the map to resize the lat and
lon to fit them onto the map. The default map of this function is defmarble which
is a map in 2048 × 1024 pixel resolution. Then analogous to the MATLAB r© plot

function different additional information could be added. Figure 4.13 shows the
calculated SSP latitudes and longitudes plotted on the default Marble map.

Dove (OSCAR 17) 2005/08/12 07:16:00−12:15:00

−180 −90 0 90 180

90

45

0

−45

−90

Figure 4.13: Geodetic Position Footprint on Marble

4.3.3 Plot Skymap (skymap)

In order to produce skymap plots shown in section 4.1.4 the MATLAB r© built in
function polar can be used, but this function allows not to configure the plotrange,
the zero position and various other options which are needed to produce skyplots
with the characteristics mentioned in section 4.1.4 and shown in fig. 4.4(a). In order
to provide a function to produce skymaps with the charactersitics mentioned above,Vis Sat contains a function skymap. The syntax is

>> skymap(azi,elev)

where azi is the azimuth angle in degrees and elev is the elevation angle in degrees.
Negative elevation angles which corresponds to a position of the satellite under the
local horizon are not plotted.
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4.4 SummaryVis Sat is designed as a scientific/engineering toolbox in MATLAB r© , it provides
the functionality of fast calculations of the satellite ground conjunctions. The motion
of a satellite is described in principle by the basic celestial laws of motion stated by
Kepler and Newton. This mathematical framework which based on the consideration
of the forces which acts on the satellite are implemented in a modern simulation
environment. The functions provide a tool to calculate satellite footprints and to
calculate the visibility. This is accomplished in the functions SatPOS and SatTRACK,
these functions predict the motion of the satellite over the ground and the visibility
of the satellite. The functions incorporate SGP4/SDP4 models specified by NORAD
in an C/C++ MEX-function. This design provides a minimum of computation time
and a maximum of flexibility. The functions uses the NORAD TLE data sets to
determine the satellite position and velocity at a given time. They provide necessary
coordinate transformations and time calculations. The design of the functions and
the user interface of each function is kept to a minimum of complexity to provide a
manageable tool without knowing the exact mathematical framework. The output
of the functions is standardised to MATLAB r© and can therefore be used in any kind
of application. The main field of application of these functions is in engineering
devices controlled by MATLAB r© or onboard controller for positioning systems or
ground station alignments.

In addition to the simulation of the mechanics the toolbox provides a function to
calculate magnetic satellite conjunctions by implementing the Tsyganenko model of
the Earth’s magnetic field and the routines to trace fieldlines. This model incorpo-
rates the IGRF coefficients and give an insight of the magnetic conjunction of the
satellite and ground. This functionality is implemented in the function MagPOS and
incorporates the pre-existing Tsyganenko model.

The main design feature of the toolbox is, that it contains just three main functions.
This design removes the complexity of the mathematical models and make them
easier to handle. The main focus here was to remove the complexity but without
removing functionality at the same time. That is done by the encapsulation of the
mathematical models in MATLAB r© functions which acts as an interface between
the models and the user input, it keeps the user input to a minimum and provides
all necessary transformations and additional calculations which are needed for the
models. Also these interfaces produce standarised output which could be processed
in the MATLAB r© environment.

The main function of the toolbox is Vis Satwhich is the MATLAB r© GUI envi-
ronment to visualise the data produced by the functions described above. It could
be used as a scientific analysis tool or as a teaching tool to get a deeper insight in
satellite dynamic processes. The visualisation produces two and three dimensional
plots of the satellite position. The GUI is started with

>> vissat

The documentation of the program can be opened in the program itself by the help
menu or by

56



4.4 Summary Program/Toolbox (Vis Sat)
>> open vissat.html

from the MATLAB r© prompt line. The GUI provides a comfortable control for the
functions to visualise the calculated data. The function input can be set by the
interface and enabled an easy access to the functionality. The GUI produced then
two or three dimensional plots of the trajectory of the satellite and two dimensional
magnetic conjunction footprints.
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5 Conclusion and Future Work

The so called “space age” started with the first artificial satellite put into orbit
around the planet, nowadays satellites serve for various tasks from communication
to broadcasting, imaging or scientific purposes. All these satellites obey the rules of
celestial mechanics, to visualise the motion in respect to these rules and to develop
a software tool for analysis of the satellite ground conjunctions was the main aim of
this thesis.

The thesis provides the theoretical background which is successfully implemented,
tested and validated in the toolbox Vis Sat . It can be used to visualise the
orbit trajectory of a satellite under different points of view. It allows the user to
study the satellite ground conjunctions by tracking the satellite over the ground or
by calculating the elevation and azimuth angle of the satellite from a static ground
station position. It further enables the user to study magnetic conjunctions by
calculating magnetic footprints. These functionalities can be used on the one hand
from an engineering point of view to adjust ground station dishes to establish reliable
links to the satellite by calculating the exact position by using the TLE data sets.
This was also a reason why MATLAB r© as an implementation environment was used,
the functions in Vis Sat can be reused for different kind of tasks on a common
basis. On the other hand Vis Sat can be used to simulate an orbit of a satellite
in advance to see which orbit parameters the satellite has to have in order to fulfill
its task. Here the visualisation on the one hand supports the numerical functions
in order to get a first impression of the motion and it also helps to clarify the
physical processes which are the bases of the motion. The magnetic conjunction
simulation can be used for further space weather studies, here in special it will be
used to correlate Cluster satellite data with ground station data in order to verify
the magnetic conditions in a vertical cut through the cusp regions.

For the satellite dynamics the SGP4 and SDP4 models specified by NORAD were
implemented, for the magnetic conjunctions the Tsyganenko model (Version 2003)
was implemented. These models have several advantages and disadvantages. The
advantages of the SGP4 and SDP4 models, which based on the fundamental laws
stated by Newton and Kepler, are that these models have been verified by NORAD
and provide a precise and manageable mathematical framework for the orbit calcu-
lations. Also here the implementation in C/C++ by wrapping the C/C++ code in
an MEX function provides a maximum of flexibility and ensures that future specifi-
cations by NORAD can be implemented easily. However these models work with
mean values, NORAD has removed periodic variations in a particular way, and the
models in their present form does not contain numerical integration methods. The
magnetic conjunction simulation is done by implementing the Tsyganenko model
(Version 2003) of the Earth’s magnetic field. This model provides a numerical de-
scription of the magnetosphere and incorporates more than 28,000 measurements.
This framework presents the state of the art and is implemented straight forward in
MATLAB r© . Here some more details are mentioned in the future work part. How-
ever, this model needs to be updated every five years due to the fact that it is based
on th IGRF coefficients. Nevertheless with these implementation in Vis Sat it is
possible to calculate the magnetic conjunction, namely the latitude and longitude
of the footprints in the northern and southern hemisphere respectively.
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All functions of Vis Sat described in this thesis are executable in a command line
way and can therefore be used in various application, these is mainly the field for
experienced users to use Vis Sat as a scientific analysis tool. The GUI of VisSat presents an environment which also can be used by less experienced users in
order to get a deeper insight of the physics behind the motion described in the the-
oretical part of this theses. The GUI provides easy access to the complex software
systems. All functions are based on numerical calculations and the visualisation of
the output of these functions to represent the real world in a graphical controllable
environment [30]. The open-source structure of Vis Sat allows users to incorpo-
rate the toolbox or parts of it in any kind of application in satellite dynamics and
space environment studies.

Future Work
The main field of application for this thesis is to calculate and visualise satel-
lite/ground conjunctions and to visualise the motion of the satellite. The tool VisSat can be used to do this and to use the functions for further studies of the satel-
lite ground conjunctions. This studies are just limited by the functionality of the
functions and the outer boundaries of the incorporated models. In order to obtain
more precise orbit and conjunction calculation further work should be done in the
following field

• accurate geopotential; the geopotential model is changing due to new satellite
measurements and due to new numerical models. So here an update of the
function and especially the zonal harmonics have to be done.

• aerodynamic forces; to predict the aerodynamic force is very difficult and it
depends on a lot of parameters, so the SGP model just introduced a mean
drag force term, here some new basic approaches could be implemented (see
details [33])

• slow implementation; the GEOPACK routines are very slow. In Vis Sat a di-
rect implementation of the GEOPACK is used. For future work it has to be men-
tioned, that these implementation is slow due to the loop structures in it and
it would be recommendable to write an MEX function to wrap the FORTRAN
code. Here it was not done, because of the exception handler in MATLAB r© 7.
The MATLAB r© 7 version uses C/C++ exceptions in library functions, this
means that the MEX function from FORTRAN to MATLAB r© has to propagate
exceptions in a C/C++ manner. So in order to get a faster simulation this
problem has to be solved, either in solving the incompatibility between the
MATLAB r© FORTRAN gateway or by implementing the GEOPACK in C/C++ .

• orbit precision; the embedded orbit dynamic models do not incorporate nu-
merical integration steps for high precision orbit propagation (like the GOD-
DAT SSC Locator), as a future task this could be implemented following the
descriptions in [33] (new edited Version published August 2005) also by imple-
menting this high precision integrators the time period in which the models
are correct could be enlarged. Here at the current implementation state it is
recommendable to limit the simulation time to three month in order to take
the maximum precision.
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Conclusion and Future WorkVis Sat is a general visualisation tool, the calculations are based on the TLE
data sets, in order to increase the precision of the propagation, sophisticated sets
of high-fidelity force models and numerical integration techniques should be imple-
mented but these models are based on finite element modeling structures which
would increase the complexity of the system and would make it unmanageable to
handle in a MATLAB r© environment. The problem described with the FORTRAN
MEX function results in a slow straight forward MATLAB r© implementation which
makes it necessary to abandon an option to visualise the magnetic field lines in a
three dimensional view in respect to the computation time.

These further investigations and necessary updates will speed up the propagation
and will make it more precise but it should be mentioned with every step which
makes the propagation more precise it will increase the complexity. So for future
work it is recommendable to have in mind the balance between complexity and how
precise it must be, also with every step in complexity the computation time will
increase.

ApplicationsVis Sat in its current implementation is an open-source scientific toolbox in
MATLAB r© with the intended purpose to give an insight in satellite ground conjunc-
tions. The data produced with the functions could be used for different purposes,
here a particular application should be mentioned. The flight dynamics calculations
could be used to control a tracking device operated by MATLAB r© . Such a device
was build in the Department of Engineering at Lancaster University during a project
undertaken from O.R. Ariyo (Adaptive Sun-Follower for Building Illumination, Lan-
caster University, Department of Engineering, 2005). The tracking device is meant
to be a Sun tracker but the main engineering tracker device is controlled by calcu-
lated elevation and azimuth angles, with the function SatTRACK these values could
be calculated for all space objects included in the TLE data. So it is possible to use
the main tracking device with a telescope or antenna operated by MATLAB r© with
the calculated values of SatTRACK. So it would be possible to track the path over
the horizon for imagery, observation or communication purposes nearly in real time.
This is just one example of an real hardware application but it is representative
for how the numerical calculations in the MATLAB r© environment could be used to
control a hardware device (example device see fig. 5.1).

(a) tracking device with belt transmission (b) tracking device with direct transmission

Figure 5.1: Tracking Device
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Equations, Tables, Explanations

A Equations, Tables, Explanations

A.1 Geopotential (gravitational force)

Gravity is the driving force of this simulation. Newton’s law of universal gravitation
holds for a spherically symmetric mass equation (2.6), but the Earth is known to
neither have an even mass distribution nor be a perfect sphere. An accurate model
incorporating the variation of the Earth’s gravity at different points in space which
can be established based on observational data. This data has been obtained from
several sources

• satellite ranging lasers that utilise doppler shift to measure satellite positions
in the order of cm, which are used determine the gravity experienced by the
satellites;

• spring gravimeters, located on the Earth’s surface, that measure the local
gravitational acceleration with an accuracy of 10−8 m/s2;

• satellite-based altimeters, that can be used to determine the mean sea surface
level, which can in turn be used to provide information about the shape of the
Earth and thus geopotential coefficients.

To account for the deviation from equation (2.6), the Earth’s gravity potential (or
geopotential”) is written as an expansion in a series of Legendre polynomials.

It can be written for cartesian coordinates of acceleration due to gravity in a ECEF
frame

ẍ =
∑

n,m

ẍnm ÿ =
∑

n,m

ÿnm z̈ =
∑

n,m

z̈nm (A.1)

with

ẍnm
m=0
=

GM

|r|2 (−Cn0Vn+1,1)

m>0
=

GM

2|r|2 ((−CnmVn+1,m+1 − SnmWn+1,m+1)+

(n−m+ 2)!

(n−m)!
(CnmVn+1,m−1 + SnmWn+1,m−1)

)

(A.2)

ÿnm
m=0
=

GM

|r|2 (−Cn0Wn+1,1)

m>0
=

GM

2|r|2 ((−CnmWn+1,m+1 + SnmVn+1,m+1)+

(n−m+ 2)!

(n−m)!
(−CnmWn+1,m−1 + SnmVn+1,m−1)

)

(A.3)

z̈nm =
GM

|r|2 ((n−m+ 1) (−CnmVn+1,m − SnmWn+1,m)) (A.4)
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The Vmn and Wnm terms satisfy the recurrence relation V00 = ~r/|r| and W00 = 0

Vmm = (2m− 1)

(

x~r

|r|2Vm−1,m−1 −
y~r

|r|2Wm−1,m−1

)

(A.5)

Wmm = (2m− 1)

(

x~r

|r|2Wm−1,m−1 −
y~r

|r|2Vm−1,m−1

)

(A.6)

and

Vnm =
2n− 1

n−m

z~r

|r|2Vn−1,m − n+m− 1

n−m
Vn−2,m (A.7)

Wnm =
2n− 1

n−m

z~r

|r|2Wn−1,m − n+m− 1

n−m
Wn−2,m . (A.8)

The Cnm and Snm coefficients are tabulated for different models. The implemen-
tation of the stable numerical model could be seen in [33]. Figure A.1 shows the
different model distribution for this geopotential.

Depending upon its degree n and order m a Legendre function is referred to

• a zonal harmonic

• a sectoral harmonic

• a tesseral harmonic

A zonal harmonic corresponds geometrically to a particular shape of the geopotential
surface. The second zonal harmonic which expresses the main effect of the Earth’s
flattening J2, makes a north-south slice through the Earth appear elliptical; the
third zonal harmonic J3 provides a profile with a tendency to a triangle.; the fourth
J4 harmonic relating to a square (details see [4]).

(a) static oblateness of the Earth, model from
1957

(b) complex model of the geopotential 2002

Figure A.1: Geopotential (source: GFZ Potzdam)
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A.2 Earth Atmosphere Equations, Tables, Explanations

A.2 Earth Atmosphere (drag force)

Knowledge of the atmospheric density at the satellite’s position is required to calcu-
late the drag force on the satellite. It may also be required in terms of establishing a
reliable link to the satellite, however this may require more information than density
alone [28].

Accurate modeling of aerodynamic forces is difficult for the following reasons

• the density of the upper atmosphere is not known very accurately;

• modeling the drag force requires detailed knowledge of the interaction of neu-
tral gas, as well as charged particles, with the different spacecraft surfaces;

• the changing attitude of a satellite will present different geometries and sur-
faces to the oncoming flow.

Just for density calculations two models should be mentioned here the Harris-
Priester model and the Jacchia model, for more details see [3].

A.3 Time-Variant Kepler Elements

The orbit of a satellite in the central force field of the Earth could be described by the
six Keplerian elements, when disturbance force are also considered these elements
become time-variant (cf. [2, 24]). It can be written

∂a

∂t
=

2e sin (ν)

nx
Fr +

2ax

nr
Fs (A.9)

∂e

∂t
=

x sin (ν)

na
+

x

na2e

(

a2x2

r
− r

)

Fs (A.10)

∂i

∂t
=

r cos (u)

na2x
Fw (A.11)

∂Ω

∂t
=

r sin (u)

na2x sin(i)
Fw (A.12)

∂ω

∂t
= − x cos (ν)

nae
Fr +

p

ev

[

sin (ν)

(

1 +
1

1 + e cos (ν)

)]

Fs − (A.13)

−r cot (i) sin (u)

na2x
Fw

∂ν

∂t
=

x cos (ν)

nae
Fr −

p

eh
sin (ν)

(

1 +
r

p

)

Fs + (A.14)

+

√

GM

p3
(1 + e cos (ν))2

using the following definitions

x =
√

1 − e2

n =

√

GM

a3

p = a
(

1 − e2
)

r =
p

1 − e cos (ν)

v =
√

GMp

u = ν + ω
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It can be seen from Equations A.9-A.14 that the derivatives of the first five elements
become zero, if no disturbance torques are present. The satellite is on a Keplerian
orbit again. Only the true anomaly ν has a part that is independent of disturbance
torques and represents the normal orbital motion. Since the Equations have several
singularities for circular e = 0 and for equatorial i = 0◦ orbits. For an actual
integration the equinoctial elements should be used as described in [2] and [31]. They
can be calculated from the classical element set but do not have the disadvantage
of the singularities.
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A.4 Detailed SGP Model

This section deals with the original SGP model described in the Spacetrack Report
No. 3 [20] by F.R. Hoots and R.L. Roehrich. Here the connection between the
SGP components and the Keplerian elements in section 2.3.4 is made. The SGP
model takes the original Kepler elements and modifies these elements in accordance
to the additional forces which acts on the satellites. With the modification of the
Keplerian elements it is possible to correct the Kepler prediction and to produce
exact propagations.

A.4.1 SGP Model

The NORAD mean element sets can be used for prediction with SGP, these model
takes the drag effect on mean motion as linear in time. Predictions are made by
first calculating the constants (here only the necessary formulae for the orbit motion
description are shown)

a1 =

(

GM

n0

)2/3

(A.15)

δ1 =
3

4
J2

R2
E

a2
1

(

3 cos2 (i0) − 1
)

(1 − e2
0)

3/2
(A.16)

a0 = a1

(

1 − 1

3
δ1 − δ2

1 − 134

81
δ3
1

)

(A.17)

p0 = a0

(

1 − e2
0

)

(A.18)

∂Ω

∂t
= −3

2
J2

R2
E

p2
0

n0 cos (i0) (A.19)

∂ω

∂t
=

3

4
J2

R2
E

p2
0

n0

(

5 cos2 (i0) − 1
)

(A.20)

The secular effects of atmospheric drag and gravitation are included through the
following equations

a = a0

(

n0

n0 + 2 (ṅ0/2) (t − t0) + 3 (n̈0/6) (t − t0)
2

)2/3

(A.21)

e =

{

1 − (a0 (1 − e0)/ a for a > a0 (1 − e0)
10−6 for a ≤ a0 (1 − e0)

(A.22)

p = a
(

1 − e2
)

(A.23)

ΩS = Ω0 +
∂Ω

∂t
(t − t0) (A.24)

ωS = ω0 +
∂ω

∂t
(t − t0) (A.25)

Long-period periodics are includes through the following equations

ax NSL = e cos (ωS) (A.26)

ay NSL = e sin (ωS) − 1

2

J3

J2

RE

p
sin (i0) (A.27)

Then it is necessary to solve the Kepler’s equation (2.41) with these new calculated
values, where

(E + ω)k+1
= (E + ω)k + ∆ (E + ω)k (A.28)
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with

(E + ω)
1

= U (A.29)

∆ (E + ω)k =
U − ay NSL cos (E + ω)k + ax NSL sin (E + ω)k − (E + ω)k

−ay NSL sin (E + ω)k − ax NSL cos (E + ω)k + 1
(A.30)

where

U = (M0 + ω0 + Ω0) +

(

n0 +
∂ω

∂t
+

∂Ω

∂t

)

(t − t0) +
ṅ0

2
(t − t0)

2
+

n̈0

6
(t − t0)

3 −

−1

4

J3

J2

RE

p
ax NSL sin (i0)

(

3 + 5 cos (i0)

1 + cos (i0)

)

− ΩS (A.31)

Then the intermediate (partially osculating) quantities can be calculated by

e cos (E) = ax NSL cos (E + ω) + ay NSL sin (E + ω) (A.32)

e sin (E) = ax NSL sin (E + ω) − ay NSL cos (E + ω) (A.33)

e2
L = a2

x NSL + a2
y NSL (A.34)

pL = a
(

1 − e2
L

)

(A.35)

r = a (1 − e cos (E)) (A.36)

ṙ = GM

√
a

r
e sin (E) (A.37)

rν̇ = GM

√
pL

r
(A.38)

sin (u) =
a

r

(

sin (E + ω) − ay NSL − ax NSL

e sin (E)

1 +
√

1 − e2
L

)

(A.39)

cos (u) =
a

r

(

cos (E + ω) − ax NSL + ay NSL

e sin (E)

1 +
√

1 − e2
L

)

(A.40)

u = tan−1

(

sin (u)

cos (u)

)

(A.41)

Short-period perturbations are now included by

rk = r +
1

4
J2

R2
E

pL
sin2 (i0) cos (2u) (A.42)

uk = u +
1

8
J2

R2
E

p2
L

(

7 cos2 (i0) − 1
)

sin (2u) (A.43)

Ωk = ΩS +
3

4
J2

R2
E

p2
L

cos (i0) sin (2u) (A.44)

ik = i0 +
3

4
J2

R2
E

p2
L

sin (i0) cos (i0) cos (2u) (A.45)

Then in accordance with the flow chart on page 17 the corrected unit orientation
vectors could be calculated by substituting the sin( ) and cos( ) terms of ν by using
uk. Then position and velocity are given by

~r = rk
~P and ~̇r = ṙ ~P + (rν̇) ~Q (A.46)

A.4.2 SGP4 Model

This model is an extension of the original SGP model and takes into account that
the drag effects not linear on the mean motion. Therefore it is necessary to define
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where the perigee is in order to take the different drag effects into account.

a1 =

(

GM

n0

)2/3

(A.47)

δ1 =
3

4
J2

R2
E

a2
1

(

3 cos2 (i0) − 1
)

(1 − e2
0)

3/2
(A.48)

a0 = a1

(

1 − 1

3
δ1 − δ2

1 − 134

81
δ3
1

)

(A.49)

δ0 =
3

4
J2

R2
E

a2
0

(

3 cos2 (i0) − 1
)

(1 − e2
0)

3/2
(A.50)

n′

0 =
n0

1 + δ0

(A.51)

a′

0 =
a0

1 − δ0

(A.52)

s∗ =

{

a′

0 (1 − e0) − 78 + RE 98 < perigee ≤ 156
20/6378.135 + RE perigee ≤ 98

(A.53)

q0 = a0 (1 − e0) (A.54)

Then the constants can be calculated by using the appropriate s

Φ = cos (i0) (A.55)

ζ =
1

a′

0 − s
(A.56)

β0 =
(

1 − e2
0

)1/2
(A.57)

η = a′

0e0ζ (A.58)

C2 = (q0 − s)
4
ζ4n′

0

(

1 − η2
)−7/2

(

a′

0

(

1 +
3

2
η2 + 4e0η + e0η

3

)

+

+
3

4
J2

R2
Eζ

(1 − η2)

(

−1

2
+

3

2
Φ2

)

(

8 + 24η2 + 3η4
)

)

(A.59)

C1 = B∗C2 (A.60)

C3 = −2 (q0 − s)
4
ζ5J3REn′

0 sin (i0)

J2e0

(A.61)

C4 = 2n′

0 (q0 − s)
4
ζ4a′

0β
2
0

(

1 − η2
)−7/2

((

2η (1 + e0η) +
1

2
e0 +

1

2
η3

)

− J2R
2
E

a′

0 (1 − η2)
·

(

3
(

1 − 3Φ2
)

(

1 +
3

2
η2 − 2e0η − 1

2
e0η

3

)

+
3

4

(

1 − Φ2
)

(

2η2 − e0η − e0η
3
)

cos (2ω0)
))

(A.62)

C5 = 2 (q0 − s)
4
ζ4a′

0β
2
0

(

1 − η2
)−7/2

(

1 +
11

4
η (η + e0) + e0η

3

)

(A.63)

D2 = 4a′

0ζC2
1 (A.64)

D3 =
4

3
a′

0ζ
2 (17a′

0 + s)C3
1 (A.65)

D4 =
2

3
a′

0ζ
3 (221a′

0 + 31s)C4
1 (A.66)
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The secular effects of the atmospheric drag and gravitation are included through
the equations

MDF = M0 +

(

1 +
3J2R

2
E

(

−1 + 3Φ2
)

4a′2
0 β3

0

+
3J2

2R4
E

(

13 − 78Φ2 + 137Φ4
)

64a′4
0 β7

0

)

n′

0 (t − t0)(A.67)

ωDF = ωo +

(

−3J2R
2
E

(

1 − 5Φ2
)

4a′2
0 β4

0

+
3J2

2 R4
E

(

7 − 114Φ2 + 395Φ4
)

64a′4
0 β8

0

−

15J4R
4
E

(

3 − 36Φ2 + 49Φ4
)

32a′4
0 β8

0

)

n′

0 (t − t0) (A.68)

ΩDF = Ω0 +

(

−3J2R
2
EΦ

2a′2
0 β4

0

+
3J2

2R4
E

(

4Φ − 19Φ3
)

8a′4
0 β8

0

−

15J4R
4
EΦ
(

3 − 7Φ2
)

16a′4
0 β8

0

)

n′

0 (t − t0) (A.69)

δω = B∗C3 cos (ω0) (t − t0) (A.70)

δM = −2

3
(q0 − s)

4
B∗ζ4 RE

e0η

(

(1 + η cos (MDF))
3 − (1 + η cos (M0))

3
)

(A.71)

Mp = MDF + δω + δM (A.72)

ω = ωDF − δω − δM (A.73)

Ω = ΩDF − 21n′

0J2R
2
EΦ

4a′2
0 β2

0

C1 (t − t0) (A.74)

e = e0 − B∗C4 (t − t0) − B∗C5 (sin (Mp) − sin (M0)) (A.75)

a = a′

0

(

1 − C1 (t − t0) − D2 (t − t0)
2 − D3 (t − t0)

3 − D4 (t − t0)
4
)2

(A.76)

L = Mp + ω + Ω + n′

0

(

3

2
C1 (t − t0)

2
+
(

D2 + 2C2
1

)

(t − t0)
3

+
1

4

(

3D3 + 12C1D2 + 10C3
1

)

(t − t0)
4

+

1

5

(

3D4 + 12C1D3 + 6D2
2 + 30C2

1D2 + 15C4
1

)

(t − t0)
5

)

(A.77)

β =
√

1 − e2 (A.78)

n = GM/a3/2 (A.79)

where (t− t0) is the time since epoch. It should be noted that when epoch perigee
height is less than 220 km, the equations for a and L are truncated after C1 term
and the terms involving C5, δω and δM are dropped. The long periodic terms are

axN = e cos (ω) (A.80)

LL = −J3RE sin (i0)

4J2aβ2
(e cos (ω))

(

3 + 5Φ

1 + Φ

)

(A.81)

ayNL = −J3RE sin (i0)

2J2aβ2
(A.82)

LT = L + LL (A.83)

ayN = e sin (ω) + ayNL (A.84)

Then Kepler’s equation E + ω has to be solved

(E + ω)k+1
= (E + ω)k + ∆ (E + ω)k (A.85)
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with

(E + ω)
1

= U = LT − Ω (A.86)

∆ (E + ω)k =
U − ay N cos (E + ω)k + ax N sin (E + ω)k − (E + ω)k

−ay N sin (E + ω)k − ax N cos (E + ω)k + 1
(A.87)

The following equations are used to calculate preliminary quantities needed for short-
period periodics (straight forward like described in section A.4.1)

e cos (E) = ax N cos (E + ω) + ay N sin (E + ω) (A.88)

e sin (E) = ax N sin (E + ω) − ay N cos (E + ω) (A.89)

e2
L = a2

x N + a2
y N (A.90)

pL = a
(

1 − e2
L

)

(A.91)

r = a (1 − e cos (E)) (A.92)

ṙ = GM

√
a

r
e sin (E) (A.93)

rν̇ = GM

√
pL

r
(A.94)

sin (u) =
a

r

(

sin (E + ω) − ay N − ax N

e sin (E)

1 +
√

1 − e2
L

)

(A.95)

cos (u) =
a

r

(

cos (E + ω) − ax N + ay N

e sin (E)

1 +
√

1 − e2
L

)

(A.96)

u = tan−1

(

sin (u)

cos (u)

)

(A.97)

∆r =
J2R

2
E

4pL

(

1 − Φ2
)

cos (2u) (A.98)

∆u = −J2R
2
E

8p2
L

(

7Φ2 − 1
)

sin (2u) (A.99)

∆Ω =
3J2R

2
EΦ

4p2
L

sin (2u) (A.100)

∆i =
3J2R

2
EΦ

4p2
L

sin (i0) cos (2u) (A.101)

∆ṙ = −J2R
2
En

2pL

(

1 − Φ2
)

sin (2u) (A.102)

∆rν̇ =
J2R

2
En

2pL

(

(

1 − Φ2
)

cos (2u) − 3

2

(

1 − 3Φ2
)

)

(A.103)

These short-period periodics are added to give the osculating quantities

rk = r

(

1 − 3

4
J2R

2
E

√

1 − e2
L

p2
L

(

3Φ2 − 1
)

)

+ ∆r (A.104)

uk = u + ∆u (A.105)

Ωk = Ω + ∆Ω (A.106)

ik = i0 + ∆i (A.107)

ṙk = ṙ + ∆ṙ (A.108)

rν̇k = rν̇ + ∆rν̇ (A.109)

Then in accordance with the flow chart on page 17 the corrected unit orientation
vectors could be calculated straight forward by substituting the sin and cos terms
of ν by using uk. Then position and velocity are given by

~r = rk
~P and ~̇r = ṙ ~P + (rν̇)k

~Q (A.110)
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It can be seen by consider these models, they have their basis in Newton’s and
Kepler’s laws. The basic principles which are discovered by them are still valid,
in order to get precise predictions it is just necessary to add new observations and
measurements for the perturbation forces.

A.4.3 SDP4 Model

The SDP4 model is an extension of the SGP4 model for deep-space satellites (period
greater than or equal 225 min). Here the original model of the Spacetrack Report
No.3 is presented, nevertheless it should be mentioned, that the mathematics in the
model is accurate but the implementation in the FORTRAN code has some errors
which were corrected in the Spacetrack Report No.6 according to the analytical
solutions in [5] and [29]. The corrected version is implemented in Vis Sat . This
model implements also perturbations due to the effect that the satellite is longer
above one area of the surface and the zonal specifications of that area have a bigger
influence. Also it takes into account different celestial bodies.

a1 =

(

GM

n0

)2/3

(A.111)

δ1 =
3

4
J2

R2
E

a2
1

(

3 cos2 (i0) − 1
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(1 − e2
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3/2
(A.112)
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3
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81
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(A.113)
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4
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R2
E

a2
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3 cos2 (i0) − 1
)

(1 − e2
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3/2
(A.114)

n′

0 =
n0

1 + δ0

(A.115)

a′

0 =
a0

1 − δ0

(A.116)

s∗ =

{

a′

0 (1 − e0) − 78 + RE 98 < perigee ≤ 156
20/6378.135 + RE perigee ≤ 98

(A.117)

q0 = a0 (1 − e0) (A.118)

Then the constants can be calculated by using the appropriate s

Φ = cos (i0) (A.119)

ζ =
1

a′

0 − s
(A.120)
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(

1 − e2
0

)1/2
(A.121)
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0e0ζ (A.122)
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C1 = B∗C2 (A.124)
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Ṁ =
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At this point SDP4 calls the initialisation section of the DEEP subroutine which
calculates all initialised quantities needed for the deep-space perturbations. The
secular effects of gravity are included by

MDF = M0 + Ṁ (t − t0) (A.129)

ωDF = ωo + ω̇ (t − t0) (A.130)

ΩDF = Ω0 + Ω̇ (t − t0) (A.131)

(A.132)

where (t− t0) is time since epoch. The secular effect of drag on longitude of ascend-
ing node is included by

Ω = ΩDF − 21

4

n′

0J2R
2
EΦ

a′2
0 β2

0

C1 (t − t0)
2

. (A.133)

Next SDP4 calls the secular section of DEEP which adds the deep-space secular effects
and long-period resonance effects to the classical Keplerian orbital elements. The
secular effect of drag are included in the remaining elements by

a = aDS (1 − C1 (t − t0))
2

(A.134)

e = eDS − B∗C4 (t − t0) (A.135)

L = MDS + ωDS + ΩDS + n′

0

(

3

2
C1 (t − t0)

2

)

(A.136)

where aDS, eDS, MDS, ωDS and ΩDS are the values of n0, e0, MDF, ωDS and Ω after
deep-space secular and resonance perturbations have been added.

Then SDP4 calls the periodics section of DEEP which adds the deep-space lunar and
solar periodics to the orbital elements. From this points on it will be assumed that
n, e, i, ω, Ω and M after lunar-solar periodics have been added.

Now the long term-period periodic terms are added. Up from this point the model
is identical with the SGP4 model. The deep-space perturbations in DEEP are mainly
developed from [21] and [22], they are extensive and should not be repeated here.
How the function is integrated in the procedure of calculation is described above.

A.4.4 Boundaries of the NORAD models

The SGP models take into account that there are more forces acting on the satellite
then just the gravitational force which is stated in Newton’s law. In addition to these
major force the other forces which causes additional accelerations on the satellite
have to be taken into account in order to describe its trajectory. The SGP models
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were the first mathematically exact description of these forces. Since 1988 these
models are valid and used in various kinds of propagation tools. Since these models
were first introduced, they changed just in the precision of the TLE elements. In
section 2.4.2 it was shown how different perturbations acts in which way on the
Keplerian elements and in which way they change the orbit. Here very briefly the
boundaries of these models should be shown for the sake of completeness.

Figure A.2: Nutation

At first it should be mentioned that all the
equations which are used in the SGP mod-
els do not contain relativistic effects due to
the effect of the height and velocity. These
principles are stated in Einstein’s special
theory of relativity. These effects are very
minute but especially for time depending
link establishment they are important (e.g.
GPS system, due to the relativistic effects,
the time on the satellites differ from UTC
at about 5.28 · 10−8%. This error seems
to be very small but for an orbital period,
this is a differenece of 4.44 · 10−10T and
leads to an error in the orbit of about 13.3
cm per period).

Another effect which is not included in the
SGP model is the nutation of the Earth.
The Earth is a non ideal spherical body (cf.
fig. A.1) especially due to the flattening of
the Earth, the equatorial diameter is ≈ 43
km bigger than the polar diameter. The Sun and the Moon acts on this oblateness.
This force is bigger on the day side as it is on the night sight, therefore there is a
torque which tries to stabilises the axis of the Earth. This means this force tries to
reduce the tilt of the ecliptic. In this case the tilt of the Earth’s axis goes around in a
circle in the opposite direction to the spinning direction, the precession is considered
in the SGP models. The nutation is a superposed motion to the precession see fig.
A.2. This force is a result of the Moon’s orbit. The orbit of the Moon is inclined
by 5.1◦ to the ecliptic, thus that the declination is changing every time. Due to this
inclined orbit the gravitational force of the Moon has to be added or subtracted
from the Sun’s gravitational effect. But the effect of this nutation is very small
the semimajor axis of this nutation ellipse is 9′′.6 across the precession and the
semiminor axis is 6′′.9 in the direction of the precession. Therefore this motion has
just a minute effect on the orbit of a satellite.

The SGP models also does not consider forces due to the gravitational effects of
other planets in our solar system. In order to do so the three body or even the n
body problem has to be considered. The SDP4 model tries to solve this problem in
a numerical way but up to now this is just an approximation to the solution of a
n body problem. Also the other perturbations in deep space are just considered as
mean forces which acts on the satellite without precise analytical solutions.
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A.5 Acceleration on Earth orbiting Satellites

In addition to the perturbations which were discussed in the sections above, this
section gives an overview of all additional accelerations which could have an influence
on the orbit of a satellite. Some of these forces could only be derived in very complex
numerical models and should not be considered here. For more details see [33].

Figure A.3: Accelerations on Earth orbiting Satellites (source: [33])

A.6 Earth’s Magnetic Field Additions

A.6.1 Quasi Schmidt normalised

The geomagnetic scalar potential V has quasi Schmidt- normalised associated Leg-
endre functions in the expression ~Pm

n cos (θ) of degree n and order m. They can be
described by the associated Legendre functions which are normalised by the con-
stants
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(A.137)
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which gives the normalised associated Legendre functions
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B MATLAB

This section shows the MATLAB r© functions which are included in Vis Sat and
some additional information of the implementation. The functions and the HTML
documentation is included on the CD-Rom.

B.1 Explanation: MATLAB r© /MEX

MEX functions (or files) are executable C/C++ or FORTRAN subroutines in the
MATLAB r© environment which are produced by the specified mex-compiler. The
compiler generates under Windows c© an dll file which can be used under MAT-
LAB r© like a normal built in function. The advantage of such implementations are,
that the functions can use the large C/C++ or FORTRAN libraries during the cal-
culations. Especially when the code contains a huge amount of loop structures or
scalar mathematical operations it is reasonable to implement this code in a MEX

function, because MATLAB r© has a weakness when it comes to loop structures, so in
order to keep the processing time to a minimum a MEX function is the best choice9.
In MATLAB r© the command mex creates from a C/C++ code the dll file. In order
to do so, the C/C++ code must contain a gateway function called mexFunction()

which connects the MATLAB r© environment with the C/C++ code. The usage mes-
sages must be described in an additional m-file with the same name as the MEX

function. Then MATLAB r© will show the content of the m-file after the command
>> help <name of dll>. The gateway function of the MEX function has the follow-
ing syntax

void mexFunction( int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

The four parameter describes the input and output arguments of the MEX function
(left hand side and right hand side). The field plhs and prhs are pointer for the ob-
jects, nlhs and nrhs contain the number of elements in the field. In the C/C++ code
it is possible to access these fields by using the function void getParameters(...).
So it is possible to set the local variables in the C/C++ code to the passed variables
in MATLAB r© .

B.2 norad2kep.m

function satellite=norad2kep(file,name)

%NORAD2KEP Get orbit elements from NORAD two-line element data, does not

% include the classification data. The TLE data could be received from

% http://celestrak.com/NORAD/elements/

%

% SATELLITE = NORAD2KEP([FILE],[NAME]), is an array of struct

%

% SATELLITE.name name of the satellite

9It should be mentioned here, that there are some incompatibilities in
the MATLAB r© 7.0 SP1 environment for FORTRAN MEX functions see also
http://www.mathworks.com/support/tech-notes/1600/1601 files/1601 70.html thats why in
this thesis a conversion from FORTRAN to C++ was necessary before using a MEX function and
only the C++ MEX procedure should be described here
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B.2 norad2kep.m MATLAB

% SATELLITE.tle tle elements

% SATELLITE.epochC calender date

% SATELLITE.epochN NORAD date

%

% Structure of tle

% tle(1) Julian date, tle(2) 1st derivation n0, tle(3) 2nd derivation n0

% tle(4) BSTAR, tle(5) inclination, tle(6) RAAN, tle(7) eccentricity,

% tle(8) argument of perigee, tle(9) mean anomaly, tle(10) mean motion

% tle(11) revolution number;

%

% notation/conversions see:

% Davidoff, M.R., Satellite Experimenters Handbook, 2nd Edition, American

% Radio Relay League, 1990.

%

% Copyright (c) 2005-08-20, P.Daum

% the NORAD data elemets are included in the VIS SAT 1.0 package

% -------------------------- begin of open file --------------------------

% default input control

if nargin<2

msgbox(’no satellite name specified’,’info’,’warn’);

satellite=[]; % no information

return;

end;

if nargin==0

msgbox(’no filename specified’,’info’,’warn’);

satellite=[]; % no information

return;

end;

if exist(file,’file’)==0

msgbox(’file does not exist’,’info’,’warn’);

satellite=[]; % no information

return;

end;

% open specified file

fp=fopen(file,’r’);

% serach for satellites name

found=false;

while (feof(fp) == 0)

% read three lines of each TLE record

cline1 = fgetl(fp);

cline2 = fgetl(fp);

cline3 = fgetl(fp);

% look for specified satellite name

if (strcmp(lower(deblank(cline1)), lower(deblank(name)))==1)

found=true; break;

end

end

% specified satellite is not found

if not(found)

msgbox([’satellite with the name ’,upper(name),’ not found’],...

’info’,’warn’);

satellite=[]; % no information

return;

end;

fclose(fp);

% -------------------------- end of open file ----------------------------

ae = 1;

% epoch year (2 digits)

yr = str2num(cline2(19:20));

% epoch day fraction

dayofyear = str2num(cline2(21:32));

% NORAD specification

epochN=(1e3.*yr)+ dayofyear;

% time conversion

if (yr < 57) yr = 2000 + yr; else yr = 1900 + yr; end

xjdtmp = julian(1, 0, yr);

% Julian date of the epoch

xjdtle = xjdtmp + dayofyear;

% d/dt of mean motin

ndt = str2num(cline2(34:43));

% d2/dt2 of mean motin

nd2t = 1.0e-5.*str2num(cline2(45:50)).*(10^str2num(cline2(51:52)));

% bstar drag term

bstar = 1.0e-5.*str2num(cline2(54:59)).*(10^str2num(cline2(60:61)))./ae;

% orbit inclination

incl = str2num(cline3(9:16));

% right ascension of ascending node

raan = str2num(cline3(18:25));

% eccentricity

ecc = 1.0e-7.*str2num(cline3(27:33));

% argument of perigee

omegao = str2num(cline3(35:42));

% mean anomaly

mo = str2num(cline3(44:51));

% mean motion

no = str2num(cline3(53:63));

% revolution number

rev = str2num(cline3(64:68));

% calender date conversion

% year, month, day/time
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epoch=datevec(datenum(yr, 0 , dayofyear));

% could be converted to normal calender date by datestr(epoch,0)

% return of the struct

satellite.name=deblank(upper(name));

% orbit elements

satellite.tle(1)=xjdtle;

satellite.tle(2)=ndt;

satellite.tle(3)=nd2t;

satellite.tle(4)=bstar;

satellite.tle(5)=incl;

satellite.tle(6)=raan;

satellite.tle(7)=ecc;

satellite.tle(8)=omegao;

satellite.tle(9)=mo;

satellite.tle(10)=no;

satellite.tle(11)=rev;

% epoch in calender date for

satellite.epochC=epoch;

% epoch in special date form

satellite.epochN=epochN;

return

% ------------------------------------------------------------------------

% ------------------- Julian date conversion -----------------------------

% ------------------------------------------------------------------------

function jdate = julian (month, day, year)

y = year; m = month; b = 0; c = 0;

if (m <= 2)

y = y - 1;

m = m + 12;

end

if (y < 0)

c = -.75;

end

% check for valid calendar date

if (year < 1582)

% null

elseif (year > 1582)

a = fix(y / 100);

b = 2 - a + floor(a / 4);

elseif (month < 10)

% null

elseif (month > 10)

a = fix(y / 100);

b = 2 - a + floor(a / 4);

elseif (day <= 4)

% null

elseif (day > 14)

a = fix(y / 100);

b = 2 - a + floor(a / 4);

else

msgbox(’this is an invalid calendar date’,’info’,’warn’);

jdate=[]; % no information

return;

end

% calculate the Julian date

jd = fix(365.25 * y + c) + fix(30.6001 * (m + 1));

jdate = jd + day + b + 1720994.5;

return;

B.3 orbit.m

/**********************************************************************************************************************************\

* MATLAB MEX FUNCTION ORBIT *

* SGP4/SDP4 implementation for VIS SAT *

\**********************************************************************************************************************************/

/*--------------------------------------------------------------------------------------------------------------------------------*/

/*********************************************** DEFINITION PART ******************************************************************/

/*--------------------------------------------------------------------------------------------------------------------------------*/

#define _ISOC99_SOURCE

#include <ctype.h>

#include <curses.h>

#include <fcntl.h>

#include <math.h>

#include <netdb.h>

#include <netinet/in.h>

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <termios.h>

#include <time.h>

#include <unistd.h>

#include "mex.h"

#include "matrix.h"

/* constants used by SGP4/SDP4 code */

/* direct imported from FORTRAN */

#define deg2rad 1.745329251994330E-2 /* degrees to radians */

#define pi 3.14159265358979323846 /* PI */
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#define pio2 1.57079632679489656 /* PI/2 */

#define twopi 6.28318530717958623 /* 2*PI */

#define x3pio2 4.71238898038468967 /* 3*PI/2 */

#define e6a 1.0E-6

#define tothrd 6.6666666666666666E-1 /* 2/3 */

#define xj2 1.0826158E-3 /* J2 harmonic */

#define xj3 -2.53881E-6 /* J3 harmonic */

#define xj4 -1.65597E-6 /* J4 harmonic */

#define xke 7.43669161E-2

#define xkmper 6.378137E3 /* Earth radius km */

#define xmnpda 1.44E3 /* minutes per day */

#define ae 1.0

#define ck2 5.413079E-4

#define ck4 6.209887E-7

#define f 3.35281066474748E-3 /* flattening factor */

#define ge 3.986008E5 /* Earth grav. constant */

#define s 1.012229

#define qoms2t 1.880279E-09

#define secday 8.6400E4 /* seconds per day */

#define omega_E 1.00273790934 /* Earth rot./sid. day */

#define omega_ER 6.3003879 /* Earth rot. rads/sid. */

#define zns 1.19459E-5

#define c1ss 2.9864797E-6

#define zes 1.675E-2

#define znl 1.5835218E-4

#define c1l 4.7968065E-7

#define zel 5.490E-2

#define zcosis 9.1744867E-1

#define zsinis 3.9785416E-1

#define zsings -9.8088458E-1

#define zcosgs 1.945905E-1

#define zcoshs 1

#define zsinhs 0

#define q22 1.7891679E-6

#define q31 2.1460748E-6

#define q33 2.2123015E-7

#define g22 5.7686396

#define g32 9.5240898E-1

#define g44 1.8014998

#define g52 1.0508330

#define g54 4.4108898

#define root22 1.7891679E-6

#define root32 3.7393792E-7

#define root44 7.3636953E-9

#define root52 1.1428639E-7

#define root54 2.1765803E-9

#define thdt 4.3752691E-3

#define rho 1.5696615E-1

#define sr 6.96000E5 /* solar radius */

/* entry points of DEEP for SDP4 */

#define dpinit 1 /* Deep-space initialization code */

#define dpsec 2 /* Deep-space secular code */

#define dpper 3 /* Deep-space periodic code */

/* the flow is controlled by flags, to displace the GO TO in FORTRAN */

#define ALL_FLAGS -1

#define SGP4_INITIALIZED_FLAG 0x000002

#define SDP4_INITIALIZED_FLAG 0x000004

#define SIMPLE_FLAG 0x000020

#define DEEP_SPACE_EPHEM_FLAG 0x000040

#define LUNAR_TERMS_DONE_FLAG 0x000080

#define DO_LOOP_FLAG 0x000200

#define RESONANCE_FLAG 0x000400

#define SYNCHRONOUS_FLAG 0x000800

#define EPOCH_RESTART_FLAG 0x001000

/* Two-line-element satellite orbital data structure */

typedef struct {

double epoch, xndt2o, xndd6o, bstar, xincl,

xnodeo, eo, omegao, xmo, xno;

int catnr, elset, revnum;

char sat_name[25], idesg[9];

} tle_t;

/* geodetic position structure used by SGP4/SDP4 code. */

typedef struct {

double lat, lon, alt, theta;

} geodetic_t;

/* general three-dimensional vector structure used by SGP4/SDP4 code. */

typedef struct {

double x, y, z, w;

} vector_t;

/* common arguments between deep-space functions used by SGP4/SDP4 code. */

typedef struct {

/* Used by dpinit part of DEEP */

double eosq, sinio, cosio, betao, aodp, theta2,

sing, cosg, betao2, xmdot, omgdot, xnodot, xnodp;

/* Used by dpsec and dpper parts of DEEP */

double xll, omgadf, xnode, em, xinc, xn, t;

/* Used by thetg and DEEP */

double ds50;

} deep_arg_t;
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/*--------------------------------------------------------------------------------------------------------------------------------*/

/********************************************** END DEFINITION PART ***************************************************************/

/*--------------------------------------------------------------------------------------------------------------------------------*/

/*--------------------------------------------------------------------------------------------------------------------------------*/

/************************************************* INTERFACES *********************************************************************/

/*--------------------------------------------------------------------------------------------------------------------------------*/

/* MATLAB gateway */

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]);

void getParameters( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]);

/* FLAG functions */

int isFlagSet(int flag);

int isFlagClear(int flag);

void SetFlag(int flag);

void ClearFlag(int flag);

/* MATHEMATICAL functions */

int Sign(double arg);

double Sqr(double arg);

double Cube(double arg);

double Radians(double arg);

double Degrees(double arg);

double ArcSin(double arg);

double ArcCos(double arg);

void Magnitude(vector_t *v);

void Vec_Add(vector_t *v1, vector_t *v2, vector_t *v3);

void Vec_Sub(vector_t *v1, vector_t *v2, vector_t *v3);

void Scalar_Multiply(double k, vector_t *v1, vector_t *v2);

void Scale_Vector(double k, vector_t *v);

double Dot(vector_t *v1, vector_t *v2);

double Angle(vector_t *v1, vector_t *v2);

void Cross(vector_t *v1, vector_t *v2 ,vector_t *v3);

void Normalize(vector_t *v);

double AcTan(double sinx, double cosx);

double FMod2p(double x);

double FixAngle(double x);

double Modulus(double arg1, double arg2);

double Frac(double arg);

int Round(double arg);

double Int(double arg);

int Sat_Eclipsed(vector_t *pos, vector_t *sol, double *depth);

/* time conversion */

void Date_Time(double julian_date, struct tm *cdate);

double Julian_Date(struct tm *cdate);

double Fraction_of_Day(int hr, int mi, double se);

int DOY (int yr, int mo, int dy);

double Julian_Date_of_Epoch(double epoch);

double Julian_Date_of_Year(double year);

double ThetaG_JD(double jd);

double ThetaG(double epoch, deep_arg_t *deep_arg);

/* SGP4/SDP4 functions */

void select_ephemeris(tle_t *tle);

void SGP4(double tsince, tle_t * tle, double *position, double *velocity);

void Deep(int ientry, tle_t * tle, deep_arg_t * deep_arg);

void SDP4(double tsince, tle_t * tle, double *position, double *velocity);

/* global variables */

double tsince, jul_epoch, jul_utc, eclipse_depth=0,

phase, daynum, ax, ay, az, rx, ry, rz, squint, alat, alon;

char temp[80], calc_squint;

int Flags=0;

/* global structure used by SGP4/SDP4 code */

geodetic_t obs_geodetic;

/* global TLE for the satellite used by SGP4/SDP4 code. */

tle_t tle;

/*--------------------------------------------------------------------------------------------------------------------------------*/

/******************************************************* GATEWAY ******************************************************************/

/*--------------------------------------------------------------------------------------------------------------------------------*/

void mexFunction( int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[])

{

ClearFlag(ALL_FLAGS);

getParameters(nlhs, plhs, nrhs, prhs);

select_ephemeris(&tle);

if (isFlagSet(DEEP_SPACE_EPHEM_FLAG))

SDP4(tsince, &tle, mxGetPr(plhs[0]),mxGetPr(plhs[1]));

else

SGP4(tsince, &tle, mxGetPr(plhs[0]),mxGetPr(plhs[1]));

}

/*--------------------------------------------------------------------------------------------------------------------------------*/

/****************************************************** END GATEWAY ***************************************************************/

/*--------------------------------------------------------------------------------------------------------------------------------*/

/*

* Set default values and create vectors for output.
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*

* SYNTAX

* orbit(xjdtle,ndt,nd2t,bstar,incl,raan,ecc,omegao,mo,no,rev,tsince)

*/

void getParameters( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

/* input parameters */

tle.epoch= *mxGetPr(prhs[0]);

tle.xndt2o= *mxGetPr(prhs[1]);

tle.xndd6o= *mxGetPr(prhs[2]);

tle.bstar= *mxGetPr(prhs[3]);

tle.xincl= *mxGetPr(prhs[4]);

tle.xnodeo= *mxGetPr(prhs[5]);

tle.eo= *mxGetPr(prhs[6]);

tle.omegao= *mxGetPr(prhs[7]);

tle.xmo= *mxGetPr(prhs[8]);

tle.xno= *mxGetPr(prhs[9]);

tle.revnum= *mxGetPr(prhs[10]);

tsince = *mxGetPr(prhs[11]);

/* output vectors */

plhs[0]=mxCreateDoubleMatrix(3, 1, mxREAL); /* position vector 3x1 real */

plhs[1]=mxCreateDoubleMatrix(3, 1, mxREAL); /* velocity vector 3x1 real */

}

/* testing and setting/clearing flags used in SGP4/SDP4 code */

int isFlagSet(int flag)

{

return (Flags&flag);

}

int isFlagClear(int flag)

{

return (~Flags&flag);

}

void SetFlag(int flag)

{

Flags|=flag;

}

void ClearFlag(int flag)

{

Flags&=~flag;

}

/*--------------------------------------------------------------------------------------------------------------------------------*/

/* functions for SGP4/SDP4 */

/*--------------------------------------------------------------------------------------------------------------------------------*/

/* returns sign of a double */

int Sign(double arg)

{

if (arg>0)

return 1;

else if (arg<0)

return -1;

else

return 0;

}

/* returns square of a double */

double Sqr(double arg)

{

return (arg*arg);

}

/* returns cube of a double */

double Cube(double arg)

{

return (arg*arg*arg);

}

/* returns angle in radians from argument in degrees */

double Radians(double arg)

{

return (arg*deg2rad);

}

/* returns angle in degrees from argument in radians */

double Degrees(double arg)

{

return (arg/deg2rad);

}

/* returns the arcsine of the argument */

double ArcSin(double arg)

{

if (fabs(arg)>=1.0)

return(Sign(arg)*pio2);

else

return(atan(arg/sqrt(1.0-arg*arg)));

}
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/* returns arccosine of argument */

double ArcCos(double arg)

{

return(pio2-ArcSin(arg));

}

/* calculates scalar magnitude of a vector_t argument */

void Magnitude(vector_t *v)

{

v->w=sqrt(Sqr(v->x)+Sqr(v->y)+Sqr(v->z));

}

/* adds vectors v1 and v2 together to produce v3 */

void Vec_Add(vector_t *v1, vector_t *v2, vector_t *v3)

{

v3->x=v1->x+v2->x;

v3->y=v1->y+v2->y;

v3->z=v1->z+v2->z;

Magnitude(v3);

}

/* subtracts vector v2 from v1 to produce v3 */

void Vec_Sub(vector_t *v1, vector_t *v2, vector_t *v3)

{

v3->x=v1->x-v2->x;

v3->y=v1->y-v2->y;

v3->z=v1->z-v2->z;

Magnitude(v3);

}

/* multiplies the vector v1 by the scalar k to produce the vector v2 */

void Scalar_Multiply(double k, vector_t *v1, vector_t *v2)

{

v2->x=k*v1->x;

v2->y=k*v1->y;

v2->z=k*v1->z;

v2->w=fabs(k)*v1->w;

}

/* multiplies the vector v1 by the scalar k */

void Scale_Vector(double k, vector_t *v)

{

v->x*=k;

v->y*=k;

v->z*=k;

Magnitude(v);

}

/* returns the dot product of two vectors */

double Dot(vector_t *v1, vector_t *v2)

{

return (v1->x*v2->x+v1->y*v2->y+v1->z*v2->z);

}

/* calculates the angle between vectors v1 and v2 */

double Angle(vector_t *v1, vector_t *v2)

{

Magnitude(v1);

Magnitude(v2);

return(ArcCos(Dot(v1,v2)/(v1->w*v2->w)));

}

/* produces cross product of v1 and v2, and returns in v3 */

void Cross(vector_t *v1, vector_t *v2 ,vector_t *v3)

{

v3->x=v1->y*v2->z-v1->z*v2->y;

v3->y=v1->z*v2->x-v1->x*v2->z;

v3->z=v1->x*v2->y-v1->y*v2->x;

Magnitude(v3);

}

/* mormalizes a vector */

void Normalize(vector_t *v)

{

v->x/=v->w;

v->y/=v->w;

v->z/=v->w;

}

/* four-quadrant arctan function */

double AcTan(double sinx, double cosx)

{

if (cosx==0.0)

{

if (sinx>0.0)

return (pio2);

else

return (x3pio2);

}

else

{

if (cosx>0.0)

{

if (sinx>0.0)

return (atan(sinx/cosx));

else

return (twopi+atan(sinx/cosx));
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}

else

return (pi+atan(sinx/cosx));

}

}

/* returns mod 2PI of argument */

double FMod2p(double x)

{

int i;

double ret_val;

ret_val=x;

i=ret_val/twopi;

ret_val-=i*twopi;

if (ret_val<0.0)

ret_val+=twopi;

return ret_val;

}

/* reduces angles greater than two pi by subtracting two pi from the angle */

double FixAngle(x)

double x;

{

while (x>twopi)

x-=twopi;

return x;

}

/* returns arg1 mod arg2 */

double Modulus(double arg1, double arg2)

{

int i;

double ret_val;

ret_val=arg1;

i=ret_val/arg2;

ret_val-=i*arg2;

if (ret_val<0.0)

ret_val+=arg2;

return ret_val;

}

/* returns fractional part of double argument */

double Frac(double arg)

{

return(arg-floor(arg));

}

/* returns argument rounded up to nearest integer */

int Round(double arg)

{

return((int)floor(arg+0.5));

}

/* returns the floor integer of a double arguement, as double */

double Int(double arg)

{

return(floor(arg));

}

/* calculates the Julian Date */

double Julian_Date_of_Year(double year)

{

/* Astronomical Formulae for Calculators, Jean Meeus, */

/* pages 23-25. Calculate Julian Date of 0.0 Jan year */

long A, B, i;

double jdoy;

year=year-1;

i=year/100;

A=i;

i=A/4;

B=2-A+i;

i=365.25*year;

i+=30.6001*14;

jdoy=i+1720994.5+B;

return jdoy;

}

/* returns the Julian Date of an epoch specified in the format used in */

/* the NORAD two-line element sets. */

double Julian_Date_of_Epoch(double epoch)

{

double year, day;

/* modification to support Y2K */

/* valid 1957 through 2056 */

day=modf(epoch*1E-3, &year)*1E3;
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if (year<57)

year=year+2000;

else

year=year+1900;

return (Julian_Date_of_Year(year)+day);

}

/* calculates the day of the year for the specified date. The calculation */

/* uses the rules for the Gregorian calendar */

int DOY (int yr, int mo, int dy)

{

const int days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

int i, day;

day=0;

for (i=0; i<mo-1; i++ )

day+=days[i];

day=day+dy;

/* Leap year correction */

if ((yr%4==0) && ((yr%100!=0) || (yr%400==0)) && (mo>2))

day++;

return day;

}

/* calculates the fraction of a day passed at the specified input time. */

double Fraction_of_Day(int hr, int mi, double se)

{

double dhr, dmi;

dhr=(double)hr;

dmi=(double)mi;

return ((dhr+(dmi+se/60.0)/60.0)/24.0);

}

/* converts a standard calendar date and time to a Julian Date. */

double Julian_Date(struct tm *cdate)

{

double julian_date;

julian_date=Julian_Date_of_Year(cdate->tm_year)+DOY(cdate->tm_year,

cdate->tm_mon,cdate->tm_mday)+Fraction_of_Day(cdate->tm_hour,

cdate->tm_min,cdate->tm_sec)+5.787037e-06;

return julian_date;

}

/* converts a Julian Date to standard calendar date and time */

void Date_Time(double julian_date, struct tm *cdate)

{

time_t jtime;

jtime=(julian_date-2440587.5)*86400.0;

*cdate=*gmtime(&jtime);

}

/* The function ThetaG_JD calculates the Greenwich Mean Sidereal Time for an */

/* epoch specified in the JD */

/* Reference: The 1992 Astronomical Almanac, page B6. */

double ThetaG_JD(double jd)

{

double UT, TU, GMST;

UT=Frac(jd+0.5);

jd=jd-UT;

TU=(jd-2451545.0)/36525;

GMST=24110.54841+TU*(8640184.812866+TU*(0.093104-TU*6.2E-6));

GMST=Modulus(GMST+secday*omega_E*UT,secday);

return (twopi*GMST/secday);

}

/* The function ThetaG calculates the Greenwich Mean Sidereal Time for an */

/* epoch specified in the format used in the NORAD two-line element sets. */

/* Reference: The 1992 Astronomical Almanac, page B6. */

double ThetaG(double epoch, deep_arg_t *deep_arg)

{

double year, day, UT, jd, TU, GMST, ThetaG;

/* Modification to support Y2K */

/* Valid 1957 through 2056 */

day=modf(epoch*1E-3,&year)*1E3;

if (year<57)

year+=2000;

else

year+=1900;
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UT=modf(day,&day);

jd=Julian_Date_of_Year(year)+day;

TU=(jd-2451545.0)/36525;

GMST=24110.54841+TU*(8640184.812866+TU*(0.093104-TU*6.2E-6));

GMST=Modulus(GMST+secday*omega_E*UT,secday);

ThetaG=twopi*GMST/secday;

deep_arg->ds50=jd-2433281.5+UT;

ThetaG=FMod2p(6.3003880987*deep_arg->ds50+1.72944494);

return ThetaG;

}

/* calculates satellite’s eclipse status and depth */

int Sat_Eclipsed(vector_t *pos, vector_t *sol, double *depth)

{

double sd_sun, sd_earth, delta;

vector_t Rho, earth;

/* determine partial eclipse */

sd_earth=ArcSin(xkmper/pos->w);

Vec_Sub(sol,pos,&Rho);

sd_sun=ArcSin(sr/Rho.w);

Scalar_Multiply(-1,pos,&earth);

delta=Angle(sol,&earth);

*depth=sd_earth-sd_sun-delta;

if (sd_earth<sd_sun)

return 0;

else

if (*depth>=0)

return 1;

else

return 0;

}

/*--------------------------------------------------------------------------------------------------------------------------------*/

/* end functions for SGP4/SDP4 */

/*--------------------------------------------------------------------------------------------------------------------------------*/

/*--------------------------------------------------------------------------------------------------------------------------------*/

/* SGP4/SDP4 implementation */

/*--------------------------------------------------------------------------------------------------------------------------------*/

/* Selects the apropriate ephemeris type to be used for predictions */

/* according to the data in the TLE, it also processes values in the tle set */

/* so that they are apropriate for the SGP4/SDP4 routines */

void select_ephemeris(tle_t *tle)

{

double ao, xnodp, dd1, dd2, delo, temp, a1, del1, r1;

/* preprocess tle set */

tle->xnodeo*=deg2rad;

tle->omegao*=deg2rad;

tle->xmo*=deg2rad;

tle->xincl*=deg2rad;

temp=twopi/xmnpda/xmnpda;

tle->xno=tle->xno*temp*xmnpda;

tle->xndt2o*=temp;

tle->xndd6o=tle->xndd6o*temp/xmnpda;

tle->bstar/=ae;

/* period > 225 minutes is deep space */

dd1=(xke/tle->xno);

dd2=tothrd;

a1=pow(dd1,dd2);

r1=cos(tle->xincl);

dd1=(1.0-tle->eo*tle->eo);

temp=ck2*1.5f*(r1*r1*3.0-1.0)*pow(dd1,-1.5);

del1=temp/(a1*a1);

ao=a1*(1.0-del1*(tothrd*.5+del1*(del1*1.654320987654321+1.0)));

delo=temp/(ao*ao);

xnodp=tle->xno/(delo+1.0);

/* select a deep-space/near-earth ephemeris */

if (twopi/xnodp/xmnpda>=0.15625)

SetFlag(DEEP_SPACE_EPHEM_FLAG);

else

ClearFlag(DEEP_SPACE_EPHEM_FLAG);

}

/*--------------------------------------------------------------------------------------------------------------------------------*/

/**************************************** SGP4 ************************************************************************************/

/*--------------------------------------------------------------------------------------------------------------------------------*/

/* SGP 4 implementation. tsince is time since epoch in minutes, tle is a */

/* pointer to a tle_t structure with Keplerian orbital elements and position */

/* and velocity are the returning ECI satellite position and */

/* velocity in m and m/s. */

void SGP4(double tsince, tle_t * tle, double *position, double *velocity)

{

static double aodp, aycof, c1, c4, c5, cosio, d2, d3, d4, delmo,

omgcof, eta, omgdot, sinio, xnodp, sinmo, t2cof, t3cof, t4cof,

t5cof, x1mth2, x3thm1, x7thm1, xmcof, xmdot, xnodcf, xnodot, xlcof;

double cosuk, sinuk, rfdotk, vx, vy, vz, ux, uy, uz, xmy, xmx, cosnok,

sinnok, cosik, sinik, rdotk, xinck, xnodek, uk, rk, cos2u, sin2u,

u, sinu, cosu, betal, rfdot, rdot, r, pl, elsq, esine, ecose, epw,

cosepw, x1m5th, xhdot1, tfour, sinepw, capu, ayn, xlt, aynl, xll,
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axn, xn, beta, xl, e, a, tcube, delm, delomg, templ, tempe, tempa,

xnode, tsq, xmp, omega, xnoddf, omgadf, xmdf, a1, a3ovk2, ao,

betao, betao2, c1sq, c2, c3, coef, coef1, del1, delo, eeta, eosq,

etasq, perigee, pinvsq, psisq, qoms24, s4, temp, temp1, temp2,

temp3, temp4, temp5, temp6, theta2, theta4, tsi;

int i;

/* initialisation */

if (isFlagClear(SGP4_INITIALIZED_FLAG))

{

SetFlag(SGP4_INITIALIZED_FLAG);

/* recover original mean motion (xnodp) and */

/* semimajor axis (aodp) from input elements. */

a1=pow(xke/tle->xno,tothrd);

cosio=cos(tle->xincl);

theta2=cosio*cosio;

x3thm1=3*theta2-1.0;

eosq=tle->eo*tle->eo;

betao2=1.0-eosq;

betao=sqrt(betao2);

del1=1.5*ck2*x3thm1/(a1*a1*betao*betao2);

ao=a1*(1.0-del1*(0.5*tothrd+del1*(1.0+134.0/81.0*del1)));

delo=1.5*ck2*x3thm1/(ao*ao*betao*betao2);

xnodp=tle->xno/(1.0+delo);

aodp=ao/(1.0-delo);

/* for perigee less than 220 kilometers, the "simple" */

/* flag is set and the equations are truncated to linear */

/* variation in sqrt a and quadratic variation in mean */

/* anomaly. Also, the c3 term, the delta omega term, and */

/* the delta m term are dropped. (see thesis appendix A.4)*/

if ((aodp*(1-tle->eo)/ae)<(220/xkmper+ae))

SetFlag(SIMPLE_FLAG);

else

ClearFlag(SIMPLE_FLAG);

/* for perigees below 156 km, the */

/* values of s and qoms2t are altered. */

s4=s;

qoms24=qoms2t;

perigee=(aodp*(1-tle->eo)-ae)*xkmper;

if (perigee<156.0)

{

if (perigee<=98.0)

s4=20;

else

s4=perigee-78.0;

qoms24=pow((120-s4)*ae/xkmper,4);

s4=s4/xkmper+ae;

}

pinvsq=1/(aodp*aodp*betao2*betao2);

tsi=1/(aodp-s4);

eta=aodp*tle->eo*tsi;

etasq=eta*eta;

eeta=tle->eo*eta;

psisq=fabs(1-etasq);

coef=qoms24*pow(tsi,4);

coef1=coef/pow(psisq,3.5);

c2=coef1*xnodp*(aodp*(1+1.5*etasq+eeta*(4+etasq))+

0.75*ck2*tsi/psisq*x3thm1*(8+3*etasq*(8+etasq)));

c1=tle->bstar*c2;

sinio=sin(tle->xincl);

a3ovk2=-xj3/ck2*pow(ae,3);

c3=coef*tsi*a3ovk2*xnodp*ae*sinio/tle->eo;

x1mth2=1-theta2;

c4=2*xnodp*coef1*aodp*betao2*(eta*(2+0.5*etasq)+tle->eo*(0.5+2*etasq)-

2*ck2*tsi/(aodp*psisq)*(-3*x3thm1*(1-2*eeta+etasq*(1.5-0.5*eeta))+

0.75*x1mth2*(2*etasq-eeta*(1+etasq))*cos(2*tle->omegao)));

c5=2*coef1*aodp*betao2*(1+2.75*(etasq+eeta)+eeta*etasq);

theta4=theta2*theta2;

temp1=3*ck2*pinvsq*xnodp;

temp2=temp1*ck2*pinvsq;

temp3=1.25*ck4*pinvsq*pinvsq*xnodp;

xmdot=xnodp+0.5*temp1*betao*x3thm1+0.0625*temp2*betao*(13-78*theta2

+137*theta4);

x1m5th=1-5*theta2;

omgdot=-0.5*temp1*x1m5th+0.0625*temp2*(7-114*theta2+395*theta4)+temp3*

(3-36*theta2+49*theta4);

xhdot1=-temp1*cosio;

xnodot=xhdot1+(0.5*temp2*(4-19*theta2)+2*temp3*(3-7*theta2))*cosio;

omgcof=tle->bstar*c3*cos(tle->omegao);

xmcof=-tothrd*coef*tle->bstar*ae/eeta;

xnodcf=3.5*betao2*xhdot1*c1;

t2cof=1.5*c1;

xlcof=0.125*a3ovk2*sinio*(3+5*cosio)/(1+cosio);

aycof=0.25*a3ovk2*sinio;

delmo=pow(1+eta*cos(tle->xmo),3);

sinmo=sin(tle->xmo);

x7thm1=7*theta2-1;

if (isFlagClear(SIMPLE_FLAG))
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{

c1sq=c1*c1;

d2=4*aodp*tsi*c1sq;

temp=d2*tsi*c1/3;

d3=(17*aodp+s4)*temp;

d4=0.5*temp*aodp*tsi*(221*aodp+31*s4)*c1;

t3cof=d2+2*c1sq;

t4cof=0.25*(3*d3+c1*(12*d2+10*c1sq));

t5cof=0.2*(3*d4+12*c1*d3+6*d2*d2+15*c1sq*(2*d2+c1sq));

}

}

/* update for secular gravity and atmospheric drag. */

xmdf=tle->xmo+xmdot*tsince;

omgadf=tle->omegao+omgdot*tsince;

xnoddf=tle->xnodeo+xnodot*tsince;

omega=omgadf;

xmp=xmdf;

tsq=tsince*tsince;

xnode=xnoddf+xnodcf*tsq;

tempa=1-c1*tsince;

tempe=tle->bstar*c4*tsince;

templ=t2cof*tsq;

if (isFlagClear(SIMPLE_FLAG))

{

delomg=omgcof*tsince;

delm=xmcof*(pow(1+eta*cos(xmdf),3)-delmo);

temp=delomg+delm;

xmp=xmdf+temp;

omega=omgadf-temp;

tcube=tsq*tsince;

tfour=tsince*tcube;

tempa=tempa-d2*tsq-d3*tcube-d4*tfour;

tempe=tempe+tle->bstar*c5*(sin(xmp)-sinmo);

templ=templ+t3cof*tcube+tfour*(t4cof+tsince*t5cof);

}

a=aodp*pow(tempa,2);

e=tle->eo-tempe;

xl=xmp+omega+xnode+xnodp*templ;

beta=sqrt(1-e*e);

xn=xke/pow(a,1.5);

/* long period periodics */

axn=e*cos(omega);

temp=1/(a*beta*beta);

xll=temp*xlcof*axn;

aynl=temp*aycof;

xlt=xl+xll;

ayn=e*sin(omega)+aynl;

/* solve Kepler’s equation (numerical) */

capu=FMod2p(xlt-xnode);

temp2=capu;

i=0;

do

{

sinepw=sin(temp2);

cosepw=cos(temp2);

temp3=axn*sinepw;

temp4=ayn*cosepw;

temp5=axn*cosepw;

temp6=ayn*sinepw;

epw=(capu-temp4+temp3-temp2)/(1-temp5-temp6)+temp2;

if (fabs(epw-temp2)<= e6a)

break;

temp2=epw;

} while (i++<10);

/* short period preliminary quantities */

ecose=temp5+temp6;

esine=temp3-temp4;

elsq=axn*axn+ayn*ayn;

temp=1-elsq;

pl=a*temp;

r=a*(1-ecose);

temp1=1/r;

rdot=xke*sqrt(a)*esine*temp1;

rfdot=xke*sqrt(pl)*temp1;

temp2=a*temp1;

betal=sqrt(temp);

temp3=1/(1+betal);

cosu=temp2*(cosepw-axn+ayn*esine*temp3);

sinu=temp2*(sinepw-ayn-axn*esine*temp3);

u=AcTan(sinu,cosu);

sin2u=2*sinu*cosu;

cos2u=2*cosu*cosu-1;

temp=1/pl;

temp1=ck2*temp;

temp2=temp1*temp;

/* update for short periodics */

rk=r*(1-1.5*temp2*betal*x3thm1)+0.5*temp1*x1mth2*cos2u;

uk=u-0.25*temp2*x7thm1*sin2u;
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xnodek=xnode+1.5*temp2*cosio*sin2u;

xinck=tle->xincl+1.5*temp2*cosio*sinio*cos2u;

rdotk=rdot-xn*temp1*x1mth2*sin2u;

rfdotk=rfdot+xn*temp1*(x1mth2*cos2u+1.5*x3thm1);

/* orientation vectors */

sinuk=sin(uk);

cosuk=cos(uk);

sinik=sin(xinck);

cosik=cos(xinck);

sinnok=sin(xnodek);

cosnok=cos(xnodek);

xmx=-sinnok*cosik;

xmy=cosnok*cosik;

ux=xmx*sinuk+cosnok*cosuk;

uy=xmy*sinuk+sinnok*cosuk;

uz=sinik*sinuk;

vx=xmx*cosuk-cosnok*sinuk;

vy=xmy*cosuk-sinnok*sinuk;

vz=sinik*cosuk;

/* position and velocity */

position[0]=rk*ux;

position[1]=rk*uy;

position[2]=rk*uz;

velocity[0]=rdotk*ux+rfdotk*vx;

velocity[1]=rdotk*uy+rfdotk*vy;

velocity[2]=rdotk*uz+rfdotk*vz;

/* phase in radians */

phase=xlt-xnode-omgadf+twopi;

if (phase<0.0)

phase+=twopi;

phase=FMod2p(phase);

}

/*--------------------------------------------------------------------------------------------------------------------------------*/

/******************************************** SDP4 ********************************************************************************/

/*--------------------------------------------------------------------------------------------------------------------------------*/

/* SDP4 routine to to add lunar and solar perturbation effects to deep-space */

/* orbit objects (see thesis appendix A.4.2) */

void Deep(int ientry, tle_t * tle, deep_arg_t * deep_arg)

{

static double thgr, xnq, xqncl, omegaq, zmol, zmos, savtsn, ee2, e3,

xi2, xl2, xl3, xl4, xgh2, xgh3, xgh4, xh2, xh3, sse, ssi, ssg, xi3,

se2, si2, sl2, sgh2, sh2, se3, si3, sl3, sgh3, sh3, sl4, sgh4, ssl,

ssh, d3210, d3222, d4410, d4422, d5220, d5232, d5421, d5433, del1,

del2, del3, fasx2, fasx4, fasx6, xlamo, xfact, xni, atime, stepp,

stepn, step2, preep, pl, sghs, xli, d2201, d2211, sghl, sh1, pinc,

pe, shs, zsingl, zcosgl, zsinhl, zcoshl, zsinil, zcosil;

double a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, ainv2, alfdp, aqnv,

sgh, sini2, sinis, sinok, sh, si, sil, day, betdp, dalf, bfact, c,

cc, cosis, cosok, cosq, ctem, f322, zx, zy, dbet, dls, eoc, eq, f2,

f220, f221, f3, f311, f321, xnoh, f330, f441, f442, f522, f523,

f542, f543, g200, g201, g211, pgh, ph, s1, s2, s3, s4, s5, s6, s7,

se, sel, ses, xls, g300, g310, g322, g410, g422, g520, g521, g532,

g533, gam, sinq, sinzf, sis, sl, sll, sls, stem, temp, temp1, x1,

x2, x2li, x2omi, x3, x4, x5, x6, x7, x8, xl, xldot, xmao, xnddt,

xndot, xno2, xnodce, xnoi, xomi, xpidot, z1, z11, z12, z13, z2,

z21, z22, z23, z3, z31, z32, z33, ze, zf, zm, zmo, zn, zsing,

zsinh, zsini, zcosg, zcosh, zcosi, delt=0, ft=0;

switch (ientry)

{

case dpinit: /* entrance for deep space initialisation */

thgr=ThetaG(tle->epoch,deep_arg);

eq=tle->eo;

xnq=deep_arg->xnodp;

aqnv=1/deep_arg->aodp;

xqncl=tle->xincl;

xmao=tle->xmo;

xpidot=deep_arg->omgdot+deep_arg->xnodot;

sinq=sin(tle->xnodeo);

cosq=cos(tle->xnodeo);

omegaq=tle->omegao;

/* initialize lunar solar terms */

day=deep_arg->ds50+18261.5; /* days since 1900 Jan 0.5 */

if (day!=preep)

{

preep=day;

xnodce=4.5236020-9.2422029E-4*day;

stem=sin(xnodce);

ctem=cos(xnodce);

zcosil=0.91375164-0.03568096*ctem;

zsinil=sqrt(1-zcosil*zcosil);

zsinhl=0.089683511*stem/zsinil;

zcoshl=sqrt(1-zsinhl*zsinhl);

c=4.7199672+0.22997150*day;

gam=5.8351514+0.0019443680*day;

zmol=FMod2p(c-gam);
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zx=0.39785416*stem/zsinil;

zy=zcoshl*ctem+0.91744867*zsinhl*stem;

zx=AcTan(zx,zy);

zx=gam+zx-xnodce;

zcosgl=cos(zx);

zsingl=sin(zx);

zmos=6.2565837+0.017201977*day;

zmos=FMod2p(zmos);

}

/* do solar terms */

savtsn=1E20;

zcosg=zcosgs;

zsing=zsings;

zcosi=zcosis;

zsini=zsinis;

zcosh=cosq;

zsinh= sinq;

cc=c1ss;

zn=zns;

ze=zes;

zmo=zmos;

xnoi=1/xnq;

/* loop breaks when Solar terms are done a second */

/* time, after Lunar terms are initialized */

for (;;)

{

/* solar terms done again after Lunar terms are done */

a1=zcosg*zcosh+zsing*zcosi*zsinh;

a3=-zsing*zcosh+zcosg*zcosi*zsinh;

a7=-zcosg*zsinh+zsing*zcosi*zcosh;

a8=zsing*zsini;

a9=zsing*zsinh+zcosg*zcosi*zcosh;

a10=zcosg*zsini;

a2=deep_arg->cosio*a7+deep_arg->sinio*a8;

a4=deep_arg->cosio*a9+deep_arg->sinio*a10;

a5=-deep_arg->sinio*a7+deep_arg->cosio*a8;

a6=-deep_arg->sinio*a9+deep_arg->cosio*a10;

x1=a1*deep_arg->cosg+a2*deep_arg->sing;

x2=a3*deep_arg->cosg+a4*deep_arg->sing;

x3=-a1*deep_arg->sing+a2*deep_arg->cosg;

x4=-a3*deep_arg->sing+a4*deep_arg->cosg;

x5=a5*deep_arg->sing;

x6=a6*deep_arg->sing;

x7=a5*deep_arg->cosg;

x8=a6*deep_arg->cosg;

z31=12*x1*x1-3*x3*x3;

z32=24*x1*x2-6*x3*x4;

z33=12*x2*x2-3*x4*x4;

z1=3*(a1*a1+a2*a2)+z31*deep_arg->eosq;

z2=6*(a1*a3+a2*a4)+z32*deep_arg->eosq;

z3=3*(a3*a3+a4*a4)+z33*deep_arg->eosq;

z11=-6*a1*a5+deep_arg->eosq*(-24*x1*x7-6*x3*x5);

z12=-6*(a1*a6+a3*a5)+deep_arg->eosq*(-24*(x2*x7+x1*x8)-6*(x3*x6

+x4*x5));

z13=-6*a3*a6+deep_arg->eosq*(-24*x2*x8-6*x4*x6);

z21=6*a2*a5+deep_arg->eosq*(24*x1*x5-6*x3*x7);

z22=6*(a4*a5+a2*a6)+deep_arg->eosq*(24*(x2*x5+x1*x6)-6*(x4*x7+

x3*x8));

z23=6*a4*a6+deep_arg->eosq*(24*x2*x6-6*x4*x8);

z1=z1+z1+deep_arg->betao2*z31;

z2=z2+z2+deep_arg->betao2*z32;

z3=z3+z3+deep_arg->betao2*z33;

s3=cc*xnoi;

s2=-0.5*s3/deep_arg->betao;

s4=s3*deep_arg->betao;

s1=-15*eq*s4;

s5=x1*x3+x2*x4;

s6=x2*x3+x1*x4;

s7=x2*x4-x1*x3;

se=s1*zn*s5;

si=s2*zn*(z11+z13);

sl=-zn*s3*(z1+z3-14-6*deep_arg->eosq);

sgh=s4*zn*(z31+z33-6);

sh=-zn*s2*(z21+z23);

if (xqncl<5.2359877E-2)

sh=0;

ee2=2*s1*s6;

e3=2*s1*s7;

xi2=2*s2*z12;

xi3=2*s2*(z13-z11);

xl2=-2*s3*z2;

xl3=-2*s3*(z3-z1);

xl4=-2*s3*(-21-9*deep_arg->eosq)*ze;

xgh2=2*s4*z32;

xgh3=2*s4*(z33-z31);

xgh4=-18*s4*ze;

xh2=-2*s2*z22;

xh3=-2*s2*(z23-z21);

if (isFlagSet(LUNAR_TERMS_DONE_FLAG))

break;

/* do lunar terms */

sse=se;
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ssi=si;

ssl=sl;

ssh=sh/deep_arg->sinio;

ssg=sgh-deep_arg->cosio*ssh;

se2=ee2;

si2=xi2;

sl2=xl2;

sgh2=xgh2;

sh2=xh2;

se3=e3;

si3=xi3;

sl3=xl3;

sgh3=xgh3;

sh3=xh3;

sl4=xl4;

sgh4=xgh4;

zcosg=zcosgl;

zsing=zsingl;

zcosi=zcosil;

zsini=zsinil;

zcosh=zcoshl*cosq+zsinhl*sinq;

zsinh=sinq*zcoshl-cosq*zsinhl;

zn=znl;

cc=c1l;

ze=zel;

zmo=zmol;

SetFlag(LUNAR_TERMS_DONE_FLAG);

}

sse=sse+se;

ssi=ssi+si;

ssl=ssl+sl;

ssg=ssg+sgh-deep_arg->cosio/deep_arg->sinio*sh;

ssh=ssh+sh/deep_arg->sinio;

/* geopotential resonance initialisation for 12 hour orbits */

ClearFlag(RESONANCE_FLAG);

ClearFlag(SYNCHRONOUS_FLAG);

if (!((xnq<0.0052359877) && (xnq>0.0034906585)))

{

if ((xnq<0.00826) || (xnq>0.00924))

return;

if (eq<0.5)

return;

SetFlag(RESONANCE_FLAG);

eoc=eq*deep_arg->eosq;

g201=-0.306-(eq-0.64)*0.440;

if (eq<=0.65)

{

g211=3.616-13.247*eq+16.290*deep_arg->eosq;

g310=-19.302+117.390*eq-228.419*deep_arg->eosq+156.591*eoc;

g322=-18.9068+109.7927*eq-214.6334*deep_arg->eosq+146.5816*eoc;

g410=-41.122+242.694*eq-471.094*deep_arg->eosq+313.953*eoc;

g422=-146.407+841.880*eq-1629.014*deep_arg->eosq+1083.435 *eoc;

g520=-532.114+3017.977*eq-5740*deep_arg->eosq+3708.276*eoc;

}

else

{

g211=-72.099+331.819*eq-508.738*deep_arg->eosq+266.724*eoc;

g310=-346.844+1582.851*eq-2415.925*deep_arg->eosq+1246.113*eoc;

g322=-342.585+1554.908*eq-2366.899*deep_arg->eosq+1215.972*eoc;

g410=-1052.797+4758.686*eq-7193.992*deep_arg->eosq+3651.957*eoc;

g422=-3581.69+16178.11*eq-24462.77*deep_arg->eosq+12422.52*eoc;

if (eq<=0.715)

g520=1464.74-4664.75*eq+3763.64*deep_arg->eosq;

else

g520=-5149.66+29936.92*eq-54087.36*deep_arg->eosq+31324.56*eoc;

}

if (eq<0.7)

{

g533=-919.2277+4988.61*eq-9064.77*deep_arg->eosq+5542.21*eoc;

g521=-822.71072+4568.6173*eq-8491.4146*deep_arg->eosq+5337.524*eoc;

g532=-853.666+4690.25*eq-8624.77*deep_arg->eosq+5341.4*eoc;

}

else

{

g533=-37995.78+161616.52*eq-229838.2*deep_arg->eosq+109377.94*eoc;

g521 =-51752.104+218913.95*eq-309468.16*deep_arg->eosq+146349.42*eoc;

g532 =-40023.88+170470.89*eq-242699.48*deep_arg->eosq+115605.82*eoc;

}

sini2=deep_arg->sinio*deep_arg->sinio;

f220=0.75*(1+2*deep_arg->cosio+deep_arg->theta2);

f221=1.5*sini2;

f321=1.875*deep_arg->sinio*(1-2*deep_arg->cosio-3*deep_arg->theta2);

f322=-1.875*deep_arg->sinio*(1+2*deep_arg->cosio-3*deep_arg->theta2);

f441=35*sini2*f220;

f442=39.3750*sini2*sini2;

f522=9.84375*deep_arg->sinio*(sini2*(1-2*deep_arg->cosio-5*

deep_arg->theta2)+0.33333333*(-2+4*deep_arg->cosio+6*deep_arg->theta2));
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f523=deep_arg->sinio*(4.92187512*sini2*(-2-4*deep_arg->cosio+10*

deep_arg->theta2)+6.56250012*(1+2*deep_arg->cosio-3*deep_arg->theta2));

f542=29.53125*deep_arg->sinio*(2-8*deep_arg->cosio+deep_arg->theta2*

(-12+8*deep_arg->cosio+10*deep_arg->theta2));

f543=29.53125*deep_arg->sinio*(-2-8*deep_arg->cosio+deep_arg->theta2*

(12+8*deep_arg->cosio-10*deep_arg->theta2));

xno2=xnq*xnq;

ainv2=aqnv*aqnv;

temp1=3*xno2*ainv2;

temp=temp1*root22;

d2201=temp*f220*g201;

d2211=temp*f221*g211;

temp1=temp1*aqnv;

temp=temp1*root32;

d3210=temp*f321*g310;

d3222=temp*f322*g322;

temp1=temp1*aqnv;

temp=2*temp1*root44;

d4410=temp*f441*g410;

d4422=temp*f442*g422;

temp1=temp1*aqnv;

temp=temp1*root52;

d5220=temp*f522*g520;

d5232=temp*f523*g532;

temp=2*temp1*root54;

d5421=temp*f542*g521;

d5433=temp*f543*g533;

xlamo=xmao+tle->xnodeo+tle->xnodeo-thgr-thgr;

bfact=deep_arg->xmdot+deep_arg->xnodot+deep_arg->xnodot-thdt-thdt;

bfact=bfact+ssl+ssh+ssh;

}

else

{

SetFlag(RESONANCE_FLAG);

SetFlag(SYNCHRONOUS_FLAG);

/* synchronous resonance terms initialisation */

g200=1+deep_arg->eosq*(-2.5+0.8125*deep_arg->eosq);

g310=1+2*deep_arg->eosq;

g300=1+deep_arg->eosq*(-6+6.60937*deep_arg->eosq);

f220=0.75*(1+deep_arg->cosio)*(1+deep_arg->cosio);

f311=0.9375*deep_arg->sinio*deep_arg->sinio*(1+3*deep_arg->cosio)

-0.75*(1+deep_arg->cosio);

f330=1+deep_arg->cosio;

f330=1.875*f330*f330*f330;

del1=3*xnq*xnq*aqnv*aqnv;

del2=2*del1*f220*g200*q22;

del3=3*del1*f330*g300*q33*aqnv;

del1=del1*f311*g310*q31*aqnv;

fasx2=0.13130908;

fasx4=2.8843198;

fasx6=0.37448087;

xlamo=xmao+tle->xnodeo+tle->omegao-thgr;

bfact=deep_arg->xmdot+xpidot-thdt;

bfact=bfact+ssl+ssg+ssh;

}

xfact=bfact-xnq;

/* initialize integrator */

xli=xlamo;

xni=xnq;

atime=0;

stepp=720;

stepn=-720;

step2=259200;

return;

case dpsec: /* entrance for deep space secular effects */

deep_arg->xll=deep_arg->xll+ssl*deep_arg->t;

deep_arg->omgadf=deep_arg->omgadf+ssg*deep_arg->t;

deep_arg->xnode=deep_arg->xnode+ssh*deep_arg->t;

deep_arg->em=tle->eo+sse*deep_arg->t;

deep_arg->xinc=tle->xincl+ssi*deep_arg->t;

if (deep_arg->xinc<0)

{

deep_arg->xinc=-deep_arg->xinc;

deep_arg->xnode=deep_arg->xnode+pi;

deep_arg->omgadf=deep_arg->omgadf-pi;

}

if (isFlagClear(RESONANCE_FLAG))

return;

do

{

if ((atime==0)||((deep_arg->t>=0)&&(atime<0))||((deep_arg->t<0)&&(atime>=0)))

{

/* epoch restart */

if (deep_arg->t>=0)

delt=stepp;

else

delt=stepn;

atime=0;

xni=xnq;
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xli=xlamo;

}

else

{

if (fabs(deep_arg->t)>=fabs(atime))

{

if (deep_arg->t>0)

delt=stepp;

else

delt=stepn;

}

}

do

{

if (fabs(deep_arg->t-atime)>=stepp)

{

SetFlag(DO_LOOP_FLAG);

ClearFlag(EPOCH_RESTART_FLAG);

}

else

{

ft=deep_arg->t-atime;

ClearFlag(DO_LOOP_FLAG);

}

if (fabs(deep_arg->t)<fabs(atime))

{

if (deep_arg->t>=0)

delt=stepn;

else

delt=stepp;

SetFlag(DO_LOOP_FLAG | EPOCH_RESTART_FLAG);

}

/* dot terms calculated */

if (isFlagSet(SYNCHRONOUS_FLAG))

{

xndot=del1*sin(xli-fasx2)+del2*sin(2*(xli-fasx4))+del3*

sin(3*(xli-fasx6));

xnddt=del1*cos(xli-fasx2)+2*del2*cos(2*(xli-fasx4))+3*del3*

cos(3*(xli-fasx6));

}

else

{

xomi=omegaq+deep_arg->omgdot*atime;

x2omi=xomi+xomi;

x2li=xli+xli;

xndot=d2201*sin(x2omi+xli-g22)+d2211*sin(xli-g22)+d3210

*sin(xomi+xli-g32)+d3222*sin(-xomi+xli-g32)+d4410*

sin(x2omi+x2li-g44)+d4422*sin(x2li-g44)+d5220*sin(xomi+xli-g52)+d5232*

sin(-xomi+xli-g52)+d5421*sin(xomi+x2li-g54)+d5433*sin(-xomi+x2li-g54);

xnddt=d2201*cos(x2omi+xli-g22)+d2211*cos(xli-g22)+d3210*cos(xomi+xli-g32)+

d3222*cos(-xomi+xli-g32)+d5220*cos(xomi+xli-g52)+d5232*cos(-xomi+xli-g52)

+2*(d4410*cos(x2omi+x2li-g44)+d4422*cos(x2li-g44)+d5421*cos(xomi+x2li-g54)

+d5433*cos(-xomi+x2li-g54));

}

xldot=xni+xfact;

xnddt=xnddt*xldot;

if (isFlagSet(DO_LOOP_FLAG))

{

xli=xli+xldot*delt+xndot*step2;

xni=xni+xndot*delt+xnddt*step2;

atime=atime+delt;

}

} while (isFlagSet(DO_LOOP_FLAG) && isFlagClear(EPOCH_RESTART_FLAG));

} while (isFlagSet(DO_LOOP_FLAG) && isFlagSet(EPOCH_RESTART_FLAG));

deep_arg->xn=xni+xndot*ft+xnddt*ft*ft*0.5;

xl=xli+xldot*ft+xndot*ft*ft*0.5;

temp=-deep_arg->xnode+thgr+deep_arg->t*thdt;

if (isFlagClear(SYNCHRONOUS_FLAG))

deep_arg->xll=xl+temp+temp;

else

deep_arg->xll=xl-deep_arg->omgadf+temp;

return;

case dpper: /* entrance for lunar-solar periodics */

sinis=sin(deep_arg->xinc);

cosis=cos(deep_arg->xinc);

if (fabs(savtsn-deep_arg->t)>=30)

{

savtsn=deep_arg->t;

zm=zmos+zns*deep_arg->t;

zf=zm+2*zes*sin(zm);

sinzf=sin(zf);

f2=0.5*sinzf*sinzf-0.25;

f3=-0.5*sinzf*cos(zf);

ses=se2*f2+se3*f3;

sis=si2*f2+si3*f3;
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sls=sl2*f2+sl3*f3+sl4*sinzf;

sghs=sgh2*f2+sgh3*f3+sgh4*sinzf;

shs=sh2*f2+sh3*f3;

zm=zmol+znl*deep_arg->t;

zf=zm+2*zel*sin(zm);

sinzf=sin(zf);

f2=0.5*sinzf*sinzf-0.25;

f3=-0.5*sinzf*cos(zf);

sel=ee2*f2+e3*f3;

sil=xi2*f2+xi3*f3;

sll=xl2*f2+xl3*f3+xl4*sinzf;

sghl=xgh2*f2+xgh3*f3+xgh4*sinzf;

sh1=xh2*f2+xh3*f3;

pe=ses+sel;

pinc=sis+sil;

pl=sls+sll;

}

pgh=sghs+sghl;

ph=shs+sh1;

deep_arg->xinc=deep_arg->xinc+pinc;

deep_arg->em=deep_arg->em+pe;

if (xqncl>=0.2)

{

/* apply periodics directly */

ph=ph/deep_arg->sinio;

pgh=pgh-deep_arg->cosio*ph;

deep_arg->omgadf=deep_arg->omgadf+pgh;

deep_arg->xnode=deep_arg->xnode+ph;

deep_arg->xll=deep_arg->xll+pl;

}

else

{

/* apply periodics with Lyddane modification */

sinok=sin(deep_arg->xnode);

cosok=cos(deep_arg->xnode);

alfdp=sinis*sinok;

betdp=sinis*cosok;

dalf=ph*cosok+pinc*cosis*sinok;

dbet=-ph*sinok+pinc*cosis*cosok;

alfdp=alfdp+dalf;

betdp=betdp+dbet;

deep_arg->xnode=FMod2p(deep_arg->xnode);

xls=deep_arg->xll+deep_arg->omgadf+cosis*deep_arg->xnode;

dls=pl+pgh-pinc*deep_arg->xnode*sinis;

xls=xls+dls;

xnoh=deep_arg->xnode;

deep_arg->xnode=AcTan(alfdp,betdp);

/* this is a patch to Lyddane modification */

if (fabs(xnoh-deep_arg->xnode)>pi)

{

if (deep_arg->xnode<xnoh)

deep_arg->xnode+=twopi;

else

deep_arg->xnode-=twopi;

}

deep_arg->xll=deep_arg->xll+pl;

deep_arg->omgadf=xls-deep_arg->xll-cos(deep_arg->xinc)*deep_arg->xnode;

}

return;

}

}

/* SGP 4 implementation. tsince is time since epoch in minutes, tle is a */

/* pointer to a tle_t structure with Keplerian orbital elements and position */

/* and velocity are the returning ECI satellite position and */

/* velocity in m and m/s. */

void SDP4(double tsince, tle_t * tle, double *position, double *velocity)

{

int i;

static double x3thm1, c1, x1mth2, c4, xnodcf, t2cof, xlcof,

aycof, x7thm1;

double a, axn, ayn, aynl, beta, betal, capu, cos2u, cosepw, cosik,

cosnok, cosu, cosuk, ecose, elsq, epw, esine, pl, theta4, rdot,

rdotk, rfdot, rfdotk, rk, sin2u, sinepw, sinik, sinnok, sinu,

sinuk, tempe, templ, tsq, u, uk, ux, uy, uz, vx, vy, vz, xinck, xl,

xlt, xmam, xmdf, xmx, xmy, xnoddf, xnodek, xll, a1, a3ovk2, ao, c2,

coef, coef1, x1m5th, xhdot1, del1, r, delo, eeta, eta, etasq,

perigee, psisq, tsi, qoms24, s4, pinvsq, temp, tempa, temp1,

temp2, temp3, temp4, temp5, temp6, bx, by, bz, cx, cy, cz;

static deep_arg_t deep_arg;

/* initialisation */

if (isFlagClear(SDP4_INITIALIZED_FLAG))

{

SetFlag(SDP4_INITIALIZED_FLAG);

/* recover original mean motion (xnodp) and */

/* semimajor axis (aodp) from input elements. */

a1=pow(xke/tle->xno,tothrd);

deep_arg.cosio=cos(tle->xincl);
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deep_arg.theta2=deep_arg.cosio*deep_arg.cosio;

x3thm1=3*deep_arg.theta2-1;

deep_arg.eosq=tle->eo*tle->eo;

deep_arg.betao2=1-deep_arg.eosq;

deep_arg.betao=sqrt(deep_arg.betao2);

del1=1.5*ck2*x3thm1/(a1*a1*deep_arg.betao*deep_arg.betao2);

ao=a1*(1-del1*(0.5*tothrd+del1*(1+134/81*del1)));

delo=1.5*ck2*x3thm1/(ao*ao*deep_arg.betao*deep_arg.betao2);

deep_arg.xnodp=tle->xno/(1+delo);

deep_arg.aodp=ao/(1-delo);

/* for perigee below 156 km, the values */

/* of s and qoms2t are altered. */

s4=s;

qoms24=qoms2t;

perigee=(deep_arg.aodp*(1-tle->eo)-ae)*xkmper;

if (perigee<156.0)

{

if (perigee<=98.0)

s4=20.0;

else

s4=perigee-78.0;

qoms24=pow((120-s4)*ae/xkmper,4);

s4=s4/xkmper+ae;

}

pinvsq=1/(deep_arg.aodp*deep_arg.aodp*deep_arg.betao2*deep_arg.betao2);

deep_arg.sing=sin(tle->omegao);

deep_arg.cosg=cos(tle->omegao);

tsi=1/(deep_arg.aodp-s4);

eta=deep_arg.aodp*tle->eo*tsi;

etasq=eta*eta;

eeta=tle->eo*eta;

psisq=fabs(1-etasq);

coef=qoms24*pow(tsi,4);

coef1=coef/pow(psisq,3.5);

c2=coef1*deep_arg.xnodp*(deep_arg.aodp*(1+1.5*etasq+eeta*(4+etasq))+0.75*ck2*

tsi/psisq*x3thm1*(8+3*etasq*(8+etasq)));

c1=tle->bstar*c2;

deep_arg.sinio=sin(tle->xincl);

a3ovk2=-xj3/ck2*pow(ae,3);

x1mth2=1-deep_arg.theta2;

c4=2*deep_arg.xnodp*coef1*deep_arg.aodp*deep_arg.betao2*(eta*(2+0.5*etasq)+

tle->eo*(0.5+2*etasq)-2*ck2*tsi/(deep_arg.aodp*psisq)*(-3*x3thm1*(1-2*eeta+etasq*

(1.5-0.5*eeta))+0.75*x1mth2*(2*etasq-eeta*(1+etasq))*cos(2*tle->omegao)));

theta4=deep_arg.theta2*deep_arg.theta2;

temp1=3*ck2*pinvsq*deep_arg.xnodp;

temp2=temp1*ck2*pinvsq;

temp3=1.25*ck4*pinvsq*pinvsq*deep_arg.xnodp;

deep_arg.xmdot=deep_arg.xnodp+0.5*temp1*deep_arg.betao*x3thm1+0.0625*temp2*

deep_arg.betao*(13-78*deep_arg.theta2+137*theta4);

x1m5th=1-5*deep_arg.theta2;

deep_arg.omgdot=-0.5*temp1*x1m5th+0.0625*temp2*(7-114*deep_arg.theta2+395*theta4)+

temp3*(3-36*deep_arg.theta2+49*theta4);

xhdot1=-temp1*deep_arg.cosio;

deep_arg.xnodot=xhdot1+(0.5*temp2*(4-19*deep_arg.theta2)+2*temp3*(3-7*deep_arg.theta2))*

deep_arg.cosio;

xnodcf=3.5*deep_arg.betao2*xhdot1*c1;

t2cof=1.5*c1;

xlcof=0.125*a3ovk2*deep_arg.sinio*(3+5*deep_arg.cosio)/(1+deep_arg.cosio);

aycof=0.25*a3ovk2*deep_arg.sinio;

x7thm1=7*deep_arg.theta2-1;

/* initialise DEEP */

Deep(dpinit,tle,&deep_arg);

}

/* update for secular gravity and atmospheric drag */

xmdf=tle->xmo+deep_arg.xmdot*tsince;

deep_arg.omgadf=tle->omegao+deep_arg.omgdot*tsince;

xnoddf=tle->xnodeo+deep_arg.xnodot*tsince;

tsq=tsince*tsince;

deep_arg.xnode=xnoddf+xnodcf*tsq;

tempa=1-c1*tsince;

tempe=tle->bstar*c4*tsince;

templ=t2cof*tsq;

deep_arg.xn=deep_arg.xnodp;

/* update for deep-space secular effects */

deep_arg.xll=xmdf;

deep_arg.t=tsince;

Deep(dpsec, tle, &deep_arg);

xmdf=deep_arg.xll;

a=pow(xke/deep_arg.xn,tothrd)*tempa*tempa;

deep_arg.em=deep_arg.em-tempe;

xmam=xmdf+deep_arg.xnodp*templ;

/* update for deep-space periodic effects */

deep_arg.xll=xmam;

Deep(dpper,tle,&deep_arg);

xmam=deep_arg.xll;

xl=xmam+deep_arg.omgadf+deep_arg.xnode;

beta=sqrt(1-deep_arg.em*deep_arg.em);
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deep_arg.xn=xke/pow(a,1.5);

/* long period periodics */

axn=deep_arg.em*cos(deep_arg.omgadf);

temp=1/(a*beta*beta);

xll=temp*xlcof*axn;

aynl=temp*aycof;

xlt=xl+xll;

ayn=deep_arg.em*sin(deep_arg.omgadf)+aynl;

/* solve Kepler’s equation */

capu=FMod2p(xlt-deep_arg.xnode);

temp2=capu;

i=0;

do

{

sinepw=sin(temp2);

cosepw=cos(temp2);

temp3=axn*sinepw;

temp4=ayn*cosepw;

temp5=axn*cosepw;

temp6=ayn*sinepw;

epw=(capu-temp4+temp3-temp2)/(1-temp5-temp6)+temp2;

if (fabs(epw-temp2)<=e6a)

break;

temp2=epw;

} while (i++<10);

/* short period preliminary quantities */

ecose=temp5+temp6;

esine=temp3-temp4;

elsq=axn*axn+ayn*ayn;

temp=1-elsq;

pl=a*temp;

r=a*(1-ecose);

temp1=1/r;

rdot=xke*sqrt(a)*esine*temp1;

rfdot=xke*sqrt(pl)*temp1;

temp2=a*temp1;

betal=sqrt(temp);

temp3=1/(1+betal);

cosu=temp2*(cosepw-axn+ayn*esine*temp3);

sinu=temp2*(sinepw-ayn-axn*esine*temp3);

u=AcTan(sinu,cosu);

sin2u=2*sinu*cosu;

cos2u=2*cosu*cosu-1;

temp=1/pl;

temp1=ck2*temp;

temp2=temp1*temp;

/* update for short periodics */

rk=r*(1-1.5*temp2*betal*x3thm1)+0.5*temp1*x1mth2*cos2u;

uk=u-0.25*temp2*x7thm1*sin2u;

xnodek=deep_arg.xnode+1.5*temp2*deep_arg.cosio*sin2u;

xinck=deep_arg.xinc+1.5*temp2*deep_arg.cosio*deep_arg.sinio*cos2u;

rdotk=rdot-deep_arg.xn*temp1*x1mth2*sin2u;

rfdotk=rfdot+deep_arg.xn*temp1*(x1mth2*cos2u+1.5*x3thm1);

/* orientation vectors */

sinuk=sin(uk);

cosuk=cos(uk);

sinik=sin(xinck);

cosik=cos(xinck);

sinnok=sin(xnodek);

cosnok=cos(xnodek);

xmx=-sinnok*cosik;

xmy=cosnok*cosik;

ux=xmx*sinuk+cosnok*cosuk;

uy=xmy*sinuk+sinnok*cosuk;

uz=sinik*sinuk;

vx=xmx*cosuk-cosnok*sinuk;

vy=xmy*cosuk-sinnok*sinuk;

vz=sinik*cosuk;

/* position and velocity */

/* position and velocity */

position[0]=rk*ux;

position[1]=rk*uy;

position[2]=rk*uy;

velocity[0]=rdotk*ux+rfdotk*vx;

velocity[1]=rdotk*uy+rfdotk*vy;

velocity[2]=rdotk*uz+rfdotk*vz;

/* squint angle */

if (calc_squint)

{

bx=cos(alat)*cos(alon+deep_arg.omgadf);

by=cos(alat)*sin(alon+deep_arg.omgadf);

bz=sin(alat);

cx=bx;

cy=by*cos(xinck)-bz*sin(xinck);

cz=by*sin(xinck)+bz*cos(xinck);

ax=cx*cos(xnodek)-cy*sin(xnodek);
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ay=cx*sin(xnodek)+cy*cos(xnodek);

az=cz;

}

/* phase in radians */

phase=xlt-deep_arg.xnode-deep_arg.omgadf+twopi;

if (phase<0.0)

phase+=twopi;

phase=FMod2p(phase);

}

/*--------------------------------------------------------------------------------------------------------------------------------*/

/* end SGP4/SDP4 implementation */

/*--------------------------------------------------------------------------------------------------------------------------------*/

B.4 SatPOS.m

function [r,rdot,lat,lon]=SatPOS(ctime,sat)

%SATPOS calculates the footprint of a satellite at a specified time in UT

%

% SATPOS([TIME],[SAT]) where

% [TIME] is a datevec [YYYY MM DD hh mm ss]

% [SAT] array of struct with the TLE data

%

% it retruns the position r, the velocity rdot and the latitude and

% longitude of the subsatellite point

%

% See also:

% orbit.m

%

% Copyright (c) 2005-08-20, P.Daum

% default input control

if nargin<2

msgbox(’no satellite data specified’,’info’,’warn’);

r=0; rdot=0; lat=0; lon=0; % no information

return;

end;

if nargin==0

msgbox(’no data specified’,’info’,’warn’);

r=0; rdot=0; lat=0; lon=0; % no information

return;

end;

tcontrol=size(ctime);

if (tcontrol(1)~=1 || tcontrol(2)~=6)

msgbox(’time format is [YYYY MM DD hh mm ss]’,’info’,’warn’);

r=0; rdot=0; lat=0; lon=0; % no information

return;

end;

if (isstruct(sat)==0 || isfield(sat,’tle’)==0)

msgbox(’sat must be an array of struct an contain the tle data’,’info’,’warn’);

r=0; rdot=0; lat=0; lon=0; % no information

return;

end;

% given time convert into Julian date

jd=date2jd(ctime);

% time since epoch in minutes

tsince=(jd-sat.tle(1)).*1440;

% orbit calculation by the MEX SGP4/SDP4 implementation

[r,rdot]=orbit(sat.epochN,sat.tle(2),sat.tle(3),sat.tle(4),sat.tle(5),...

sat.tle(6),sat.tle(7),sat.tle(8),sat.tle(9),sat.tle(10),...

sat.tle(11),tsince);

% scale r and rdot

r = 6.378137e3.*r; % in km

rdot = (6.378137e3*1.44e3/8.64e4).*rdot; % in km/s

% latitude and longitude calculation

[lat,lon]=latlon(r,jd);

% convert to degrees

lat=lat.*180./pi;

lon=lon.*180./pi;

return

% ------------------------------------------------------------------------

% ----------------- ADDITIONAL EMBEDDED FUNCTIONS ------------------------

% ------------------------------------------------------------------------

% calculates the geodetic position of an object given its ECI position pos

% and time. Reference: The 1992 Astronomical Almanac, page K12.

function [lat,lon]=latlon(pos, ctime)

f=3.35281066474748e-3; % flattening factor

xkmper= 6.378137e3;

theta = actan2(pos(2),pos(1)); % radians

lon = mod(theta-thetag(ctime),2*pi); % radians

r=sqrt(pos(1).^2+pos(2).^2);
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e2=f*(2-f);

lat=actan2(pos(3),r); % radians

% initial step

phi=lat;

c=1/sqrt(1-e2*(sin(phi)*sin(phi)));

lat=actan2(pos(3)+xkmper*c*e2*sin(phi),r);

while (abs(lat-phi)>=1e-10)

phi=lat;

c=1/sqrt(1-e2*(sin(phi)*sin(phi)));

lat=actan2(pos(3)+xkmper*c*e2*sin(phi),r);

end;

if (lat>(pi/2)) lat=lat-2*pi; end;

return

% four-quadrant arctan function

function fqd=actan2(x, y)

if (y<0) fqd = pi+atan(x/y); return; end;

if (y==0 && x>0) fqd = pi/2; return; end;

if (y==0 && x<=0) fqd = 3*pi/2; return; end;

if (y>0 && x>0) fqd = atan(x/y); return; end;

if (y>0 && x<=0) fqd = 2*pi+atan(x/y); return; end;

return

% calculates the Greenwich Mean Sidereal Time

function gmst=thetag(jd)

% seconds per day

secday = 8.64e4;

% Earth rotations/siderial day

omega_E = 1.00273790934;

UT=(jd+0.5)-floor(jd+0.5);

jd=jd-UT;

TU=(jd-2451545.0)/36525;

tmp = 24110.54841+ 8640184.812866*TU +0.093104*TU.^2-0.0000062*TU.^3;

tmp=mod(tmp+secday*omega_E*UT,secday);

gmst = 2*pi*tmp/secday;

return

% calculates the Julian date of a given datevec

function jd = date2jd(ctime)

a = floor((14 - ctime(2))/12);

y = ctime(1) + 4800 - a;

m = ctime(2) + 12*a - 3;

jd = ctime(3) + floor((153*m + 2)/5) ...

+ y*365 + floor(y/4) - floor(y/100) + floor(y/400) - 32045 ...

+ ( ctime(6) + 60*ctime(5) + 3600*(ctime(4) - 12) )/86400;

return

B.5 SatTRACK.m

function [azi,elv,range]=SatTRACK(lat,lon,alt,ctime,sat)

%SATTRACK calculates the azimuth, elevation and altitude of a satellite

% over a specified ground location

%

% SATTRACK([LAT],[LON],[ALT],[TIME],[SAT]) where

% [LAT] latitude of the ground station

% [LON] longitude of the ground station

% [ALT] altitude of the ground station in meters with respect to the

% WGS elipsoid

% [TIME] is a datevec [YYYY MM DD hh mm ss]

% [SAT] array of struct with the TLE data

%

% it retruns the azimuth azi, the elevation elv and the altitude range of

% the satellite

%

% See also:

% orbit.m

%

% Copyright (c) 2005-08-20, P.Daum

% default input control

if nargin==0

msgbox(’no data specified’,’info’,’warn’);

azi=0; elv=0; range=0; % no information

return;

end;

if nargin<4

msgbox(’no satellite data specified’,’info’,’warn’);

azi=0; elv=0; range=0; % no information

return;

end;

if nargin<3

msgbox(’no satellite data and time specified’,’info’,’warn’);

azi=0; elv=0; range=0; % no information

return;

end;

if nargin<2
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msgbox(’ground station must be given in latitude, longitude and altitude’,...

’info’,’warn’);

azi=0; elv=0; range=0; % no information

return;

end;

tcontrol=size(ctime);

if (tcontrol(1)~=1 || tcontrol(2)~=6)

msgbox(’time format is [YYYY MM DD hh mm ss]’,’info’,’warn’);

azi=0; elv=0; range=0; % no information

return;

end;

if (isstruct(sat)==0 || isfield(sat,’tle’)==0)

msgbox(’sat must be an array of struct an contain the tle data’,’info’,’warn’);

azi=0; elv=0; range=0; % no information

return;

end;

if (lat<-90 || lat>=90)

msgbox(’latitude must be between -90 and 90 degrees’,’info’,’warn’);

azi=0; elv=0; range=0; % no information

return;

end;

if (lon<-180 || lat>=180)

msgbox(’longitude must be between -180 and 180 degrees’,’info’,’warn’);

azi=0; elv=0; range=0; % no information

return;

end;

% given latitude and longitude convert to radians

lat = lat.*(pi./180); % north positive south negative

lon = (-1).*lon.*(pi./180); % west positive east negative

% given altitude in km

alt = alt./1000;

% given time convert into Julian date

jd=date2jd(ctime);

% time since epoch in minutes

tsince=(jd-sat.tle(1)).*1440;

% orbit calculation by the MEX SGP4/SDP4 implementation

[r,rdot]=orbit(sat.epochN,sat.tle(2),sat.tle(3),sat.tle(4),sat.tle(5),...

sat.tle(6),sat.tle(7),sat.tle(8),sat.tle(9),sat.tle(10),...

sat.tle(11),tsince);

% scale r and rdot

r = 6.378137e3.*r; % in km

rdot = (6.378137e3*1.44e3/8.64e4).*rdot; % in km/s

% ECI position of the ground station

[xground,yground,zground]=geo2eciobs(lat,lon,alt,jd);

ground = [xground;yground;zground];

% azimuth, elevation and range calculation

[azi,elv,range]=azielev(r,ground,lat,lon,jd);

% convert to degrees

azi=azi.*180./pi;

elv=elv.*180./pi;

return;

% ------------------------------------------------------------------------

% ----------------- ADDITIONAL EMBEDDED FUNCTIONS ------------------------

% ------------------------------------------------------------------------

% calculates the azimuth, elevation and range of a satellite from a given

% ground station in ECI coordinates

function [azi,elv,range]=azielev(r,ground,lat,lon,ctime)

% Local Mean Sidereal Time (LMST)

thetaobs = mod(thetag(ctime)+lon,2*pi);

% difference between the two points in ECI coordinates

slant = r-ground;

% range between the points Euclidean length

range = norm(slant);

% faster computation

sinlat=sin(lat);

coslat=cos(lat);

sintheta=sin(thetaobs);

costheta=cos(thetaobs);

% matrix transformation.

% Reference: Kosch, H.J., Mathematische Ergaenzung zur Einfuehrung in die Physik

% Binomi, pp.29-ff., 1999.

mat(1)=sinlat.*costheta.*slant(1)+sinlat.*sintheta.*slant(2)-coslat*slant(3);

mat(2)=(-1).*sintheta*slant(1)+costheta.*slant(2);

mat(3)=coslat.*costheta.*slant(1)+coslat.*sintheta.*slant(2)+sinlat*slant(3);

elv=asin(mat(3)./range);

azi=atan(((-1).*mat(2))./mat(1));

if (mat(1)>0) azi=azi+pi; end;

if (azi<0) azi=azi+2*pi; end;
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return;

% calculates the observer position in the ECI frame

% lan and lat are the geodetic position with decimal places and the alt is

% in meter

function [x,y,z]=geo2eciobs(lat,lon,alt,ctime)

f=3.35281066474748e-3; % flattening factor

xkmper= 6.378137e3;

thetaobs = mod(thetag(ctime)+lon,2*pi); % Local Mean Sidereal Time (LMST)

c=1./sqrt(1+f.*(f-2).*sin(lat).*sin(lat));

sq=(1-f).*(1-f).*c;

achcp=(xkmper.*c+alt).*cos(lat);

x=achcp.*cos(thetaobs); % kilometers

y=achcp.*sin(thetaobs);

z=(xkmper*sq+alt).*sin(lat);

return;

% calculates the Greenwich Mean Sidereal Time

function gmst=thetag(jd)

% seconds per day

secday = 8.64e4;

% Earth rotations/siderial day

omega_E = 1.00273790934;

UT=(jd+0.5)-floor(jd+0.5);

jd=jd-UT;

TU=(jd-2451545.0)/36525;

tmp = 24110.54841+ 8640184.812866*TU +0.093104*TU.^2-0.0000062*TU.^3;

tmp=mod(tmp+secday*omega_E*UT,secday);

gmst = 2*pi*tmp/secday;

return

% calculates the Julian date of a given datevec

function jd = date2jd(ctime)

a = floor((14 - ctime(2))/12);

y = ctime(1) + 4800 - a;

m = ctime(2) + 12*a - 3;

jd = ctime(3) + floor((153*m + 2)/5) ...

+ y*365 + floor(y/4) - floor(y/100) + floor(y/400) - 32045 ...

+ ( ctime(6) + 60*ctime(5) + 3600*(ctime(4) - 12) )/86400;

return

B.6 MagPOS.m

function [latN,lonN,latS,lonS]=MagPOS(ctime,sat,r0,parmod,iopt)

%MAGPOS calculates the magnetic footprint of a satellite at a specified

% time in UT in longitude and latitude on the nothern and southern

% hemisphere respectively

%

% MAGPOS([TIME],[SAT],[R0],[IOPT],[PARMOD]) where

% [TIME] is a datevec [YYYY MM DD hh mm ss]

% [SAT] array of struct with the TLE data

% [R0] height above the surface in km

% [PARMOD] parameter which specifies the B-field, (1) solar pressure,

% (2) DST in nT, (3) By in nT and (4) Bz in nT

% [IOPT] array of Kp values, alternatively [PARMOD] can be used in

% this case [IOPT] become a dummy

%

% it retruns the position geographical position of the magnetic footprint

% in latitude and longitude (1) nothern point and (2) southern point)

%

% See also:

% orbit.m

%

% Copyright (c) 2005-08-20, P.Daum

if (nargin<5)

iopt=0;

if (nargin<4)

% default

parmod(1) = 3; % solar wind pressure, nPa

parmod(2) = -20; % Dst, nT

parmod(3) = 3; % By, GSM, nT

parmod(4) = -3; % Bz, GSM, nT

end;

end;

if (nargin<3)

r0=100; % 100 km above the surface

end;

if (length(r0)>1)

msgbox(’R0 must be a scalar in km’,’info’,’warn’);

latN=0;lonN=0;latS=0;lonS=0; % no information

return;

end;

tcontrol=size(ctime);

if (tcontrol(1)~=1 || tcontrol(2)~=6)

msgbox(’time format is [YYYY MM DD hh mm ss]’,’info’,’warn’);

latN=0;lonN=0;latS=0;lonS=0; % no information
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return;

end;

if (isstruct(sat)==0 || isfield(sat,’tle’)==0)

msgbox(’sat must be an array of struct an contain the tle data’,’info’,’warn’);

latN=0;lonN=0;latS=0;lonS=0; % no information

return;

end;

% set values for the GEOPACK

if length(parmod)<10 parmod(10)=0; end;

rlim=50.;

r0=1.0+(r0./6.378137e3);

% calculates the day of the year for the given UT time

dayofyear=dayfrac(ctime);

% given time convert into Julian date

jd=date2jd(ctime);

% time since epoch in minutes

tsince=(jd-sat.tle(1)).*1440;

% orbit calculation by the MEX SGP4/SDP4 implementation

[r,rdot]=orbit(sat.epochN,sat.tle(2),sat.tle(3),sat.tle(4),sat.tle(5),...

sat.tle(6),sat.tle(7),sat.tle(8),sat.tle(9),sat.tle(10),...

sat.tle(11),tsince);

%----------------------------------------------------------------------------

% coordinate transformation using GEOPACK routine (ECI->ECEF->GSM)

%----------------------------------------------------------------------------

% set GEOPACK global to the given time

GEOPACK_RECALC(ctime(1),dayofyear,ctime(4),ctime(5),ctime(6));

% convert the ECI ref. frame to an ECEF ref frame

[xgeo,ygeo,zgeo] = GEOPACK_GEIGEO(r(1),r(2),r(3),1);

% convert the ECEF ref. frame to GSM coordinates

[xgsm,ygsm,zgsm] = GEOPACK_GEOGSM(xgeo,ygeo,zgeo,1);

%----------------------------------------------------------------------------

% trace fieldlines

%----------------------------------------------------------------------------

% northern footprint

[XBN,YBN,ZBN,XXBN,YYBN,ZZBN,LBN] = GEOPACK_TRACE(xgsm,ygsm,zgsm,-1,rlim,r0,...

iopt,parmod,’T96’,’GEOPACK_IGRF_GSM’);

% southern footprint

[XBS,YBS,ZBS,XXBS,YYBS,ZZBS,LBS] = GEOPACK_TRACE(xgsm,ygsm,zgsm,1,rlim,r0,...

iopt,parmod,’T96’,’GEOPACK_IGRF_GSM’);

%----------------------------------------------------------------------------

% coordinate transformation using GEOPACK routine (GSM->ECEF->LAT/LON)

%----------------------------------------------------------------------------

% convert the GSM ref. frame to ECEF coordinates

[xgeoN,ygeoN,zgeoN] = GEOPACK_GEOGSM(XBN,YBN,ZBN,-1);

[xgeoS,ygeoS,zgeoS] = GEOPACK_GEOGSM(XBS,YBS,ZBS,-1);

% convert the ECEF to lat and lon

[RN,TN,FN] = GEOPACK_SPHCAR(xgeoN,ygeoN,zgeoN,-1);

[RS,TS,FS] = GEOPACK_SPHCAR(xgeoS,ygeoS,zgeoS,-1);

% nothern footprint

latN=90.-(180./pi).*TN;

lonN=(180./pi).*FN;

% southern footprint

latS=90.-(180./pi).*TS;

lonS=(180./pi).*FS;

% ------------------------------------------------------------------------

% ----------------- ADDITIONAL EMBEDDED FUNCTIONS ------------------------

% ------------------------------------------------------------------------

% calculates the day of the year by a given ctime in a datevec format

function df=dayfrac(ctime)

refI=date2jd([ctime(1),1,0,00,00,00]);

refII=date2jd([ctime(1),ctime(2),ctime(3),00,00,00]);

df=abs(refI-refII);

return;

% calculates the Julian date of a given datevec

function jd = date2jd(ctime)

a = floor((14 - ctime(2))/12);

y = ctime(1) + 4800 - a;

m = ctime(2) + 12*a - 3;

jd = ctime(3) + floor((153*m + 2)/5) ...

+ y*365 + floor(y/4) - floor(y/100) + floor(y/400) - 32045 ...

+ ( ctime(6) + 60*ctime(5) + 3600*(ctime(4) - 12) )/86400;

return

103



B.7 Validation GEOPACK

B.7 Validation

In order to validate the output of the function contained in the toolbox, the GOD-
DARD Space Flight Center SSC Locator was used. The NOAA 17 satellite was
simulated at the 12/08/2005 in the time between 07:25:00-08:05:00. The results are
shown in table B.1 and match the results calculated with the functions SatPOS.m,
SatTRACK and MagPOS.

Time GEI GEO GSM NB SB
hh:mm x y z lat lon x y z lat lon lat lon
07:25 0.33 -0.87 0.64 34.75 218.80 -0.60 0.57 0.77 38.55 220.02 -39.07 200.23
07:26 0.30 -0.83 0.70 38.24 217.72 -0.55 0.56 0.81 41.66 218.93 -41.32 197.07
07:27 0.28 -0.80 0.75 41.73 216.56 -0.49 0.56 0.85 44.81 217.76 -43.53 193.73
07:28 0.25 -0.76 0.80 45.20 215.29 -0.43 0.55 0.89 47.97 216.49 -45.71 190.21
07:29 0.22 -0.71 0.85 48.67 213.89 -0.37 0.54 0.92 51.15 215.09 -47.83 186.48
07:30 0.19 -0.67 0.89 52.13 212.32 -0.31 0.52 0.95 54.33 213.51 -49.90 182.52
07:31 0.16 -0.62 0.93 55.56 210.53 -0.25 0.51 0.98 57.52 211.71 -51.88 178.32
07:32 0.12 -0.57 0.97 58.98 208.44 -0.18 0.49 1.00 60.70 209.61 -53.77 173.87
07:33 0.09 -0.52 1.00 62.36 205.95 -0.12 0.47 1.02 63.87 207.09 -55.56 169.19
07:34 0.06 -0.46 1.03 65.70 202.90 -0.05 0.45 1.03 67.00 203.98 -57.25 164.53
07:35 0.03 -0.40 1.05 68.97 199.02 0.01 0.43 1.04 70.09 200.03 -58.72 159.66
07:36 -0.01 -0.35 1.07 72.14 193.90 0.08 0.40 1.05 73.08 194.79 -59.77 153.84
07:37 -0.04 -0.29 1.09 75.14 186.84 0.14 0.38 1.05 75.91 187.54 -60.35 146.48
07:38 -0.07 -0.23 1.10 77.84 176.63 0.21 0.35 1.05 78.45 177.08 -60.31 133.67
07:39 -0.11 -0.16 1.11 80.00 161.59 0.27 0.32 1.05 80.47 161.74 NaN NaN
07:40 -0.14 -0.10 1.11 81.22 140.71 0.33 0.29 1.04 81.56 140.73 NaN NaN
07:41 -0.17 -0.04 1.11 81.09 117.19 0.39 0.26 1.02 81.38 117.49 NaN NaN
07:42 -0.20 0.02 1.11 79.67 97.29 0.45 0.23 1.01 80.00 97.98 -59.54 110.48
07:43 -0.23 0.08 1.10 77.38 83.25 0.51 0.20 0.99 77.82 84.18 -58.35 104.86
07:44 -0.26 0.15 1.09 74.61 73.73 0.57 0.16 0.96 75.21 74.73 -56.93 98.71
07:45 -0.29 0.21 1.07 71.57 67.08 0.62 0.13 0.93 72.36 68.08 -55.25 92.77
07:46 -0.32 0.27 1.05 68.38 62.23 0.67 0.09 0.90 69.38 63.17 -53.31 87.20
07:47 -0.34 0.33 1.02 65.09 58.52 0.72 0.06 0.87 66.31 59.39 -51.10 82.02
07:48 -0.37 0.39 0.99 61.74 55.59 0.77 0.02 0.83 63.19 56.37 -48.66 77.20
07:49 -0.39 0.44 0.96 58.35 53.18 0.81 -0.01 0.79 60.05 53.88 -46.02 72.69
07:50 -0.41 0.50 0.92 54.93 51.15 0.85 -0.05 0.74 56.90 51.78 -43.20 68.45
07:51 -0.43 0.55 0.88 51.49 49.41 0.88 -0.08 0.69 53.75 49.96 -40.23 64.47
07:52 -0.45 0.60 0.84 48.03 47.87 0.92 -0.12 0.64 50.61 48.36 -37.13 60.70
07:53 -0.47 0.65 0.79 44.55 46.50 0.95 -0.15 0.59 47.50 46.94 -33.93 57.15
07:54 -0.48 0.70 0.74 41.07 45.25 0.97 -0.19 0.54 44.44 45.65 -30.65 53.83
07:55 -0.50 0.74 0.69 37.58 44.10 1.00 -0.22 0.48 41.43 44.47 -27.35 50.77
07:56 -0.51 0.78 0.63 34.08 43.03 1.01 -0.26 0.42 38.51 43.38 -24.06 48.00
07:57 -0.52 0.82 0.57 30.58 42.03 1.03 -0.29 0.36 35.71 42.36 -20.87 45.58
07:58 -0.52 0.86 0.51 27.07 41.08 1.04 -0.32 0.30 33.06 41.41 -17.83 43.50
07:59 -0.53 0.89 0.45 23.56 40.18 1.05 -0.35 0.24 30.62 40.50 -15.03 41.76
08:00 -0.53 0.92 0.39 20.05 39.31 1.05 -0.38 0.17 28.48 39.64 -12.56 40.32
08:01 -0.53 0.94 0.32 16.53 38.46 1.05 -0.40 0.11 26.74 38.82 -10.53 39.11
08:02 -0.53 0.96 0.25 13.02 37.64 1.04 -0.43 0.04 25.53 38.02 -9.06 38.08
08:03 -0.53 0.98 0.19 9.50 36.83 1.03 -0.45 -0.02 24.95 37.23 -8.28 37.18
08:04 -0.52 0.99 0.12 5.98 36.03 1.02 -0.48 -0.09 25.08 36.44 -8.25 36.36
08:05 -0.52 1.00 0.05 2.46 35.24 1.00 -0.50 -0.15 25.91 35.63 -8.95 35.59

Table B.1: GODDARD SSC Locator Values

C GEOPACK

The original GEOPACK library is in FORTRAN and the translation to MATLAB r© is
done by Paul O’Brien, the changes made forVis Sat are not additionally marked.
Like GEOPACK is a free available code and can be changed, these code is subject
to the same condition and may be modified in future studies. Here only the main
header file is shown, the complete GEOPACK can be found on the attached CD-Rom
and is marked with GEOPACK_<func>.m.

% ##########################################################################################

% # #

% # GEOPACK-2003 #

% # (MAIN SET OF FORTRAN CODES) #

% # #

% # translated by PAUL O’BRIEN modified for VIS SAT by PATRICK DAUM #

% ##########################################################################################

%

% This collection of subroutines is a result of several upgrades of the original package

% written by N. A. Tsyganenko in 1979. This version is dated April 9, 2003.
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%

% This package represents an in-depth revision of the previous version, with significant

% changes in the format of calling statements. Users should familiarize themselves with

% the new formats and rules, and accordingly adjust their source codes, as specified

% below.

%

% The following changes were made to the previous release of GEOPACK (Jan 5, 2001).

%

% (1) Subroutine IGRF, calculating the Earth’s main field:

% (a) Two versions of this subroutine are provided here. In the first one (IGRF_GSM)

% both input (position) and output (field components) are in the Geocentric Solar-

% Magnetospheric Cartesian coordinates, while the second one (IGRF_GEO) uses sphe-

% rical geographical (geocentric) coordinates, as in the older releases.

%

% (b) updating of all expansion coefficients is now made separately in the s/r RECALC,

% which also takes into account the secular change of the coefficients within

% a given year (at the Earth’s surface, the rate of the change can reach 7 nT/month).

%

% (c) the optimal length of spherical harmonic expansions is now automatically set

% inside the code, based on the radial distance, so that the deviation from the

% full-length approximation does not exceed 0.01 nT. (In the previous versions,

% the upper limit NM of the order of harmonics had to be specified by users),

%

% (2) Subroutine DIP, calculating the Earth’s field in the dipole approximation:

% (a) no longer accepts the tilt angle via the list of formal parameters. Instead,

% the sine SPS and cosine CPS of that angle are now forwarded into DIP via the

% first common block /GEOPACK1/. Accordingly, there are two options: (i) to

% calculate SPS and CPS by calling RECALC before calling DIP, or (ii) to specify

% them explicitly. In the last case, SPS and CPS should be specified AFTER the

% invocation of RECALC (otherwise they would be overridden by those returned by

% RECALC).

%

% (b) the Earth’s dipole moment is now calculated by RECALC, based on the table of

% the IGRF coefficients and their secular variation rates, for a given year and

% the day of the year, and the obtained value of the moment is forwarded into DIP

% via the second common block /GEOPACK2/. (In the previous versions, only a single

% fixed value was provided for the geodipole moment, corresponding to the most

% recent epoch).

%

% (3) Subroutine RECALC now consolidates in one module all calculations needed to

% initialize and update the values of coefficients and quantities that vary in

% time, either due to secular changes of the main geomagnetic field or as a result

% of Earth’s diurnal rotation and orbital motion around Sun. That allowed us to

% simplify the codes and make them more compiler-independent.

%

% (4) Subroutine GEOMAG is now identical in its structure to other coordinate trans-

% formation subroutines. It no longer invokes RECALC from within GEOMAG, but uses

% precalculated values of the rotation matrix elements, obtained by a separate

% external invocation of RECALC. This eliminates possible interference of the

% two subroutines in the old version of the package.

%

% (5) Subroutine TRACE (and the subsidiary modules STEP and RHAND):

% (a) no longer needs to specify the highest order of spherical harmonics in the

% main geomagnetic field expansion - it is now calculated automatically inside the

% IGRF_GSM (or IGRF_GEO) subroutine.

% (b) the internal field model can now be explicitly chosen by specifying the para-

% meter INNAME (either IGRF_GSM or DIP).

%

% (6) A new subroutine BCARSP was added, providing a conversion of Cartesian field

% components into spherical ones (operation, inverse to that performed by the sub-

% routine BSPCAR).

%

% (7) Two new subroutines were added, SHUETAL_MGNP and T96_MGNP, providing the position

% of the magnetopause, according to the model of Shue et al. [1998] and the one

% used in the T96 magnetospheric magnetic field model.

%
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%

% [2] Tsyganenko, N.A., Usmanov, A.V., Papitashvili, V.O., Papitashvili, N.E.,

% Popov, V.A., Software for Computations of Geomagnetic Field and Related

% Coordinate Systems, Soviet Geophysical Committee, Special Report, 58 pp.,

% Moscow, 1987.

%

% [3] Tsyganenko, N.A., Global Quantitative Models of the Geomagnetic Field in
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% Sci., Vol. 35, pp. 1347-1358, 1987.

%
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% [7] Tsyganenko, N.A., Magnetic Field Model, FORTRAN Routines,
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Satellite Communication Connects People

“As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.” (Albert
Einstein *1879 - †1955)

This shall be the closing words for my thesis. The described equations and processes
are described with analytical formulas but the numeric is perhaps the best way to
reproduce the reality with its included inaccuracy.
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