Elementary Evolutions in Banach Algebra

B. Krishna Das and J. Martin Lindsay

Abstract. An elementary class of evolutions in unital Banach algebras is obtained by integrating product functions over Guichardet’s symmetric measure space on the half-line. These evolutions, along with a useful subclass, are characterised and a Lie–Trotter product formula is proved. The class is rich enough to form the basis for a recent approach to quantum stochastic evolutions.

Introduction

In this note we identify and analyse a simple class of evolutions in unital Banach algebras along with a useful subclass. They have infinitesimal generators, in terms of which they are characterised, and we establish a Lie–Trotter product formula for such evolutions. Our approach is via Guichardet’s symmetric measure space ([Gui]) of the Lebesgue space \(\mathbb{R}^+ \). Apart from the merits of simplicity, one motivation is the fact that the theory forms the basis for a recent approach to quantum stochastic evolutions ([DLT], [DL]) in which quantum stochastic Trotter product formulae are proved (cf. [LSi]), characterisations of stochastic cocycles are established (cf. [LSk]) and convergence theorems for scaled quantum random walks are proved (cf. [Bel]).

After a brief section of preliminaries where notations are fixed, the basic theory occupies Section 2, and the product formula is proved in Section 3.

1. Preliminaries

For a step function \(f \) with domain \(\mathbb{R}^+ = [0, \infty] \) we write Disc \(f \) for the (possibly empty) complement of the set of points \(t \) where \(f \) is constant in some neighbourhood of \(t \); for a vector-valued function \(f \) on \(\mathbb{R}^+ \) and subinterval \(J \) of \(\mathbb{R}^+ \), \(f_J \) denotes the function on \(\mathbb{R}^+ \) which agrees with \(f \) on \(J \) and vanishes outside \(J \). For a Banach space \(X \), \(B(X) \) denotes the unital Banach algebra of bounded operators on \(X \). The symbol \(\sim \) is used (for both elements of, and subsets of, an algebra) to denote ‘commutes with’ ([RSz]), \(\# \) denotes cardinality, and \(\subset \subset \) stands for subset of finite cardinality. For sets \(A \) and \(B \), we write \(F(A; B) \) rather than \(B^A \), for the set of functions from \(A \) to \(B \), and for \(f \in F(A; B) \), we denote its range, \(f(A) \), by \(\text{Ran} f \).

Finally, we use the following notation for simplices: for \(n \in \mathbb{N} \) and \(t \geq r \geq 0 \), set

\[
\Delta^{(n)}_{[r,t]} := \{ a \in [r,t]^{-n} : a_1 < \cdots < a_n \} \quad \text{and} \quad \Delta^{[n]} := \{ a \in (\mathbb{R}^+)^n : a_1 \leq \cdots \leq a_n \}.
\]

The uniqueness result below will serve us well. In Section 2 we give a very convenient representation of the equation’s well-known solution.

Theorem 1.1. Let \(x_0 \in \mathcal{X} \) and \(a \in L^1_{\text{loc}}(\mathbb{R}^+; \mathcal{A}) \) for a right Banach \(\mathcal{A} \)-module \(\mathcal{X} \).

(a) The following integral equation has at most one solution \(f \in C(\mathbb{R}^+; \mathcal{X}) \):

\[
f(t) = x_0 + \int_0^t ds f(s) a(s) \quad (t \in \mathbb{R}^+). \tag{1.1}
\]
(b) Let $f \in C(\mathbb{R}^+; \mathcal{A})$. Then f satisfies (1.1) if
\[
f(0) = x_0 \text{ and } f'(s) = f(s)a(s) \quad (s \in \mathbb{R}^+ \setminus \mathcal{N}),
\]
for a Lebesgue-null Borel subset \mathcal{N} of \mathbb{R}^+ satisfying Haus $f(\mathcal{N}) = 0$, where Haus denotes one-dimensional outer Hausdorff measure.

(a) is straightforward and classical; for a proof of (b), see [Vol]. The condition Haus $f(\mathcal{N}) = 0$ is automatic if either \mathcal{N} is countable or \mathcal{N} is Lebesgue-null and f is locally Lipschitz; for us, a will be a step function, so that \mathcal{N} is finite.

2. Evolutions in Banach algebra

In this section we consider norm-continuous evolutions in a unital Banach algebra and analyse two sub-classes. To this end we introduce Guichardet’s symmetric measure space of the Lebesgue spaces of subintervals of \mathbb{R}^+.

For the rest of the paper \mathcal{A} is a fixed unital Banach algebra; its group of invertible elements is denoted \mathcal{A}^\times.

Definition. An evolution E in \mathcal{A} is a family $(E_{r,t})_{0 \leq r \leq t}$ in \mathcal{A}, or function from Δ^2 to \mathcal{A}, such that
\[
E_{r,r} = 1_{\mathcal{A}} \text{ and } E_{r,s} E_{s,t} = E_{r,t} \quad (0 \leq r \leq s \leq t);
\]
The class of evolutions in \mathcal{A} is denoted $\text{Evol}(\mathcal{A})$.

Example. Let $\alpha = (\alpha_t)_{t \geq 0}$ be an E_0-semigroup on a von Neumann algebra \mathcal{M}, that is, a one-parameter semigroup of endomorphisms of \mathcal{M} (which is pointwise ultraweakly continuous), and let $V = (V_t)_{t \geq 0}$ be a family of contractions in \mathcal{M} forming an α-cocycle, thus $V_0 = 1$ and $V_{s+t} = V_s \alpha_s(V_t)$ ($s,t \geq 0$) ([Arv]). Then the family $(\alpha_t(V_{t-r}))_{0 \leq r \leq t}$ forms an evolution in \mathcal{M}.

A family $(E_{r,t})_{0 \leq r \leq t}$ in \mathcal{A} is called an opposite evolution if instead
\[
E_{r,r} = 1_{\mathcal{A}} \text{ and } E_{r,s} E_{s,t} = E_{r,t} \quad (0 \leq r \leq s \leq t).
\]
An evolution is invertible if it is \mathcal{A}^\times-valued, and continuous, respectively Lipschitz, if the following maps are continuous, respectively Lipschitz continuous,
\[
[r, \infty) \to \mathcal{A}, \quad s \mapsto E_{r,s} \quad \text{and} \quad [0,t] \to \mathcal{A}, \quad s \mapsto E_{s,t} \quad (r,t \in \mathbb{R}_+).
\]
We denote these classes by $\text{Evol}(\mathcal{A}^\times)$, $\text{Evol}_c(\mathcal{A})$ and $\text{Evol}_{lc}(\mathcal{A})$ respectively.

Remarks. For $E \in \text{Evol}(\mathcal{A}^\times)$, $((E_{r,t})^{-1})_{0 \leq r \leq t}$ defines an opposite evolution; also E extends to an evolution $(E_{r,t})_{r \leq t}$ (where r and t now range over \mathbb{R}) by the prescription
\[
E_{r,t} := \phi_r^{-1} \phi_t \quad \text{where} \quad \phi_s := \begin{cases} E_{0,s} & \text{if } s \geq 0 \\ (E_{0,-s})^{-1} & \text{if } s \leq 0. \end{cases}
\]

Proposition 2.1. The map \(\{ \phi \in F(\mathbb{R}^+; \mathcal{A}^\times) : \phi(0) = 1_{\mathcal{A}} \} \to \text{Evol}(\mathcal{A}^\times) \) given by \(\phi \mapsto (\phi_r^{-1} \phi_t)_{0 \leq r \leq t} \) is bijective, and restricts to a bijection
\[
\{ \phi \in C(\mathbb{R}^+; \mathcal{A}^\times) : \phi(0) = 1_{\mathcal{A}} \} \to \text{Evol}_c(\mathcal{A}).
\]

Proof. All that needs to be proved is that if $E \in \text{Evol}_c(\mathcal{A})$, then $E_{0,t} \in \mathcal{A}^\times$ for all $t \in \mathbb{R}_+$. Thus let $E \in \text{Evol}_c(\mathcal{A})$ and suppose for a contradiction that $E_{0,s} \notin \mathcal{A}^\times$ for some $s \in \mathbb{R}_+$. Set $t := \inf\{ s \in \mathbb{R}_+ : E_{0,s} \notin \mathcal{A}^\times \}$. In view of the facts that the set $\mathcal{A} \setminus \mathcal{A}^\times$ is closed, the map $s \mapsto E_{0,s}$ is right continuous at 0, and $E_{0,0} = 1_{\mathcal{A}} \in \mathcal{A}^\times$, it follows that $E_{0,t} \notin \mathcal{A}^\times$ and $t > 0$. Since $E_{t,t} = 1_{\mathcal{A}} \in \mathcal{A}^\times$, the openness of \mathcal{A}^\times and left continuity of the map $s \mapsto E_{s,t}$ at t imply that, for small enough $h > 0$, the evolution identity $E_{0,t} = E_{0,t-h} E_{t-h,t}$ expresses a noninvertible element as a product of invertibles, and we have our contradiction. \(\square \)
Remarks. Thus continuous evolutions are invertible, and invertible evolutions are actually one-parameter objects.

Evolutions generalise one-parameter semigroups, in the sense that every (norm-continuous) one-parameter semigroup $(p_t)_{t \geq 0}$ in \mathcal{A} defines a (continuous) evolution $(p_{t-r})_{0 \leq r < t}$. However—in stark contrast to the well-known simple structure of continuous semigroups: $(e^{sa})_{s \geq 0}$ ($a \in \mathcal{A}$) (see e.g. [Rud])—continuous evolutions are continuous one-parameter semigroups $(\mathcal{C}E)$ for X in $\mathcal{B}(X)$ which is exponentially bounded, i.e. where there is $M \geq 1$ and $\omega \in \mathbb{R}$ such that $\|E_{r,s}\| \leq Me^{\omega(t-r)}$ $(r \leq t)$, the prescription $(T_t^E)(s) := E_{s-t,s}f(s-t)$ defines a C_0-semigroup on the Banach space $\mathcal{C}E$ satisfying $T_t^EM_\varphi = MT_t^E_\varphi T_t^E$ ($\varphi \in \mathcal{C}e_0(\mathbb{R}; X)$, $t \in \mathbb{R}_+$) where T is the right-shift semigroup on $\mathcal{C}e_0(\mathbb{R})$ and M denotes (scalar) multiplication operator; every such semigroup arises in this way (see [EnN]). An interesting question then is—how might norm continuity of an evolution E be recognised in its semigroup T^E?

Using Guichardet’s symmetric measure space, we shall embed the class of evolutions given by semigroups in a much wider class. For $(r,t) \in \Delta^2$, set

$$\Gamma_{r,t} := \{ \sigma \in [r,t]: \#\sigma < \infty \} \text{ and } \Gamma^{(n)}_{r,t} := \{ \sigma \subset [r,t]: \#\sigma = n \} \quad (n \in \mathbb{Z}_+),$$

with measurable structure and measure induced from that of Lebesgue measure on each simplex $\Delta^{(n)}_{r,t}$, via the bijection

$$\Delta^{(n)}_{r,t} \to \Gamma^{(n)}_{r,t}, \quad s \mapsto \{s_1, \ldots, s_n\} \quad (n \in \mathbb{N}),$$

and letting $\varnothing \in \Gamma^{(0)}_{r,t}$ be an atom of measure one ([Gui]). Thus $\Gamma^{(n)}_{r,t}$ and $\Gamma_{r,t}$ have measure $(t-r)^n/n!$ and $\exp(t-r)$ respectively. We use the abbreviations Γ, $\Gamma^{(n)}$, $\Gamma^{\geq 1}$ and $\int ds \sigma$ for $\Gamma_{[0,\infty]}$, $\Gamma^{(n)}_{[0,\infty]}$, $\bigcup_{n \geq 1} \Gamma^{(n)}$ and integration with respect to the symmetric measure on Γ. Each function $\varphi : \mathbb{R}_+ \to \mathbb{C}$ determines a function

$$\pi_\varphi : \Gamma \to \mathbb{C}, \quad \sigma \mapsto \prod_{s \in \sigma} \varphi(s).$$

Thus $\pi_0 = \delta_\varnothing$ and the mapping $\varphi \mapsto \pi_\varphi$ respects measure equivalence classes. For $\varphi \in L^1(\mathbb{R}_+)$, $\pi_\varphi \in L^1(\Gamma)$, $\int \pi_\varphi = \exp\int \varphi$ and $\|\pi_\varphi\|_1 = \exp\|\varphi\|_1$. In particular, for nonnegative functions $\varphi, \psi \in L^1(\mathbb{R}_+),$

$$\|\pi_{\varphi+\psi}\|_1 = \|\pi_\varphi\|_1\|\pi_\psi\|_1 \text{ and } \|\pi_{\varphi+\psi} - \pi_\varphi\|_1 = \|\pi_\psi\|_1(\|\pi_\varphi\|_1 - 1). \quad (2.1)$$

Remark. For $\varphi \in L^2(\mathbb{R}_+)$, let $\varepsilon_\varphi = (1, \varphi, (2!)^{-1/2}\varphi^2, \ldots)$ denote the exponential vector in the symmetric Fock space $\Gamma(L^2(\mathbb{R}_+))$. Then the prescription

$$\varepsilon_\varphi \mapsto \pi_{\varphi} \quad (\varphi \in L^2(\mathbb{R}_+)),$$

extends to a unitary map $\Gamma(L^2(\mathbb{R}_+)) \to L^2(\Gamma)$. For a Hilbert space k, this tensorises to give an isometry from $\Gamma(L^2(\mathbb{R}_+; \varphi)) = \Gamma(L^2(\mathbb{R}_+) \otimes k)$ to $L^2(\Gamma; \Phi_k)$, where Φ_k denotes the full (unsymmetrised) Fock space over k; its image is

$$\{ f \in L^2(\Gamma; \Phi_k) : \forall \sigma \in \Gamma \ f(\sigma) \in k^{\#\sigma} \}.$$

For more on Guichardet space analysis, see [LiP], [Mey] and references therein; a cornerstone is the integral-sum formula which we state next—for a proof see [LiP].

Lemma 2.2. Let $n \in \mathbb{N}$ and $H \in L^1(\Gamma^n; X)$ for a Banach space X. Then

$$\int d\sigma_1 \cdots \int d\sigma_n H(\sigma_1, \ldots, \sigma_n) = \int d\sigma \sum H(\sigma_1, \ldots, \sigma_n)$$

where the sum is over all $n^{\#\sigma}$ partitions of σ into n subsets $\sigma_1, \ldots, \sigma_n$.
In particular, for $H \in L^1(\Gamma \times \Gamma; X)$

$$\int d\alpha \int d\beta \ H(\alpha, \beta) = \int d\sigma \sum_{\alpha \subset \sigma} H(\alpha, \sigma \setminus \alpha).$$

Note that the integral-formula for functions H of the form $(\alpha_1, \ldots, \alpha_n) \mapsto \pi_{\varphi_1}(\alpha_1) \cdots \pi_{\varphi_n}(\alpha_n) x$, where $x \in X$ and $\varphi_1, \ldots, \varphi_n \in L^1(\mathbb{R}^+)$, reduces to the simple identity $(\prod_{i=1}^n \exp \int \varphi_i) x = \{ \exp \int \varphi \} x$, where $\varphi = \sum_{i=1}^n \varphi_i$.

The composition of A-valued functions on Γ defined by

$$f \circ g : \sigma \mapsto \sum_{\alpha \subset \sigma} f(\alpha) g(\sigma \setminus \alpha) \quad (2.2)$$

enjoys the following properties: if $f \subset \Gamma_I$ and supp $g \subset \Gamma_J$ for disjoint sets I and J, then

$$(f \circ g)(\sigma) = f(\sigma \cap I) g(\sigma \cap J) \text{ for } \sigma \in \Gamma,$$

whereas, by the integral-formula, if $f, g \in L^1(\Gamma; A)$ then

$$f \circ g \in L^1(\Gamma; A), \quad \int f \circ g = \int f \int g \quad \text{and} \quad \|f \circ g\|_1 \leq \|f\|_1 \|g\|_1. \quad (2.4)$$

Definition. Let $a \in L^1_{\text{loc}}(\mathbb{R}^+; A)$. Its associated product functions π_a and σ_π in $L^1_{\text{loc}}(\Gamma; A)$ are defined by $\pi_a(\varnothing) = \sigma_\pi(\varnothing) = 1_A$ and for $\sigma = \{ s_1 < \cdots < s_n \}$, $\pi_a(\sigma) = a(s_1) \cdots a(s_n)$ whereas $\sigma_\pi(\sigma) = a(s_n) \cdots a(s_1)$; in short,

$$\pi_a(\sigma) := \prod_{s \in \sigma} a(s) \quad \text{and} \quad \sigma_\pi(\sigma) := \prod_{s \in \sigma} a(s).$$

For $a \in L^1_{\text{loc}}(\mathbb{R}^+; A)$ define E^a and ∂E in $C(\Delta^2; A)$ as follows.

$$E^a_{r,t} := \int_{[r, t]} \pi_a = \int_{[\pi_r, \pi_t]} \pi_a \quad \text{and} \quad \sigma_\pi := \int_{[\pi_r, \pi_t]} \sigma_\pi.$$

Remark. If $a = \varphi(\cdot) 1_A$, for a function $\varphi \in L^1_{\text{loc}}(\mathbb{R}^+)$, then

$$E^a_{r,t} = \int_{[\pi_r, \pi_t]} \pi_\varphi 1_A = e^{\int_{\pi_r}^{\pi_t} \varphi} 1_A.$$

Lemma 2.3. Let $c, d, b \in L^1(\mathbb{R}^+; A)$ and $a, b \in L^1_{\text{loc}}(\mathbb{R}^+; A)$.

(a) $\|\pi_c\|_1 \leq \exp ||c||_1$ and $\|\pi_{c+d} - \pi_c\|_1 \leq ||\pi_c||_1 \left(||\pi_c||_1 - 1 \right)$.

(b) $\pi_c \circ \pi_d = \pi_{c+d}$ if Ran $d = \text{Ran } c$, whereas

$\pi_c \circ \sigma_\pi = \pi_{c+\sigma_\pi}$ provided that $d(s_1) \sim (c+d)(s_2)$ when $s_2 > s_1 > 0$.

(c) E^a is the unique continuous solution of the integral equations (2.5) below (in turn, for each fixed r, and each fixed t); ∂E is likewise for (2.6).

$$E^a_{r,t} = 1_A + \int_r^t ds \ E^a_{r,s} \ a(s) = 1_A + \int_r^t ds \ a(s) \ E^a_{s,t}, \quad (2.5)$$

$$E_{r,t} = 1_A + \int_r^t ds \ b(s) \ E_{r,s} = 1_A + \int_r^t ds \ E_{s,t} b(s). \quad (2.6)$$

(d) For $(r, t), (u, v) \in \Delta^2$, setting $I := [r, t]$ and $J := [u, v]$, the following hold:

(i) $\|E^a_{r,t} - E^b_{u,v}\| \leq \exp ||a_f||_1 (\exp \|b-a\|_1 + \exp ||a_{fJ}||_1 - 1)$.

(ii) $E^a_{r,s} E^b_{s,t} = E^a_{r,t}$ where $c := a_{[r,s]} + b_{[s,t]}$.

(iii) $E^a_{r,t} E^b_{s,t} = E^{a+b}_{r,t}$ if $b(s_1) \sim (a+b)(s_2)$ for $r < s_1 < s_2 < t$.

(iv) $E^a_{r,t} E^b_{r,t} = E^{a+b}_{r,t}$ where $e_r(s) := (-b)E_{r,s} a(s) E^a_{s,t} + b(s)$.

(v) $E^{L_{w,a}}_{r,t} = L_{r+w,t+w}$ for $w \in [r, \infty]$, where $L_{w,a}$ is given by

$$\langle L_{w,a} \rangle (s) = \begin{cases} \ a(s + w) & \text{if } s + w \geq 0 \\ \ 0 & \text{otherwise}. \end{cases}$$
Proof. Note the following binomial-type identities, for functions \(a_1, a_2 : \mathbb{R}_+ \to \mathcal{A}\):

\[
\pi_{a_1 + a_2}(\sigma) = \sum_{i \in \{1, 2\}^n} a_i(s_1) \cdots a_n(s_n) \quad \text{for} \quad \sigma = \{s_1 < \cdots < s_n\} \tag{2.7}
\]

\[
= \sum_{\alpha \in \sigma} \pi_{a_1}(\alpha) \pi_{a_2}(\sigma \setminus \alpha) \quad \text{if} \quad \text{Ran} \ a_1 \sim \text{Ran} \ a_2. \tag{2.8}
\]

(a) The first estimate follows from submultiplicativity of the norm. For the second, note that (2.7) implies that

\[
\| \pi_{c+h}(\sigma) - \pi_c(\sigma) \| \leq \| \pi_{C+H}(\sigma) - \pi_C(\sigma) \|
\]

for \(\sigma \in \Gamma\), where \(C := \|c(\cdot)\|\) and \(H := \|h(\cdot)\|\). Thus, by (2.1),

\[
\| \pi_{c+h} - \pi_c \|_1 \leq \| \pi_{C+H} \|_1 (\| \pi_H \|_1 - 1) = \| \pi_c \|_1 (\| \pi_h \|_1 - 1).
\]

(b) The first identity follows from (2.8). The second follows easily from the fact that, under the given commutation assumption,

\[
\pi_{c+d}(s \cup \tau) = (c(s) \pi_{c+d}(\tau) + \pi_{c+d}(\tau)d(s),
\]

when \(s < \tau\) (meaning \(s < t\) for all \(t \in \tau\)).

(c) All four of the required identities follow from the integral-sum formula. For example, for the first one, define \(\mathbb{1}(\alpha, \beta)\) to be 1 if \(\#\beta = 1\) and \(a < b\) for all \(a \in \alpha\) and \(b \in \beta\), and to be 0 otherwise, then

\[
\int_r^t ds E_{r,s}^a(s) = \int_r^t ds \int_{[r,s]} d\alpha \pi_a(\alpha \cup \{s\})
\]

\[
= \int d\alpha \int d\beta \pi_{a \cup \beta}(\alpha \cup \beta) \mathbb{1}(\alpha, \beta)
\]

\[
= \int d\alpha \sum_{\sigma \supset \alpha} \pi_{a \cup \sigma}(\alpha) \mathbb{1}(\alpha, \sigma \setminus \alpha) = \int_{[r,t]} d\sigma \pi_{a \cup \sigma}(\sigma) = E_{r,t}^a - 1_A.
\]

Uniqueness for the first and last follows from Theorem 1.1; uniqueness for the other two follows from the left module sister version of Theorem 1.1.

(d) (i) follows from Part (a). (ii) follows from (2.4), (2.2) and the identity \(\pi_n(\sigma \cap [r, s]) \pi_n(\sigma \cap [s, t]) = \pi_n(\sigma)\); with (i) it implies that \(E^a \in \text{Evol}(\mathcal{A}) \subset \text{Evol}(\mathcal{A}^x)\).

(iii) follows from Part (b) and identity (2.4). In particular, since \(E^b\) is invertible, this implies that

\[
(E_{r,b}^b)^{-1} = (-b)E_{r,s}(r, s) \in \Delta^2. \tag{2.9}
\]

To prove (iv), set \(E\) equal to the pointwise product \(E^a E^b\). Integrating by parts using Part (c), the assumed commutation relations, and (2.9), we have

\[
E_{r,t} = 1_A + \int_r^t ds (E_{r,s}^a E_{r,s}^b + E_{r,s}^b E_{r,s}^a b(s)) = 1_A + \int_r^t ds E_{r,s}e_{r,s}(s).
\]

Therefore (iv) follows from uniqueness in Part (c). With a simple change of variable, (v) follows from the identity

\[
(L_{w})_{r,t}(s) = a_{r+w,t+w}(s + w) \quad (s \in \mathbb{R}_+). \tag*{□}
\]

The summarising proposition below now follows easily.

Proposition 2.4. Let \(a, b \in L^1_{\text{loc}}(\mathbb{R}_+; \mathcal{A})\), \(c \in L^\infty(\mathbb{R}_+; \mathcal{A})\) and \((r, t) \in \Delta^2\). Then

(a) \(E^a \in \text{Evol}_c(\mathcal{A})\) and \(E^c \in \text{Evol}_c(\mathcal{A})\).

(b) \(E^a \circ E_{r,t} = E_{r,t}^a b\) if \(b(s) \sim (a + b)(s)\) for \(r < s_1 < s_2 < t\), in particular,

\[
(e^{lt} \circ E_{r,t})^{-1} = (e^{lt} \circ E_{r,t})^{-1} \quad \text{and} \quad e^{lt} \circ E_{r,t} = E_{r,t}^{a+\varphi(1)A} \quad \text{for} \quad \varphi \in L^1_{\text{loc}}(\mathbb{R}_+)\.
\]

(c) \(E_{r,t}^a = E_{0,t-r}^{L_{0,1}^a} \text{ and } E_{0,s+u}^a = E_{0,u}^a E_{0,s}^{L_{0,u}}\), for \(s, u \in \mathbb{R}_+\).
Definition. An evolution of the form \(E^a \) where \(a \in L^1_{\text{loc}}(\mathbb{R}^+; \mathcal{A}) \) will be called **elementary, with generator** \(a \); we denote this class of evolutions by \(\text{Evol}_e(\mathcal{A}) \).

The following example is of considerable historical importance (see e.g. [EnN]).

Example. Let \(a : \mathbb{R}^+ \to B(X) \) be strongly continuous, for a Banach space \(X \). Then, by the Banach-Steinhaus Theorem, \(a \) is locally bounded, and by (2.6),
\[
aE_{r,t} = I_X + \int_r^t ds \, a(s) aE_{r,s} \quad (0 \leq r \leq t).
\]
In particular, for all \(x \in X \), the nonautonomous abstract Cauchy problem
\[
u'(t) = a(t)u(t) \quad (t \geq 0), \quad u(0) = x,
\]
has unique “classical” solution \(aE_{0,t} \mathbb{1} \mathbb{1}(\mathbb{R}^+; X) \).

Noting that \(\text{Evol}_e(\mathcal{A}) \subset \text{Evol}_c(\mathcal{A}) \), we characterise the class of elementary evolutions next.

Theorem 2.5. Let \(E \in \text{Evol}_c(\mathcal{A}) \) and set \(\phi_t := E_{0,t} \ (t \in \mathbb{R}^+) \). Then the following are equivalent:

1. There is a function \(c \in L^1_{\text{loc}}(\mathbb{R}^+; \mathcal{A}) \) such that
\[
\phi_t - \phi_r = \int_r^t ds \, c(s) \quad (0 \leq r \leq t).
\]
2. \(E \in \text{Evol}_e(\mathcal{A}) \).

In this case \(c(s) = E_{0,s} a(s) \ (s \in \mathbb{R}^+) \), where \(a \) is the generator of \(E \).

Proof. Multiplying (2.5) on the left by \(E_{0,r} \) we see that (ii) implies (i).

Suppose that (i) holds. By Proposition 2.1, \(\text{Ran} \phi \subset \mathcal{A}^\prime \), and so we may define a function \(a \in L^1_{\text{loc}}(\mathbb{R}^+; \mathcal{A}) \) by \(a(s) := (\phi_s)^{-1}c(s) \). Since \(E \) and \(E^a \) are both continuous evolutions, it suffices to show that \(\phi_t = E^a_{0,t} \) for all \(t \in \mathbb{R}^+ \). Now
\[
\phi_t = 1_\mathcal{A} + \int_0^t ds \, a(s) \quad (t \in \mathbb{R}^+)
\]
so, by Part (c) of Lemma 2.3 (uniqueness), it follows that \(\phi_t = E^a_{0,t} \) for all \(t \in \mathbb{R}^+ \), as required.

Remarks. Evolutions of the above type are a.e.-weakly differentiable in the following sense. By Lebesgue’s Differentiation Theorem, for all \(\omega \in \mathcal{A}^\prime \) there is a null set \(\mathcal{N}_\omega \) in \(\mathbb{R}^+ \) such that for all \(t \in \mathbb{R}^+ \setminus \mathcal{N}_\omega \),
\[
\omega(h^{-1}(\phi_{t+h} - \phi_t) - c(t)) \to 0 \text{ as } h \to 0.
\]
Conversely, it follows from Theorem 1.1 that (ii) holds if there is a Lebesgue-null Borel subset \(\mathcal{N} \) of \(\mathbb{R}^+ \) such that \(\phi \) is differentiable on \(\mathbb{R}^+ \setminus \mathcal{N} \), \(\phi' \in L^1_{\text{loc}}(\mathbb{R}^+; \mathcal{A}) \) and Haus \(\phi(\mathcal{N}) = 0 \).

The next result applies to finite-dimensional Banach algebras. A convenient reference for the Radon–Nikodým property is [DiU]; for differentiability of Lipschitz functions, see [LPT].

Corollary 2.6. Let \(E \in \text{Evol}_e(\mathcal{A}) \) where \(\mathcal{A} \) has the Radon–Nikodým property, and set \(\phi_t := E_{0,t} \ (t \in \mathbb{R}^+) \). Then the following are equivalent:

1. \(E \in \text{Evol}_e(\mathcal{A}) \); respectively, \(E \in \text{Evol}_c(\mathcal{A}) \) with locally bounded generator.
2. There is an absolutely continuous \(\mathcal{A} \)-valued measure \(m \) on \(\mathbb{R}^+ \) of locally bounded variation such that \(m([r,t]) = \phi_t - \phi_r \ (0 \leq r \leq t) \); respectively, \(\phi \) is locally Lipschitz, so \(E \in \text{Evol}_{1,e}(\mathcal{A}) \).
We next identify a subclass of elementary evolutions which is useful in applications. To this end, and for use in the next section, we adopt the following notation.

Notation. Let \(D = \{T_1 < \cdots < T_N\} \subseteq [0,\infty[\) and set \(T_0 := 0 \) and \(T_{N+1} := \infty \). For \(u \in \mathbb{R}^+ \), define \(m = m(u) \in \mathbb{Z}^+ \), \(n = n(u) \in \mathbb{N} \) and \(\{u^D_k : m \leq u \leq n\} \) by \(\{u^D_{m+1} \leq \cdots \leq u^D_n\} \) for any such \(\{u^D_k \} \) and \(D \subseteq [0,\infty[\). The piecewise-semigroup evolutions are therefore those evolutions which enjoy the semigroup decomposition property (2.10). Note that the set \(\{u^D_k \} \subseteq \mathbb{R}^+ \) for any such \(\{u^D_k \} \) and \(D \subseteq [0,\infty[\).

Definition. We call \(E \) a piecewise-semigroup evolution if there are associated time point and semigroup sets
\[
D = \{T_1 < \cdots < T_N\} \subseteq [0,\infty[\quad \text{and set} \quad T_0 := 0 \quad \text{and} \quad T_{N+1} := \infty,
\]
where \(T_0 := 0 \) and each \(P(T) \) is a semigroup in \(\mathcal{A} \), for which the following holds:
\[
E_{r,t} = \begin{cases} \prod_{s=0}^{j} P(r,s)r \left(P(t_{s+1}) \cdots P(t_{r-s}) \right) P(t_{s+1}) & \text{if } r^D = t^D_0 \\ \prod_{s=0}^{j} P(r,s)r \left(P(t_{s+1}) \cdots P(t_{r-s}) \right) P(t_{s+1}) & \text{otherwise.} \end{cases} \tag{2.10}
\]
Note that, for any such \(D \) and \(\{P(T)\} \), (2.10) defines an evolution. Let \(\text{Evol}_{\text{pws}}(\mathcal{A}) \) denote the resulting collection; thus \(\text{Evol}_{\text{pws}}(\mathcal{A}) \cap \text{Evol}_{\text{c}}(\mathcal{A}) \subseteq \text{Evol}_{\text{c}}(\mathcal{A}) \).

The piecewise-semigroup evolutions are therefore those evolutions which enjoy the semigroup decomposition property (2.10). Note that the set \(D \) can be empty, and it is only the minimal such set \(\mathcal{D} \) that is determined by the evolution \(E \). We have the following elementary characterisation.

Proposition 2.7. Let \(E \in \text{Evol}_{\text{c}}(\mathcal{A}) \). Then the following are equivalent:

(i) \(E \in \text{Evol}_{\text{pws}}(\mathcal{A}) \).

(ii) \(E \in \text{Evol}_{\text{c}}(\mathcal{A}) \), with piecewise constant generator.

In this case, the associated minimal time point and semigroup sets of \(E \) are respectively, \(\text{Disc} a \) and \(\{e_s(t) : s \geq 0 ; t \in [0] \cup \text{Disc} a\} \), where \(a \) is the (right-continuous version of) the generator of \(E \).

Proof. Suppose that (ii) holds and let \(a \) be the generator of \(E \). Let \(D = \text{Disc} a = \{T_1 < \cdots < T_N\} \), set \(T_0 := 0 \) and \(T_{N+1} := \infty \), and let \((r,t) \in \Delta^2 \). By the evolution property,
\[
E_{r,t} = \begin{cases} E_{r,t}^D \left(E_{r,t}^D \cdots E_{r,t}^D \right) E_{r,t}^D & \text{if } r^D = t^D_0 \\ \text{otherwise.} \end{cases} \tag{2.11}
\]
Now, for \(k = 0, \cdots, N \), \(a \) is constant on \([T_k, T_{k+1}] \) so, for \([u,v] \subseteq [T_k, T_{k+1}] \),
\[
E_{u,v} = \int_{[u,v]} d\sigma \pi_{a}(\sigma) = \int_{[u,v]} d\sigma \pi_{a}(\sigma)^{\#} = e^{(v-u)a_0(T_k)} = P(t_{T_k}^{-u-a}),
\]
where \(P(T) \) denotes the semigroup generated by \(a(T) \). Thus (2.11) becomes (2.10), showing \(E \) to be a piecewise-semigroup evolution with associated time and semigroup sets as claimed.

Suppose conversely that (i) holds, and let \(D = \{T_1 < \cdots < T_N\} \) be the associated minimal time point and semigroup sets of \(E \). Since \(E \in \text{Evol}_{\text{c}}(\mathcal{A}) \), each of these semigroups is norm continuous. Let \(a \) be the piecewise constant function \(\sum_{k=0}^{N} a(T_k) \) where, for \(k = 0, \cdots, N \), \(a(k) \) is the generator of \(P\left(T_k\right) \). Then \(E^a \) also satisfies (2.10), and so \(E = E^a \).
Thus the evolutions with piecewise constant generators are the continuous evolutions which enjoy a semigroup decomposition. We characterise a slightly wider class of evolutions next. By **piecewise continuity** for a Banach-space valued function \(x \) defined on \(\mathbb{R}_+ \), we mean that there is a finite subset \(D \) of \([0, \infty[\) such that \(x \) is continuous on \(\mathbb{R}_+ \setminus D \) and the limits \(a(0+) \), \(a(-) \) and \(a(s+) \) exist, for \(s \in D \). For definiteness, we take the unique right-continuous (i.e. càdlàg) version of each piecewise continuous function.

Proposition 2.8. Let \(E \in \text{Evol}_c(\mathcal{A}) \). Then the following are equivalent:

(i) \(s \mapsto E_{0,s} \) has piecewise continuous derivative on \(\mathbb{R}_+ \).

(ii) \(E \in \text{Evol}_c(\mathcal{A}) \) with piecewise continuous generator.

Proof. By Proposition 2.1, \(E \) is invertible. Assume that (i) holds and define \(a : \mathbb{R}_+ \to \mathcal{A} \) to be the piecewise continuous function \(s \mapsto (E_{0,s})^{-1} \frac{d}{ds} E_{0,s} \). Then \(a \in L^1_\text{loc}(\mathbb{R}_+; \mathcal{A}) \) and (ii) holds since \(s \mapsto E_{0,s} \) and \(s \mapsto E_{0,s}^\pi \) both satisfy the conditions of Theorem 1.1, Part (b), with \(N := \text{Disc} a \).

The converse is clear. \(\square \)

3. Lie–Trotter Product Formula

In this section we prove a Trotter product formula and an Euler-type formula, for elementary evolutions. The following notation is convenient for handling Trotter products of evolutions.

Notation. Let \(D \subset \subset [0, \infty[\), in other words \(D \in \Gamma_{[0, \infty[} \), and let \(G \in F(\Delta^2; \mathcal{A}) \). Then, in the notation associated with the diagram in Section 2, define \(G \)’s \(D \)-fold product function by

\[
G^D : \Delta^2 \to \mathcal{A}, \quad G^D_{r,t} = \begin{cases} G_{r,t}^D & \text{if } r^D < t^D \\ 1_A & \text{otherwise.} \end{cases}
\]

In particular, if \(G \) is an evolution then \(G^D_{r,t} \) equals \(G_{r,t}^D \) if \([r, t] \cap D \) is nonempty, and equals \(1_A \) otherwise.

Definition. We say that a sequence \((D(n))_{n \geq 1} \) in \(\Gamma_{[0, \infty[} \setminus \{ \emptyset \} \) converges to \(\mathbb{R}_+ \) if

\[
\min D(n) \to 0, \quad \max D(n) \to \infty \quad \text{and} \quad \text{mesh } D(n) \to 0.
\]

Similarly, a family \((D[h])_{h > 0} \) in \(\Gamma_{[0, \infty[} \) converges to \(\mathbb{R}_+ \) if, as \(h \to 0 \),

\[
\min D[h] \to 0, \quad \max D[h] \to \infty \quad \text{and} \quad \text{mesh } D[h] \to 0.
\]

Here mesh \(D \) is defined to be \(\max \{|s - t| : s, t \in D, s \neq t\} \) (or \(\infty \) if \(#D = 1 \)).

Theorem 3.1. Let \(a_1, a_2 \in L^1_\text{loc}(\mathbb{R}_+; \mathcal{A}) \), let \((D(n))_{n \geq 1} \) be a sequence in \(\Gamma_{[0, \infty[} \setminus \{ \emptyset \} \) converging to \(\mathbb{R}_+ \), and let \(T \in \mathbb{R}_+ \). Then

\[
\sup_{[r,t] \subset [0,T]} \| E_{r,t}^{a_1 + a_2} - 1.2E^D(n) \| \to 0, \quad \text{where } 1.2E_{u,v} := E_{u,v}^{a_1} E_{u,v}^{a_2}.
\]

Proof. Set \(a = a_1 + a_2 \) and \(A = A_1 + A_2 \), where \(A_i := \|a_i(\cdot)\| \in L^1_\text{loc}(\mathbb{R}_+) \) \((i = 1, 2) \), and set \(\pi := \pi_{a_1} \circ \pi_{a_2} \), for the composition defined in (2.2). Thus \(\pi \in L^1_\text{loc}(\Gamma; \mathcal{A}) \) with

\[
\pi(\emptyset) = 1_A \quad \text{and} \quad \pi(\{s\}) = a(s) \quad \text{for } s \in \mathbb{R}_+,
\]

so the functions \(\pi \) and \(\pi_a \) agree on \(\Gamma^{<1} \). Also, by (2.4),

\[
1.2E_{u,v} = \int_{\Gamma_{[u,v]}} \pi(\sigma) \quad \text{for } ((u, v) \in \Delta^2).
\]
By further application of the integral-sum formula—more specifically (2.4), and (2.3),

\[\frac{1}{2}E_{r,t}^{D(n)} = \int_{\Gamma_{r,t}} d\sigma \pi^{(n)}(\sigma), \]

where

\[\pi^{(n)}(\sigma) := \pi(\sigma \cap [r_1^{D(n)}, r_2^{D(n)}]) \cdots \pi(\sigma \cap [r_{t-1}^{D(n)}, r_0^{D(n)}]). \]

Now,

\[\|\pi^{(n)}(\sigma)\| \leq \pi_A(\sigma) \quad (n \in \mathbb{N}, \sigma \in \Gamma). \]

Thus \(\pi^{(n)} \in L^1_{\text{loc}}(\Gamma; A) \), \(\pi^{(n)}(\emptyset) = 1_\mathcal{A} = \pi_a(\emptyset) \) and, for \(\sigma \in \Gamma_{[0,\infty]} \setminus \{\emptyset\} \), the equality

\[\pi^{(n)}(\sigma) = \pi_a(\sigma) \]

holds—as soon as \(n \in \mathbb{N} \) is sufficiently large that

\[\min D(n) < \min \sigma, \quad \max D(n) > \max \sigma \quad \text{and} \quad \text{mesh } D(n) < \text{mesh } \sigma. \]

The result therefore follows from the Dominated Convergence Theorem:

\[\sup_{[r,t] \subset [0,T]} \left\| E_{r,t}^{n} - \frac{1}{2}E_{r,t}^{D(n)} \right\| \leq \int_{[0,T]} d\sigma \left\| \pi_a(\sigma) - \pi^{(n)}(\sigma) \right\| \to 0. \]

In order to handle Euler-type products we define, for \(a \in L^1_{\text{loc}}(\mathbb{R}_+; \mathcal{A}) \), the truncated evolution:

\[\tilde{E}^a : \Delta^2 \to \mathcal{A}, \quad \tilde{E}_{r,t}^a := \int_{[r,t]} \tilde{\pi}_a \quad \text{where} \quad \tilde{\pi}_a := 1_{r \leq s \leq t} \pi_a. \quad (3.1) \]

Thus \(\tilde{E}_{r,t}^a = 1_{\mathcal{A}} + \int_{r}^{t} ds a(s) \).

Theorem 3.2. Let \(a_1, a_2, (D(n))_{n \geq 1} \) and \(T \) be as in Theorem 3.1. Then

\[\sup_{[r,t] \subset [0,T]} \left\| E_{r,t}^{n} - (N)E_{r,t}^{D(n)} \right\| \to 0, \quad \text{where} \quad (N)E_{u,v}^{n} := E_{u,v}^{n_1} \cdots E_{u,v}^{n_{t-[u,v]}}, \quad ((u,v) \in \Delta^2), \]

and similarly for the truncations.

Proof. A proof is obtained as follows. In the proof of Theorem 3.1 replace \(\pi_{a_1}, \pi_{a_2}, \pi, 1_\mathcal{A}E \) and \(\pi^{(n)} \) by \(\tilde{\pi}_{a_1}, \tilde{\pi}_{a_2}, \tilde{\pi}, 1_\mathcal{A}\tilde{E} \) and \(\tilde{\pi}^{(n)} \) respectively, where \(\tilde{\pi} \) is defined as \(\pi \) is but with \(\tilde{\pi}_{a_1} \) and \(\tilde{\pi}_{a_2} \) in place of \(\pi_{a_1} \) and \(\pi_{a_2} \), and \(\tilde{\pi}^{(n)} \) is defined as \(\pi^{(n)} \) is, but with \(\tilde{\pi} \) in place of \(\pi \). In short, drawing on the definitions (3.1), retrace the argument with all \(\pi \)'s and \(E \)'s endowed with tildes.

Remarks. The above two proofs need little adjustment to deliver the following generalisation. For \(a = a_1 + \cdots + a_N \) where \(a_1, \cdots, a_N \in L^1_{\text{loc}}(\mathbb{R}_+; \mathcal{A}) \), and \(T \in \mathbb{R}_+ \),

\[\sup_{[r,t] \subset [0,T]} \left\| E_{r,t}^{n} - (N)E_{r,t}^{D(n)} \right\| \to 0, \quad \text{where} \quad (N)E_{u,v}^{n} := E_{u,v}^{n_1} \cdots E_{u,v}^{n_{t-[u,v]}} \quad ((u,v) \in \Delta^2), \]

and similarly for the truncations.

The above proofs also yield corresponding results for a continuous-parameter family \((D[h])_{h \geq 0} \). In particular, taking \(a_1 \) and \(a_2 \) constant, respectively \(a_2 = 0 \) and \(a_1 = a_1 \) a constant, then gives the following limits

\[e^{ha_1 e^{ha_2}}(t^n h^{D(h)} - t^{n D(h)})/h \to e^{(t-r)(a_1+a_2)} \]

and \((1_\mathcal{A} + ha)(t^n h^{D(h)} - t^{n D(h)})/h \to e^{(t-r)a} \)

as \(h \to 0 \); the classical Lie–Trotter product formula ([ReS], Theorem VIII.29) and Euler formula emerge upon taking \(r = 0 \) and \(D[h] = \{ nh : 1 \leq n \leq N \} \) where \(N = \lfloor 1/h \rfloor \):

\[e^{ha_1 e^{ha_2}}(t/h) \to e^{(t)(a_1+a_2)} \]

and \((1_\mathcal{A} + ha)(t/h) \to e^{ta} \).

The close connection between the Trotter product and Euler formulæ was richly investigated, at the deeper level of \(C_0 \)-semigroups, by Chernoff (see [Che]).
Acknowledgment. We are grateful to Mateusz Jurczyński for kindly supplying the diagram. This work benefited from the support of the UK-India Education and Research Initiative grant QP-NCG-QI: Quantum Probability, Noncommutative Geometry and Quantum Information.

REFERENCES

Indian Statistical Institute (Bangalore Centre), Mysore Road, RV College Post, Bangalore 560059, India

E-mail address: bata436@gmail.com

Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster LA1 4YF, UK

E-mail address: j.m.lindsay@lancaster.ac.uk